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Druggable transcriptomic pathways revealed in Parkinson’s
patient-derived midbrain neurons
Mark van den Hurk1, Shong Lau2, Maria C. Marchetto3, Jerome Mertens2,4, Shani Stern2,5, Olga Corti 6, Alexis Brice6,
Beate Winner 7,8,9, Jürgen Winkler7,8,9, Fred H. Gage 2 and Cedric Bardy 1,10✉

Complex genetic predispositions accelerate the chronic degeneration of midbrain substantia nigra neurons in Parkinson’s disease
(PD). Deciphering the human molecular makeup of PD pathophysiology can guide the discovery of therapeutics to slow the disease
progression. However, insights from human postmortem brain studies only portray the latter stages of PD, and there is a lack of
data surrounding molecular events preceding the neuronal loss in patients. We address this gap by identifying the gene
dysregulation of live midbrain neurons reprogrammed in vitro from the skin cells of 42 individuals, including sporadic and familial
PD patients and matched healthy controls. To minimize bias resulting from neuronal reprogramming and RNA-seq methods, we
developed an analysis pipeline integrating PD transcriptomes from different RNA-seq datasets (unsorted and sorted bulk vs. single-
cell and Patch-seq) and reprogramming strategies (induced pluripotency vs. direct conversion). This PD cohort’s transcriptome is
enriched for human genes associated with known clinical phenotypes of PD, regulation of locomotion, bradykinesia and rigidity.
Dysregulated gene expression emerges strongest in pathways underlying synaptic transmission, metabolism, intracellular
trafficking, neural morphogenesis and cellular stress/immune responses. We confirmed a synaptic impairment with patch-clamping
and identified pesticides and endoplasmic reticulum stressors as the most significant gene-chemical interactions in PD.
Subsequently, we associated the PD transcriptomic profile with candidate pharmaceuticals in a large database and a registry of
current clinical trials. This study highlights human transcriptomic pathways that can be targeted therapeutically before the
irreversible neuronal loss. Furthermore, it demonstrates the preclinical relevance of unbiased large transcriptomic assays of
reprogrammed patient neurons.
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INTRODUCTION
Parkinson’s disease (PD) is a chronic neurodegenerative disorder
characterized by the selective loss of dopaminergic neurons in the
midbrain substantia nigra pars compacta, among others1.
Unfortunately, despite numerous research efforts over the last
decades, no clinically approved treatment can slow the progres-
sion of PD pathophysiology. Furthermore, only a small proportion
of active clinical trials currently focus on disease-modifying
therapies (only 3/28 in Phase 3 in 2020)2,3. Therefore, there is an
urgent unmet need for innovative therapeutic pipelines targeting
the cellular dysfunction that precedes dopaminergic neuron loss.
However, the early neuronal molecular dysfunctions in sporadic
PD patients remain poorly determined4,5.
Mendelian genetic investigations and large-scale genome-wide

association studies (GWAS) demonstrated the complex polygenic
nature of PD, highlighting a broad range of genes and variants
associated with PD clinical phenotypes6–16. However, individually
most of these variants have minor effects and cannot be
consistently associated with PD. As a result, it remains challenging
to use GWAS findings to guide clinical practice or therapeutic
development17–19. Nevertheless, the substantial role of genetic
predispositions in PD is well recognized18,20 and, collectively, a
large set of low-penetrance risk factors can become pathogenic.

Thus, genome-wide expression profiling in patient neurons is
required to portray a molecular picture that better represents the
heterogeneity of PD gene variants. While post-mortem samples of
bulk midbrain substantia nigra from PD and healthy subjects have
been sequenced21–23, these case-control comparisons most likely
reflect terminal cytoarchitectural differences rather than primary
pathogenic mechanisms24. In contrast, human-induced pluripo-
tent stem cell (hiPSC) models can address this technical gap by
revealing the relatively early molecular stages of the disease in live
neurons25–27.
Previous work has demonstrated the capability of hiPSC-derived

