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This study is aimed at constructing a prognostic risk model for colorectal cancer (CRC) using machine-learning algorithms to
provide accurate staging and screening of credible prognostic risk genes. We extracted CRC data from GSE126092 and
GSE156355 of the Gene Expression Omnibus (GEO) database and datasets from TCGA to analyze the differentially expressed
genes (DEGs) using bioinformatics analysis. Among the 330 shared DEGs related to CRC prognosis, we divided the analysis
period into different phases and applied univariate COX regression, LASSO, and multivariate COX regression analysis. GO
analysis and KEGG analysis revealed that the functions of these DEGs were primarily focused on cell cycle, DNA replication,
cell mitosis, and other related functions, and this confirmed our results from a biological perspective. Finally, a prognostic risk
model for CRC based on the CHGA, CLU, PLK1, AXIN2, NR3C2, IL17RB, GCG, and AJUBA genes was constructed, and the
risk score enabled us to predict the prognosis for CRC. To obtain a comprehensive and accurate model, we used both internal
and external evaluations, and the model was able to correctly differentiate patients with CRC into a high-risk group with poor
prognosis and a low-risk group with good prognosis. The AUC values of the 3-, 5-, and 10-year survival ROC curves were
0.715, 0.721, and 0.777, respectively, according to the internal evaluation, and the AUC values were 0.606, 0.698, and 0.608,
respectively, for the external evaluation using GSE39582 from the GEO database. We determined that CLU, PLK1, and IL17RB
could be considered to be independent prognostic factors for CRC with significantly different expression (P < 0:05). Using
machine-learning methods, a prognostic risk model comprised of eight genes was constructed. Not only does this model
provide improved treatment guidance, but it also provides a novel perspective for analyzing survival conditions at a deeper
biological level.

1. Introduction

Colorectal cancer (CRC) is one of the most widespread can-
cers worldwide and ranks third in regard to incidence and
second in regard to mortality [1]. Moreover, the incidence
and mortality rates for CRC have increased in recent years.
Due to its atypical clinical symptoms, CRC can be detected
in only 40% of the patients at an early stage [2]. Currently,
the diagnosis of CRC is primarily based on colonoscopy,
and its treatment involves surgery, radiotherapy, chemother-

apy, targeted therapy, and immunotherapy. However, the
prognosis for CRC differs among individuals. For example,
the most common staging system for CRC is TNM staging.
However, we observed that determining the prognosis of
the patients at the same stage was very different [3]. The
patients are often highly upset due to their poor prognosis.

It is important to predict the prognosis of patients with
CRC. On one hand, it is possible that the patients may expe-
rience palindromia after surgery. If the prognosis of patients
can be predicted, the group with a higher probability of
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palindromia development can be distinguished. Therefore,
more attention should be focused on this group of patients
to provide the necessary treatment. Dai et al. [4] constructed
a prognosis risk model comprised of 15 mRNA and 3
lncRNAs. Their results indicated that the patients who are
characterized as high risk exhibit a 2.7-fold greater risk for
palindromia compared to that of the patients characterized
as low risk. Therefore, it is important to construct an accu-
rate model to predict the prognosis of patients with CRC.

However, after surgery, CRC may transfer to the liver or
lung, and it is thus critical to identify the patients with poor
prognosis and a higher probability of cancer metastasis. A
recent study [5] identified 128 genes related to CRC EMT
and constructed a risk model for metastasis. The results of
this study indicated that for the patients in the Dukes’ B
stage, high-risk patients exhibit an 8.5-fold higher probabil-
ity of metastasis compared to that of low-risk patients. In the
Dukes’ C stage, these patients exhibited a 3.6-fold higher
probability. Therefore, it is highly recommended that high-
risk patients should undergo chemotherapy, while low-risk
patients do not need it, as chemotherapy is not beneficial
to everyone due to its negative side effects. Consequently,
constructing a risk model to group patients with CRC into
high-risk and low-risk groups is important.

Scientists are searching for ways to detect poor prognosis
early and to take action to prevent it [6–8]. Researchers have
been attempting to understand the mechanisms of CRC.
Unfortunately, this process is too complicated to be fully
understood at the present time. Therefore, a new model is
required to better predict CRC prognosis. We determined
that prognosis may be related to the different gene expres-
sion profiles among individuals. Therefore, we aimed to
determine the relationship between specific genes and CRC
prognosis.