neuronal models to reveal downstream cellular impairments
caused by complex PD genetic predispositions (see, for review20).
Since the first hiPSC PD report in 2011, >60 original peer-reviewed
articles have used hiPSC-derived neurons from familial PD
(e.g.28–30,) and >3 from sporadic PD31–33. Altogether, these studies
show that, despite the diverse PD patient stratifications, common
dysfunctional cellular pathways emerge20. However, all current
reports from iPSC models of PD consist of hypothesis-driven
projects with a relatively small number of subject lines tested (~3
controls and ~3 PD, on average)20. Breakthroughs and paradigm
shifts are infrequent and often result from serendipity because the
specific hypotheses that drive experimental designs evolve slowly
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from past results34. Instead, holistic omics analysis of patient-
derived tissue can accelerate the discoveries of innovative
therapeutic directions5. Recently, a few iPSC studies used RNA-
seq to reveal cellular mechanisms underlying PD31,32,35–38.
However, the number of individuals compared in each study
remains relatively low (≤3 controls, ≤3 PD), and it is not clear
whether these findings can be generalized to the broader PD
community.
Here, we compared the transcriptome profiles of PD to healthy

controls with midbrain neurons reprogrammed from donors’
fibroblasts from 42 individuals (25 healthy, 17 PD patients). We
found that variance in neuronal reprogramming and RNA-seq
methods could substantially bias transcriptome profiles. Therefore,
we developed an analysis pipeline integrating a range of RNA-seq
datasets (unsorted and sorted bulk vs. single-cell and Patch-seq)
and neuronal reprogramming strategies (induced pluripotency vs.
direct conversion). Gene expression signatures consistent across
independent methods and datasets will arguably be more
disease-relevant. Furthermore, notwithstanding the disproportion-
ate clinical preponderance of sporadic PD over familial PD (8:1),
the large majority of pre-clinical research focuses on the familial
forms of the disease. Thus, we used the integrated analysis
pipeline to identify a PD signature common to both genetic forms
of PD (LRRK2, PARK2 and SNCA) and the sporadic form (broad
range of low penetrance risk variants). Defining the molecular
perturbations in PD patients’midbrain neurons can help guide the
design and evaluation of much-needed PD therapeutics. Identify-
ing a molecular profile resistant to bias from RNA-seq, cellular
reprogramming methods, and patient stratifications will maximize
clinical relevance.

RESULTS
Transcriptomic data of midbrain neurons reprogrammed from
PD patients and healthy controls
We investigated the molecular mechanisms dysregulated in PD
through transcriptomic analysis of human midbrain neurons
reprogrammed from the fibroblasts of a large and diverse cohort
of 42 individuals (Fig. 1; Supplementary Table 1). Our cohort
comprises 10 sporadic PD patients (including four young onset,
<40 years old), 7 familial PD patients with mendelian variants in
PD genes (PARK2, LRRK2, SNCA), and 25 matched healthy subjects.
We analysed a total of 5,359 single cells and 80 bulk RNA-seq
samples. These raw sequencing data were combined from three
unpublished transcriptomic datasets (sc-iPS-PatchSeq, bulk-iPS-
Dopa, bulk-iN-Dopa) and three recently published datasets (sc-iPS-
10XSeq38, bulk-iPS-Mixed31, bulk-iN-Mixed39). The midbrain neu-
ronal cells were derived from fibroblasts using a range of
reprogramming strategies (Sendai viral, retroviral or episomal)
and neural differentiation protocols (induced pluripotency or
direct conversion) (Fig. 1B). Half of the bulk transcriptomic samples
(n= 44/80) originated from reprogrammed induced neurons (iNs)
generated using two different conversion protocols (bulk-iN-Dopa
and bulk-iN-Mixed; see Methods for details). The other half
(n= 36/80) were derived from iPSCs using either an embryoid
body-based (bulk-iPS-Dopa) or monolayer-based (bulk-iPS-Mixed)
neural induction. The bulk-iPS-Dopa and bulk-iN-Dopa datasets
were optimized to generate higher proportions of dopaminergic
neurons (see Methods for details). The single-cell RNA-seq data
were collected either with Patch-seq, from electrophysiologically
mature neurons (AP Types 4+ 5 as previously described in40,41)
(sc-iPS-PatchSeq), or with the high-throughput 10X Genomics
Chromium system38 (sc-iPS-10XSeq). A subset of individuals
(N= 17) was selected to generate both iPSC and iN models.
Another subset of neuronal lines (n= 3) was profiled using both
single-cell and bulk RNA-sequencing (Supplementary Table 1).