Certain studies have reported that right and left colon
cancers may exhibit different prognoses [9]. Liang et al.
[10] constructed a risk model based on PHACTR3 and
CKMT2 to predict the prognosis of left-sided colon cancer.
Additionally, there is another risk model based on EREG,
ERFE, GFI1, and RASL10B specific for right colon cancer.

Gene sequencing techniques have greatly improved in
recent years, and there are therefore numerous useful gene
databases such as the Gene Expression Omnibus (GEO)
and TCGA. With the help of the R language and machine
learning, we can analyze a large amount of gene data and
conclude their relationship with CRC. Algorithms such as
COX regression and LASSO regression are commonly used
in the context of bioinformatics research, and they can iden-
tify the most relevant and principal factors. We hope to
combine them with certain gene data analysis techniques
to determine the effects of genes on the prognosis of CRC.

In this study, we first identified differentially expressed
genes (DEGS) in CRC using the GEO and TCGA databases.
We obtained samples with survival data from the TCGA
database. We then used univariate COX regression, LASSO
regression, and multivariate COX regression to focus on spe-
cial genes that exhibit a strong relationship with CRC and
construct a prognostic risk model. Finally, we used the risk
model to predict the prognosis of any sample from the above

database. According to the survival curve and ROC curve of
internal and external evaluations, our risk model was dem-
onstrated to be effective.

2. Materials and Methods

2.1. Data Collection. All data used in this research were
obtained from the GEO database (https://www.ncbi.nlm
.nih.gov/geo/) and the Cancer Genome Atlas (TCGA) data-
base (https://portal.gdc.cancer.gov/). We extracted CRC data
from GSE126092 [11] and GSE156355 [12] of the GEO data-
base and datasets from TCGA to analyze the differentially
expressed genes. The GSE126092 dataset was uploaded in
August 2020 and contained 10 CRC tissues and paired adja-
cent noncancerous tissues. GSE156355 was uploaded in Feb-
ruary 2019 and contained six paired CRC samples and
adjacent tissues. The datasets from the TCGA database con-
tained 551 CRC tissues and 48 adjacent noncancerous tis-
sues and provided survival information and living status.
Finally, we used datasets from GSE39582 [13] in the GEO
database to verify our risk model for external evaluation.
GSE39582 was uploaded in May 2020 and contained data
from 585 CRC tissues.

2.2. Selecting DEGs. All data were processed using R software
(version 3.6.2). For GSE126092 and GSE156355, we first
downloaded the series matrix files using GEOquery2.54.1.
We then used the limma package (limma 3.42.2) to select
DEGs with a threshold of jlog 2FCj > 1 and adjusted P <
0:05. We then downloaded the CRC data from the TCGA
database. Based on a threshold of jlog 2FCj > 4 and adjusted
P < 0:01, we selected the DEGs using the limma 3.42.2 pack-
age. Finally, we obtained three sets of DEGs from the three
databases. Volcano plots were constructed using the ggplot2
3.3.2 package. We obtained the overlapping DEGs from
these three datasets, and a Venn diagram was constructed
using Venn Diagram 1.6.20.

2.3. Gene Sets Enrichment Analysis

2.3.1. Gene Ontology (GO) Analysis. GO analysis [14] can
provide information regarding the functions of genes. Our
analysis revealed three aspects that included molecular func-
tion (MF), biological process (BP), and cellular component
(CC). We used the R package clusterProfiler 3.14.3 to per-
form GO analysis of the DEGs based on these three aspects.
Then, for each aspect, we selected the top 20 GO terms with
the smallest P values. We used the R package GOplot 1.0.2 to
plot the graph.

2.3.2. Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway Enrichment Analysis. KEGG analysis [15] was also
performed using the R package clusterProfiler 3.14.3 with a
threshold of adjusted P < 0:05. The histogram was plotted
using R package enrichplot 1.6.1.

2.4. Univariate COX Regression. The matrix files from the
TCGA database contained 551 CRC tissues, and we finally
obtained 509 useful examples after removing lost cases for
follow-up. We used univariate COX regression to analyze
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the overlapping DEGs in step 2.2 to identify candidate genes
that are relevant to survival. Candidate genes (P < 0:05) were
retained for further analysis using the survival 3.1.8 package
of the R language.

2.5. LASSO Regression. Next, we used LASSO regression to
select genes related to CRC. LASSO regression is another
regression model that can be used to analyze the relationship
of various factors with a given phenomenon. From the
results of the LASSO regression, factors with nonzero coeffi-
cients are more relevant. There is a predefined parameter
(lambda) in the LASSO regression. As this parameter
becomes larger, it is encouraged to use more zero coefficients
for the factors. We first used cross-validation that represents
a common means of selecting parameters in machine learn-
ing to select a suitable lambda value for our experiment. We
then continued to screen relevant genes using the R packages
glmnet 4.1 and survival 3.1.8.

2.6. Multivariate COX Regression. Finally, we used multivar-
iate COX regression to analyze the 17 genes that were
selected using LASSO regression in step 2.5. Let X = ðX1, X
2,⋯, X17Þ be a vector of genes where X1, X2, …, X17 are
the differentially expressed genes identified in step 2.5. Let
“t” be survival time. The variables used in our multivariate
COX regression were X and t. Based on COX regression
using R package survival 3.1.8, we obtained a coefficient for
each gene and constructed the risk model using these coeffi-
cients. We can also plot a forest plot to illustrate the visual
result of multivariate COX regression using the R package
survminer 0.4.8.

2.7. Prognostic Risk Model for CRC. The risk model was
applied to calculate the risk score based on the candidate
genes and their coefficients that were obtained from multi-
variate COX regression. The formula is as follows:

RiskScore =〠 coefGENi
∗ expGENið Þ ð1Þ

where coefGENi is the coefficient value of each gene, and
expGENi is the gene expression.

After calculating the risk scores for 509 samples in
TCGA, we classified them into low-risk and high-risk groups
according to the median risk score. The prognostic risk
model was visualized using the R package pheatmap 1.0.12,
and the risk score curve, survival time distribution map,
and heatmap of prognostic genes for low-risk and high-
risk groups were plotted.

2.8. Evaluation of the Risk Model

2.8.1. Internal Evaluation. We used the median risk score as
the cutoff and divided the 509 samples from TCGA into low-
and high-risk groups. The survival curve was plotted using
the K-M method with the R package survival 3.1.8. The
ROC curve was plotted using a time ROC of 0.4, and the
area under the ROC curves for 3 years, 5 years, and 10 years
of survival were calculated.

2.8.2. External Evaluation. Using the R package GEOquery
2.54.1, we downloaded datasets from GSE39582 of the
GEO database and obtained 579 gene samples and survival
data (six cases were lost). Similarly, we calculated the risk
score for each sample using our risk model, used the median
risk score as the cutoff, and divided these samples into low-
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Figure 1: The overview of the procedure used in this study.
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Figure 2: Identification of overlapping DEGs of CRC. (a) Volcano plot of DEGs in GSE126092 between CRC tissues and paired adjacent
noncancerous tissues. A total of 3,022 DEGs were identified with red dots or blue dots in the plot. (b) Volcano plot of DEGs in
GSE156355 identified 3,356 DEGs. (c) Volcano plot of DEGs in TCGA identified 3,926 DEGs. (d) Venn graph of overlapping DEGs
among these three data sets. A total of 330 DEGs in all three independent cohorts were identified, and this indicated that these genes
were present in all of the three datasets.
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risk and high-risk groups. Survival and ROC curves were
plotted.

2.9. Identifying the CRC Prognostic Biomarkers. We used the
genes in the above prognostic risk model as candidate genes
and divided 509 samples in TCGA and 579 samples in
GSE39582 into low- and high-risk groups, respectively,
according to the median expression of each gene. The sur-
vival curves were plotted using the R package survival
3.1.8, and the candidate genes with P < 0:05 in both matrix
files were identified as the final prognostic biomarker genes
for CRC.

The total procedure in this study can be seen in Figure 1.

3. Results

3.1. Differentially Expressed Genes (DEGs) of CRC. We
downloaded gene datasets for CRC tissues and paired adja-
cent noncancerous tissues from GSE126092, GSE156355,
and TCGA. Volcano plots were used to visualize the DEGs
in GSE126092 (Figure 2(a)), GSE156355 (Figure 2(b)), and
TCGA (Figure 2(c)). Red dots represent upregulated genes,
and blue dots represent downregulated genes. As presented
in the results, there were 3,022 DEGs in GSE126092, 3,356

DEGs in GSE156355, and 3,926 DEGs in the TCGA dataset.
Finally, 330 overlapping DEGs were identified in all three
datasets as presented in the Venn diagram (Figure 2(d)).
We will use these 330 DEGs in future studies.