Sample inclusion criteria for RNA-seq datasets
Quality assessment at the level of the individual sample (bulk RNA-
seq) or cell (single-cell RNA-seq) is an essential step in identifying
outliers, filtering out spurious samples, and optimizing the
reproducibility of biologically relevant results. We excluded cells
or samples with low read mapping, a low number of detected
genes, and a low number of expressed housekeeping genes
(Supplementary Fig. 1; see Methods for details). The average read
mapping rate across all 80 bulk transcriptomes was 85%, with 78
of 80 libraries showing >75% alignment, indicating the high
quality of these samples. We also quantified the number of total
genes and housekeeping genes detected and excluded any
sample with <1000 genes detected or with less than 65
housekeeping genes expressed (out of a curated list of 98
housekeeping genes42; Supplementary Table 2). For single-cell
transcriptome data, we only retained cells with an overall read
alignment (mapping) rate of at least 50%43 (Supplementary Fig. 1).
In addition, to exclude potential cell doublets or multiplets from
single-cell analyses, we removed cells with exceptionally high
gene or UMI detection (i.e., >8000 genes or >37,500 unique
molecular identifiers detected). Quality control metrics for each
sample are detailed in Supplementary Table 3. Published PD iPSC
datasets that failed to pass these quality control criteria were not
included in this study.

Neuronal reprogramming methods sway the overall
transcriptomic profiles
To identify the main sources of variation between transcriptomic
samples, we compared the datasets with hierarchical clustering
and principal components analysis (PCA). To compare single-cell
and bulk RNA-seq samples, we generated artificial bulk transcrip-
tomes for the Patch-seq and the 10X Chromium datasets (sc-iPS-
PatchSeq, sc-iPS-10XSeq) by summing up the read counts across
all cells sequenced from each subject. We then performed PCA
clustering with the transcriptomes of 86 (n= 80 bulk and six
artificial single-cell bulk) reprogrammed neuronal samples that
passed all quality control (QC), 19 postmortem adult human
substantia nigra samples from the Gene-Tissue Expression (GTEx)
project, and four samples of commercially available iPSC-derived
human midbrain floorplate dopaminergic neurons (iCell Dopa-
Neurons, Fujifilm Cellular Dynamics). This analysis revealed a
distinct clustering of samples based on the derivation method
independently of disease status (i.e., neurons generated from
iPSCs clustered separately from neurons generated by direct
conversion (iNs)) (Fig. 2A). Hierarchical clustering analysis based
on Euclidean distance-based similarity revealed that GTEx adult
substantia nigra and striatum tissue grouped into a distinct cluster
separate from in vitro-engineered datasets (Fig. 2B), suggesting a
combination of technical and endogenous differences between
post-mortem adult brain tissue and live in vitro-engineered
neuronal tissue. Nevertheless, the Euclidean distance with adult
brain tissue was relatively small overall, highlighting the quality of
in vitro-engineered tissues despite their limitations20. Altogether,
our study shows that the technical variance resulting from the
methods used to obtain the neuronal tissue (post-mortem vs.
iPSC-derived vs. direct conversion) biases the transcriptomic
profiles and outweighs patient differences (PD vs controls) or
RNA-seq method biases (single-cell vs bulk).

Scoring differential mRNA expression in PD within unique
transcriptomics datasets
Identifying the molecular differences between bioengineered
midbrain neurons from PD and healthy controls may provide
valuable mechanistic insights into the early stages of PD
pathogenesis (prior to neurodegeneration). First, we performed
differential gene expression testing between PD and matched
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control samples in each independent dataset, as outlined in Fig. 1.
However, the choice of bioinformatic methods for transcriptomics
analysis has not reached an unequivocal consensus yet, and the
poor concordance between differential expression results across
methods remains a challenge44–47. For example, using either raw
read counts or normalized expression values (e.g., TPM/CPM), or
simply choosing different statistical analysis packages can lead to

substantially different results from the same dataset. Furthermore,
differential gene expression calls that are exclusively based on
arbitrary binary cut-offs of P-value (significant/non-significant)
and/or fold-change lead to loss of information, bias, and lower
statistical power48–50. Therefore, rather than only relying on single
P-values for inferring each gene’s significance in PD, we
implemented an analytical pipeline to determine multivariate

Fig. 1 Patient and sample distributions of six transcriptomic datasets of Parkinson’s disease reprogrammed neurons. A The
transcriptome data analyzed in the present study were collected across six different datasets and originate from the reprogrammed neurons
of n= 25 healthy individuals, n= 7 patients with known mutations in PD genes, and n= 10 patients with a sporadic form of the disease
(n= 42 unique subjects total). B Overview of tissue culture trajectories used in six reprogramming studies to generate in vitro midbrain-like
neurons from PD patient- and healthy subject-derived fibroblasts (see Methods for details). Pie charts on the left summarize the number of
subjects from which neurons were derived, color-coded by disease phenotype and mutation type as shown in (A). Neuron cultures were
generated via induced pluripotent stem cell (iPSC) technology (n= 4 studies) or by direct conversion of fibroblasts into induced neurons (iNs,
n= 2 studies), and neuronal transcriptome data was obtained by single-cell or bulk RNA-seq (n= 2 and 4 studies, respectively). The trajectory
color reflects the combinatory choice of the reprogramming and sequenced method used (orange: single-cell iPSC neuron datasets; blue: bulk
iPSC neuron datasets; green: bulk iN datasets). Single-cell RNA-seq was performed on (i) functionally mature (AP Types 4+ 5) single neurons
collected after patch-clamp recording (PatchSeq, n= 44) or on (ii) wild-type and isogenic SNCA-A53T neurons harvested using 10X Chromium
technology38. The two iN datasets enriched for successfully reprogrammed (i.e., PSA-NCAM-positive) neurons using fluorescence-activated cell
sorting (FACS). The bulk-iPS-Dopa and bulk-iN-Dopa studies used an optimized differentiation protocol to generate a high proportion of
midbrain dopaminergic neurons. Pie charts on the right indicate the number of cells or samples sequenced per disease state and/or mutation
type. A total of 5,359 single neurons and 80 neuronal bulk samples were analyzed.
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gene dysregulation scores. In particular, we used both raw counts
and normalized TPM expression values as input and combined the
log2 fold changes and P-values from multiple statistical tests (logit
method). The combined P-values and log2 fold-changes were
mapped to a continuous scale from 0.01-1 using non-binary

desirability functions48 and combined by weighted averaging to
obtain a dysregulation score (D) for each gene. We also adjusted
the scores with weighted functions for statistical significance
(P-value), the magnitude of fold change, and the relevance of the
gene in the adult midbrain in vivo (Fig. 2C, see also Methods for
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details). The genes with the highest D score (max= 1) were most
strongly differentially expressed in PD relative to controls, and
genes with the lowest D score (min= 0.01) were not expressed or
not dysregulated. Information on the genes’ expression detection
in adult human midbrain was used as a soft adjustment variable at
1% of the total weight to slightly prioritize genes that are
expressed in adult midbrain tissue. All in all, the dataset-specific
dysregulation D score identified midbrain genes with the best
combination of significance (low P-value) and expression change
(high fold-change) (Fig. 2D, E).
Among the top dysregulated genes in each dataset (highest

Ddataset scores), we identified a substantial number of genes with
functions related to neuronal function, morphology and survival
(Fig. 2G). A subset of these genes has been previously implicated
in PD [e.g., SNCA9,51, CHCHD26,52, GAD153, SLC17A6/VGLUT254].
However, despite two common genes within the top 15 genes list
across datasets (MTRNRL1 and ZFP36L2), and some overlap in gene
families and associated cellular functions, most of the top 15
genes appeared unique to each dataset. Therefore, we next aimed
to identify the most common molecular profile across all these
datasets.

Integrated scoring of differential mRNA expression across
independent transcriptomics datasets
The genes consistently dysregulated across multiple independent
transcriptomic datasets may be particularly implicated in initiating
PD pathology and overt symptoms. Therefore, to identify such a
molecular phenotype, we developed a statistical analysis frame-
work that determines a single overall dysregulation score (Doverall)
per gene across multiple transcriptomic datasets generated by
different researchers, methods, and conditions (Fig. 2C). Doverall is
calculated from the gene dysregulation scores from all six datasets
(Ddatasets) and adjusted for the degree of concordance in the fold-
change direction to prioritize the genes changing expression in
the same direction (up- or down-regulated) across datasets (see
Methods for details). As a result, genes with similar expression
patterns between PD and healthy neurons across datasets display
a low Doverall score (e.g. housekeeping genes, GAPDH: 0.04; ACTB:
0.07) (Fig. 2F). In contrast, a higher Doverall score indicates a greater

gene transcript dysregulation in PD relative to controls, consis-
tently across all or most datasets.