3.2. Gene Sets Enrichment Analysis. GO and KEGG pathway
analyses were performed to focus on the functions of these
DEGs. We used R package GOplot 1.0.2 to plot graphs for
GO analysis and enrichplot 1.6.1 for KEGG with the y-axis
representing the term and the x-axis representing the num-
ber of genes. Color represents the P value. In the molecular
function (MF) term, the top five functions that the DEGs
were primarily enriched for were cyclin-dependent protein
serine/threonine kinase regulator activity, catalytic activity
acting on DNA, DNA helicase activity, 3′-5′ DNA helicase
activity, and heparin binding (Figure 3(a)). In biological pro-
cess (BP) term, the top five functions enriched by the DEGs
were mitotic cell cycle checkpoint, sister chromatid segrega-
tion, cell cycle G1/S phase transition, negative regulation of
mitotic cell cycle phase transition, and negative regulation
of mitotic sister chromatid separation (Figure 3(b)). In the
cellular component (CC) term, the top five functions that
the DEGs were primarily enriched for were cyclin-
dependent protein kinase holoenzyme complex, collagen-
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Figure 3: Gene sets enrichment analysis of overlapping DEGs in CRC. (a) Molecular function (MF) term for GO analysis. (b) Biological
process (BP) term for GO analysis. (c) Cellular component (cc) term for GO analysis. (d) KEGG pathway analysis for DEGs.
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containing extracellular matrix, centromeric region of con-
densed chromosome, centromeric region of condensed
nuclear chromosome, and chromosomal region
(Figure 3(c)). KEGG pathway analysis indicated that these
DEGs were primarily related to cell cycle pathways, DNA

replication, mineral absorption, and progesterone-mediated
oocyte maturation (Figure 3(d)).

3.3. Univariate COX Regression. Our goal was to analyze the
relevance of different genes in the context of CRC. In our

Table 1: Results of univariate COX regression.

Genes HR HR.95L HR.95H P value

CALB2 1.075168531 1.046511034 1.104610780 0.000000145

MMRN1 1.177992963 1.102176923 1.259024202 0.000001390

SCG2 1.136294207 1.075992885 1.199974964 0.000004380

CHGA 1.008260884 1.004368250 1.012168604 0.000030700

CADM3 1.471082666 1.193637511 1.813016254 0.000294669

FABP4 1.010864845 1.004320872 1.017451457 0.001109783

GPX3 1.013547500 1.005364841 1.021796757 0.001139274

CLU 1.013894313 1.005458670 1.022400730 0.001207801

RCAN2 1.162898316 1.060003479 1.275781183 0.001409139

PLK1 0.951773127 0.921575359 0.982960402 0.002658353

CCND1 1.010820410 1.003524380 1.018169485 0.003593027

MGP 1.005838658 1.001872497 1.009820521 0.003877044

SGCE 1.110563713 1.030969237 1.196303166 0.005713800

MFAP4 1.009969066 1.002762350 1.017227575 0.006628391

PRELP 1.034675030 1.008960246 1.061045192 0.007938749

MAD2L1 0.933275152 0.885218560 0.983940631 0.010461483

SFRP2 1.002566577 1.000574717 1.004562402 0.011530280

AGMAT 0.968625747 0.944791385 0.993061380 0.012151343

MIPEP 0.953418072 0.916549114 0.991770115 0.017756291

VSIG4 1.033985345 1.005547554 1.063227381 0.018835922

CCDC80 1.039974343 1.006339207 1.074733675 0.019455563

FHL1 1.029753094 1.004243700 1.055910468 0.021972453

DSN1 0.958530124 0.924293285 0.994035133 0.022468282

EPB41L3 1.135963669 1.016666636 1.269259178 0.024325247

AXIN2 0.989527226 0.980342126 0.998798384 0.026921215

HEXIM1 1.041947453 1.004470807 1.080822346 0.027903087

PARM1 0.988914084 0.978997996 0.998930610 0.030154696

CHRDL1 1.025388857 1.002373365 1.048932808 0.030416027

NR3C2 0.882165693 0.787326645 0.988428773 0.030731862

IL17RB 0.958795008 0.922419497 0.996604983 0.032982279

CDC45 0.942908559 0.893309918 0.995261032 0.032985263

GCG 1.017196705 1.001258421 1.033388700 0.034341311

AJUBA 1.095354855 1.006562312 1.191980113 0.034719811

WDR4 0.943248674 0.893260819 0.996033903 0.035465193

CCNB1 0.986749509 0.974543568 0.999108326 0.035690679

CRYAB 1.030028043 1.001890929 1.058955359 0.036291275

ARHGAP44 0.845014051 0.719943532 0.991812155 0.039344784

ADH1B 1.056282963 1.002144123 1.113346545 0.041375192

CCNA2 0.974828540 0.951169319 0.999076256 0.041983147

SRPK1 0.980350420 0.961688311 0.999374677 0.042995634

GNL3 0.983089244 0.966962682 0.999484758 0.043276128

OSBPL1A 1.108175856 1.001910012 1.225712602 0.045818190

HR: hazard ratio.
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study, we identified 330 overlapping DEGs in step 2.2, and
we analyzed 509 examples with survival times from the
TCGA database. After univariate COX regression, we
selected 42 genes with P < 0:05 as the inputs for the next step
(Table 1). Among the 330 overlapping DEGs, there were 42
genes that were related to the prognosis of CRC.