Genes consistently dysregulated in PD patients across
independent datasets
We rank-ordered the entire list of genes (n= 24,693 unique genes
expressed in ≥1 dataset) by decreasing Doverall score. Among the
20 genes with the highest Doverall score, 13 were significantly
dysregulated in five out of six independent datasets and HES1 and
NAP1L2 ranked the highest (Fig. 3A). HES1 plays an important role
in regulating the location and density of mesencephalic dopami-
nergic neurons55. NAP1L2 appears important for regulating
histone acetylation during neuronal differentiation56. NAP1L2
expression was also found to be down-regulated in adult post-
mortem brain tissue from a large multi-cohort of patients
(n= 1,270) with a range of neurodegenerative diseases57,
suggesting a broad role for NAP1L2 in neurodegeneration.
Gene Ontology (GO) analysis of the top 200 highest-ranked

genes revealed significant enrichment for biological processes
related to neuronal differentiation and synaptic transmission, and
several PD-related biological processes, including dopamine
secretion, locomotion, cellular stress response and proteostasis
(Fig. 3B and Supplementary Table 4). The endoplasmic reticulum
(ER), extracellular matrix and (distal) axon were identified as the
major enriched cellular components (Fig. 3C), all of which have
well-established roles in the pathogenesis of PD as well as several
other neurodegenerative disorders58–66.
Overrepresentation analysis for gene-chemical interactions from

the Comparative Toxicogenomics Database (CTD)67 uncovered
significant associations between our cross-dataset integrated
molecular signature and a variety of environmental toxins (i.e.,
pesticides) and ER stress inducers (Fig. 3D and Supplementary
Table 5). Exposure to pesticides, most notably rotenone, has been
shown to trigger selective degeneration of dopaminergic neurons
in the substantia nigra and is a well-recognized risk factor for the
onset and development of PD68–72.

Fig. 2 Identification, scoring and ranking of genes dysregulated in Parkinson’s disease reprogrammed neurons. A Principal component
analysis (PCA) of the transcriptome data from PD patient- and control- reprogrammed neurons collected across six datasets, post-mortem
adult human substantia nigra samples (GTEx), and highly pure populations of human floor plate-derived midbrain dopaminergic neurons
(iCell® DopaNeurons). In vitro-engineered neuronal tissue clusters separately from post-mortem substantia nigra tissue (GTEx) and groups by
method of derivation (iPSC reprogramming or direct iN conversion) irrespective of the laboratory of origin. Each data point represents a bulk
or artificial bulk (for single-cell RNA-seq datasets) tissue transcriptome. Artificial bulk samples were generated by summing up the gene counts
from all cells of the same subject. Color indicates dataset of origin (annotation shown in (B)). B Heatmap clustering of the average
transcriptomes of the six reprogrammed neuron datasets, GTEx substantia nigra and striatum tissues, and iCell® DopaNeurons using all
expressed genes (≥1 transcript per million [TPM] across all samples). Hierarchical clustering is based on average linkage and Euclidean
distance-based similarity. The darker shade denotes higher similarity. C Pipeline for computation of a per-gene dysregulation score (D) based
on individual-dataset differential expression (DE) analysis results. DE analysis was performed on each dataset independently on both read
counts and TPM values, and results were combined using logitp method (for a combination of P-values) and arithmetic mean averaging (for a
combination of log2 fold changes). Combined P-value and log2 fold change measures were mapped to a continuous (0.01-1) scale using
desirability functions48, and integrated by weighted geometric averaging to obtain an overall dysregulation score (D) for each gene.
Information about whether the gene was expressed in the adult human midbrain was used as a soft filter at 1% of the total weight to
prioritize the ranking of relevant genes. Dysregulation scores are integrated across multiple datasets, weighting for cross-dataset similarity in
log2 fold change directionality, to obtain an overall dysregulation score per gene (Doverall; refer to Methods for details). D Number of genes
(P < 0.05 and |fold change | ≥ 1.25) up- and downregulated in each dataset of PD versus healthy control reprogrammed neurons. E Volcano
plot of differentially expressed genes between PD and control reprogrammed neurons (shown for dataset bulk-iN-Mixed). Genes with greater
statistical significance and/or greater fold change in expression have a larger dysregulation score (D; color-coded in plot). F Dataset expression
levels of housekeeping genes GAPDH and ACTB are very similar between patients and controls and are associated with a low overall (multiple-
dataset) dysregulation score. G Relative expression levels of the top 15 differentially expressed genes in PD versus control neurons in each of
the six analyzed RNA-seq datasets. Each heatmap cell represents a single cell (single-cell datasets) or bulk tissue sample (bulk datasets).
Disease phenotype and subject ID are annotated horizontally, and gene function is annotated vertically according to the legend. A subset of
individuals (N= 17) was selected to generate both IPSC and iN models, and three neuronal lines were profiled using both single-cell and bulk
RNA-sequencing (see Supplementary Table 1 for subject details). For each gene, the dataset-specific dysregulation score and rank, as well as
the overall dysregulation score calculated across all six datasets, are shown on the right with dark intensity indicating the strength of
the score.
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Dysregulated genes in patient-derived midbrain cells
associate with parkinsonism symptoms ontology
Parkinsonism is a human phenotype, which is defined typically by
shaking, rigidity, slowness of movement and difficulty with
walking and gait. Global genomic consortiums (e.g., “Human
Phenotype Ontology”, “Gene Ontology”) have associated parkin-
sonism and other human phenotypes with compilations of genes
based on the meta-analysis of large genetic studies. Using Gene