3.4. LASSO Regression. We continued to analyze 42 genes
related to prognosis and used LASSO regression to further
select genes that exhibited a relatively stronger relationship
with CRC. According to cross-validation, LASSO regression
exhibited the highest prediction accuracy when lambda was
the smallest (Figure 4(a)). We selected 17 genes with coeffi-
cients that were not zero in this model (Figure 4(b)). These
genes were CALB2, SCG2, CHGA, FABP4, CLU, PLK1,
MAD2L1, AGMAT, MIPEP, DSN1, AXIN2, PARM1,
NR3C2, IL17RB, GCG, AJUBA, and ARHGAP44. These
genes were more relevant in regard to CRC prognosis.

3.5. Multivariate COX Regression. We performed multivari-
ate COX regression analysis using the 17 genes that were
selected by LASSO regression. Finally, eight genes related
to prognosis were selected according to the smallest Akaike
information criterion (AIC) instead of the P value, and this
ensured that we could obtain a more suitable risk model
(Table 2).

Within these eight genes, if HR was greater than 1, then
this gene was negatively related to the prognosis of CRC.
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Figure 4: LASSO regression for screening of prognosis related genes in CRC. (a) Cross-validation of LASSO regression for verifying the
parameter lambda. (b) LASSO regression coefficient spectrum to screen for 17 genes that were more relevant to the prognosis of CRC.

Table 2: Results of multivariate COX regression.

Genes Coefficient HR P value

CHGA 0.00767 1.007729435 0.000758663

CLU 0.01449 1.014594124 0.019038662

PLK1 -0.05963 0.942115433 0.001248681

AXIN2 -0.01635 0.98378415 0.001317437

NR3C2 -0.15748 0.854291769 0.011767179

IL17RB -0.03055 0.969911846 0.124412162

GCG 0.02558 1.025912125 0.002791552

AJUBA 0.07265 1.075349281 0.126224659

HR: hazard ratio.
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Instead, if the HR was less than 1, it was positively related to
prognosis. According to the results of the multivariate COX
regression analysis, CHGA, CLU, GCG, and AJUBA were
negatively correlated with prognosis, and PLK1, AXIN2,
NR3C2, and IL17RB were positively correlated with progno-
sis (Figure 5(a)).

3.6. Visualization of the Prognostic Risk Model for CRC.
Using multivariate COX regression, we obtained the prog-
nostic risk model as follows (according to Equation (1)):

RiskScore = 0:00767 ∗ exp CHGAð Þ + 0:01449 ∗ exp CLUð Þ
+ −0:05963 ∗ exp PLK1ð Þ
+ −0:01635 ∗ exp AXIN2ð Þ
+ −0:15748 ∗ exp NR3C2ð Þ
+ −0:03055 ∗ exp IL17RBð Þ
+ 0:02558 ∗ exp GCGð Þ
+ 0:07265 ∗ exp AJUBAð Þ

ð2Þ

where the coefficient for each gene was from Table 2 of the
multivariate COX regression and was combined with gene
expression.

Using this formula, we calculated the RiskScore for 509
samples from the TCGA database. The median RiskScore
was used as the threshold value. Samples with higher
values were in the high-risk group, and samples with
lower values were in the low-risk group. We then plotted

the risk score curve (Figure 5(b)) and survival time distri-
bution map (Figure 5(c)) to visualize the prognostic risk
model. There was a shorter survival time with an increas-
ing risk score. The heatmap of prognostic genes for the
low-risk and high-risk groups revealed differential expres-
sion of the eight target genes between the two groups
(Figure 5(d)).

3.7. Evaluation of the Prognostic Risk Model for CRC

3.7.1. Internal Evaluation. After calculating the RiskScore for
509 samples from the TCGA database and dividing the sam-
ples into low-risk and high-risk groups using the median
score as the threshold value, there were 255 and 254 samples
in the low-risk and high-risk groups, respectively. We then
plotted survival curves (Figure 6(a)) for these samples. The
average survival time for the high-risk group was much
shorter than was that for the low-risk group, and this indi-
cated that our risk model was effective (P = 3:018e − 06).
We also plotted ROC curves for 3-, 5-, and 10-year survival
(Figure 6(b)). The area under the curve (AUC) values were
0.715, 0.721, and 0.777, respectively.

3.7.2. External Evaluation. We calculated the risk score for
each sample from GSE39582. We also used the median score
as the threshold value and divided the samples into low- and
high-risk groups. There were 290 samples in the low-risk
group and 289 samples in the high-risk group. We then plot-
ted survival curves (Figure 6(c)) for these samples. The aver-
age survival time for the high-risk group was much shorter
than was that for the low-risk group, and this indicated that
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Figure 5: Construction of the risk model for prognosis of CRC. (a) A visual result of multivariate COX regression analysis forest plot.
CHGA, CLU, GCG, and AJUBA were negatively related to the prognosis when HR>1, and PLK1, AXIN2, NR3C2, and IL17RB were
positively related to the prognosis when HR<1. (b) The risk score curve of 509 samples of TCGA, where the green curve indicates the
low-risk group with lower RiskScore than the median risk score, and the red curve indicates the high-risk group with a higher RiskScore.
(c) The survival time distribution map indicated that the patients with higher RiskScore values exhibited relatively shorter survival times
and higher mortality rates (red dots indicate death). (d) The heatmap of prognostic genes for low-risk and high-risk groups where the 8
target genes were differentially expressed in different groups.
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our risk model was also effective for external data (P = 0:013
). We then continued to plot the ROC curves for 3-, 5-, and
10-year survival (Figure 6(d)). The AUC values were 0.606,
0.698, and 0.608, respectively.

3.8. Identifying the CRC Prognostic Biomarkers. The samples
in the TCGA database and in GSE39582 were divided into

high-risk and low-risk groups with the median value of the
expression of the eight genes involved in the above risk
model used as cutoff values, and the survival curves for each
gene were drawn separately. The expression of CLU, PLK1,
and IL17RB were significantly different (P < 0:05) in both
of the matrix files (Figures 7(a)–7(c)). CLU expression was
negatively correlated with the survival of patients with
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Figure 6: Evaluation of the prognostic risk model for CRC. (a) Survival curves of the high-risk group and the low-risk group for 509 samples
from the TCGA (Internal data). The low RiskScore group (low-risk group) exhibited a longer survival time. (b) ROC curves for 3- (green
curve), 5- (blue curve), and 10-year survival (red curve) for 509 CRC samples from the TCGA database. (c) Survival curves of high-risk
group and low-risk group for GSE39582 (external data). The low RiskScore group (low-risk group) exhibited a longer survival time. (d)
ROC curves for 3- (green curve), 5- (blue curve), and 10-year survival (red curve) for samples from GSE39582.
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CRC, while PLK1 and IL17RB expressions were positively
correlated with survival time.

4. Discussion

CRC is a leading cause of death worldwide. Although much
work has been performed, the incidence and mortality of
CRC continue to increase. One of the primary reasons for
this is the lack of precise diagnostic and prognostic biomark-
ers for CRC. One of the important pathogeneses of CRC is
gene mutation and continuous accumulation, and these
characteristics may serve as promising diagnostic and prog-
nostic biomarkers [16]. In recent years, the beginning of the
Human Genome Project and the development of high-
throughput sequencing technology have enabled us to gain
a deeper understanding of the pathogenesis of tumors, and
at the same time, they have generated a large amount of
sequencing data that has been followed by the emergence
of databases such as TCGA and GEO databases to store
these data. This has accelerated the application of bioinfor-
matics in the context of tumors. Therefore, we can screen
for biomarkers with diagnostic and prognostic functions by
mining data in public databases, and we can then study their
mechanisms of action.

R is a programming language that possesses a large num-
ber of extension packages that can achieve complex data
processing, statistical analysis, graphic drawing, and other
operations, and it possesses the advantage of being simple

and easy to learn. Therefore, the R language can be used as
a bridge between bioinformatics and medical research. In
this study, the R language was used as a tool to screen for
genes related to overall survival in CRC using machine-
learning algorithms, and a prognostic risk model was con-
structed. The analysis process involves the processing of
thousands of sample data points and the statistical analysis
of tens of thousands of genes. Additionally, R packages allow
us to display the analysis results with different legends such
as volcano plots and Venn diagrams for differential genes,
histograms for enrichment analysis, model risk score distri-
bution plots, survival time and survival status plots, progno-
sis heatmaps of related genes, survival curve charts, and
ROC curve charts for internal and external evaluation. The
use of these legends visualizes complex data, makes them
more concise and clearer, and fully reflects the advantages
of bioinformatics methods in regard to the display of results.

We screened 330 genes that were differentially expressed
between CRC tissues and adjacent tissues by joint analysis of
CRC data from 509 samples from the TCGA database and
from the GSE126092 and GSE156355 datasets. The func-
tional enrichment analysis and KEGG pathway analysis
demonstrated that the DEGs were primarily enriched in
the functions of cell cycle, DNA replication, cell mitosis,
and other related functions that were involved in the onco-
genesis and progression of CRC. Univariate COX regression
analysis revealed that among the 330 genes, there were 42
genes associated with overall survival in patients with CRC.
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Figure 7: Survival curves of the high-risk group and the low-risk group for samples from the TCGA or GSE39582 that were divided by the
median value of the expression of CLU, PLK1, IL17RB, respectively. (a) Survival curves of the high-risk group and the low-risk group for
samples from the TCGA (left side, P = 0:029) or GSE39582 (right side, P = 0:027) that were divided by the median value of the
expression of CLU. These values were negatively correlated. (b) Survival curves of the high-risk group and the low-risk group for
samples from the TCGA (left side, P = 0:012) or GSE39582 (right side, P = 0:02) for PLK1. These values were positively correlated. (c)
Survival curves of the high-risk group and the low-risk group for samples from the TCGA (left side, P = 0:002) or GSE39582 (right side,
P = 0:004) for IL17RB. These values were positively correlated.
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LASSO regression analysis further screened for 17 genes that
were associated with CRC prognosis. Multivariate COX
regression analysis was performed on the genes in this group
to determine the coefficients of each gene and to establish a
prognostic risk model. Eight genes were selected for use in
the prognostic risk model. Among these eight genes, the
expression of CHGA, CLU, GCG, and AJUBA were nega-
tively correlated with the overall survival of patients with
CRC and were poor prognostic factors, and the expression
of PLK1, AXIN2, NR3C2, and IL17RB were positively corre-
lated with the prognosis of patients with CRC and were thus
favorable prognostic factors.

The prognostic risk model for gene expression can pre-
dict the overall survival, recurrence, and metastasis risk of
patients with cancer based on gene expression, and this is
applicable in clinical settings. Certain gene-based risk
models have emerged to differentiate the overall survival rate
of the patients. Schetter et al. [17] established a prognostic
risk model for cancer using inflammation-related genes.
This study determined that the patients with high inflamma-
tory risk scores exhibited increased cancer-related mortality,
particularly in clinical stage II. In another study focused on a
prognostic model consisting of LAMA1, ITGB1, ITGA2,
CXCR4, and EGFA, the patients with high-risk scores
tended to exhibit poor prognosis [18]. Zhou et al. deter-
mined a prognostic model consisting of five genes related
to autophagy, divided the patients into high-risk and low-
risk groups, and observed a significant difference in survival
between the two groups. ROC analysis revealed that the 1-
year and 3-year AUCs were 0.841 and 0.803, respectively,
and the results were validated using an external validation
set [19]. For our 8-gene prognostic risk model, we also per-
formed internal and external evaluations of our eight-gene
prognostic risk model. Internal evaluation in the TCGA
database demonstrated that the prognostic risk model could
significantly separate high-risk and low-risk patients. The
ROC curves were drawn, and it was determined that the
AUC values for 3-, 5-, and 10-year survival were all greater
than 0.7, and this indicated a high prediction accuracy. In
the external evaluation using GSE39582, the overall survival
of high-risk patients was also significantly shorter than was
that of low-risk patients with AUCs of 0.606, 0.698, and
0.608 for 3-, 5-, and 10-year survival, respectively. In the
external evaluation, the AUCs of the three curves were
slightly smaller than were those in the internal evaluation.
Therefore, more data from different databases are required
to confirm the validity of the risk model in the future.

Sequentially, we analyzed the expression of every gene
involved in the above risk model with the median value as
the cutoff value. CLU, PLK1, and IL17RB expression were
significantly different as indicated by survival curves. The
expression of CLU was negatively correlated with the sur-
vival of patients with CRC, while the expression of PLK1
and IL17RB was positively correlated with survival time.

Clusterin (CLU) is expressed in various tissues of the
human body [20] and is a 449 amino acid, heterodimeric
glycoprotein with a plausible role in the regeneration, migra-
tion, and antiapoptosis of tumor cells [21]. CLU can be
detected in the serum of the patients with early stage CRC

or hepatocellular carcinoma, and its expression gradually
increases during CRC progression [22, 23]. The patients
with high CLU expression exhibited worse prognosis [24].
Kim et al. [25] reported that silencing of CLU expression
could downregulate survivin to thereby increase the sensitiv-
ity of nonsmall cell lung cancer to V-ATPase inhibitors, and
it was proposed that PI3K/AKT/mTOR inhibitors combined
with V-ATPase inhibitors may provide effective treatment
for nonsmall cell lung cancer. A growing number of studies
suggest that CLU can act as a target for colorectal cancer
therapy, and high expression of CLU may indicate chemore-
sistance [26, 27].

Polo-like kinase 1 (PLK1) is a member of the well-
conserved serine/threonine kinase family and is essential
for tumor cell division and proliferation [28, 29]. PLK1 over-
expression has been observed in many types of tumors, and
therefore, PLK1 has long been considered as an oncogene
[30]. However, the oncogenic properties of PLK1 have not
been confirmed [31, 32]. In a study by de Cárcer et al. that
was published in Nature Communications, PLK1 was specu-
lated to act as a tumor suppressor rather than as an onco-
gene [33]. In vivo, Plk1 overexpression prevented the
development of Kras-induced and Her2-induced mammary
gland tumors in the presence of increased rates of chromo-
some instability. In the patients with specific breast cancer
subtypes, PLK1 overexpression was correlated with
improved survival. The effects of chromosome instability
induced by PLK1 overexpression differ in different types of
tumors. In colon cancer cells with partial APC gene knock-
out, PLK1 inhibits tumor growth [34]. TCGA data indicated
that the patients with high PLK1 expression in lung adeno-
carcinoma, renal clear cell carcinoma, and bladder cancer
exhibit shorter overall survival, whereas the patients with
high PLK1 expression in squamous cell carcinoma, rectal
cancer, and thymoma exhibit a better prognosis [35]. In
our research, overexpression PLK1 in the context of CRC
was associated with good prognosis.

Interleukin 17 receptor B (IL17RB) is a member of the
IL17 receptor family and specifically binds to IL-17B and
IL-17E (also known as IL-25) [36]. In breast cancer, high
expression of IL17RB is associated with poor prognosis that
is mainly the result of the interaction between IL-17B and
IL17RB [37]. Moreover, recent work has demonstrated that
elevated IL-17B is associated with poor prognosis in the
patients with pancreatic, gastric, lung, and breast cancers
[38, 39]. However, the combination of IL-17E and IL17RB
exerted different effects. Studies have revealed that IL-17E
inhibits the formation of breast cancer cell colonies express-
ing IL17RB in vitro [40]. Therefore, IL-17B can promote the
growth of breast cancer tumor complexes in mice, while IL-
17E can inhibit this process. Currently, there are few studies
examining IL17RB in the context of CRC, and there are no
relevant reports regarding the relationship between this
receptor and overall survival of patients with CRC. Addi-
tionally, it remains unclear if IL17RB primarily acts through
IL-17B or IL-17E in patients with CRC. Our study revealed
that patients with CRC and high IL17RB expression exhib-
ited a longer overall survival, and that IL17RB expression
could be used as a good prognostic marker for CRC. This
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result requires further relevant studies to verify its accuracy
in the future.

Our study possesses some limitations. The conclusions
of this study are based on previous data from certain data-
bases and require a prospective experiment designed to ver-
ify the conclusions or some of our own data to confirm
them. The risk model established in this study only includes
the overall survival of patients and other prognostic results
such as recurrence and metastasis were not included in the
analysis. They were also not analyzed in the context of other
clinicopathological parameters. The specific behavior of
these three genes as independent prognostic factors in
CRC also must be confirmed by further studies.

5. Conclusions

In conclusion, this study screened the DEGs between CRC
tissues and paired adjacent noncancerous tissues from the
GEO and TCGA databases. Using the R language packages,
we performed enrichment analysis for these DEGs to ana-
lyze their functions. Finally, we obtained a prognostic risk
model for CRC containing eight target genes through
machine-learning algorithms and performed internal and
external validations for this model. We then revealed that
the risk score could be used as a valuable independent prog-
nostic indicator for patients with CRC, and that CLU, PLK1,
and IL17RB could also be considered as independent prog-
nostic factors for CRC.
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