Set Enrichment Analysis (GSEA), we tested whether genes known
to be related to parkinsonism and other human disease
phenotypes were significantly overrepresented among our top-
ranked dysregulated genes (high Doverall score) (Fig. 3E, F).
Notably, GSEA revealed statistical enrichment for parkinsonism-
and dementia-related genes (both FWER P-values < 0.001) but not
for schizophrenia (FWER P-value = 0.240, Kolmogorov-Smirnov
test) (Fig. 3E). Schizophrenia is a neuropsychiatric disorder that,

Fig. 3 Integrative analysis of multiple transcriptomics datasets reveal Parkinson’s disease-related gene signatures and biological
processes in patient-reprogrammed neurons. A Heatmap of mean log2 fold changes in expression of the top 20 genes with the highest
dysregulation across all six datasets of PD versus control reprogrammed neurons. Red and blue indicate, respectively, up- and downregulation
in PD cells relative to control. Gene function and overall dysregulation score (Doverall) are annotated vertically according to the legend. Dsc-iPS,
Dbulk-iPS and Dbulk-iN scores indicate the strength of dysregulation for, respectively, the two single-cell iPSC neuron datasets (orange), the two
bulk iPSC neuron datasets (blue) and the two bulk iN datasets (green) (see Methods for details). *, nominal Pcombined < 0.05. B, C, D ToppFun
functional enrichment analysis of the 200 most highly dysregulated genes across all datasets highlights fundamental biological processes (B),
cellular components (C) and chemicals (D) implicated or suspected to be involved in PD. Chord plot in (B) indicates genes annotated to
dysregulated GO biological processes, ordered by decreasing overall dysregulation score. Length of bars in (C, D) represent Benjamini-
Hochberg-corrected significance values and numbers indicate number of genes annotated to GO term; grey color indicates significance
threshold. Extended data in Supplementary Tables 4 and 5. E Gene Set Enrichment Analysis (GSEA) of multiple-dataset PD dysregulated genes
for genes associated with the terms “Parkinsonism”, “Dementia” and “Schizophrenia” from the Human Phenotype Ontology (HPO) database131.
“Parkinsonism”- and “Dementia”-related genes were significantly overrepresented at the top of the list of expressed genes (n= 24,693) rank-
ordered by decreasing Doverall score. F GSEA shows a significant enrichment of PD-symptom-related HPO terms “Bradykinesia”, “Rigidity”,
“Akinesia”, “Dyskinesia” and “Postural instability” among the multiple-dataset PD dysregulated genes. Vertical bars in (E, F) represent the “gene
hits”, i.e., the location of genes from each indicated HPO term within the Doverall rank-ordered list. *P < 0.05; **P < 0.01; ***P < 0.001;
****P < 0.0001; ns, not significant (P > 0.05); all P-values are FWER-corrected to exclude any possibility of false-positive enrichment. NES
Normalized Enrichment Score. Detailed enrichment results are provided in Supplementary Table 6.
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like PD, is also characterized by dopaminergic dysfunction within
nigrostriatal pathways73, but with very different symptoms overall.
The significant enrichment for both parkinsonism and dementia
phenotypes is perhaps not surprising given the considerable gene
overlap between these disease conditions (Supplementary Fig. 2)
and the fact that an estimated 20-80% of people with PD will
develop dementia during the course of the disease74–77. Alpha-
synuclein (SNCA) was the top gene candidate in our integrated
analysis of reprogrammed neurons with the highest contribution
to parkinsonism-related enrichment. Synaptojanin 1 (SYNJ1) and
phosphodiesterase 10 A (PDE10A) were the second and third top
enriched genes, both of which play an essential role in the
regulation of neuronal synaptic function in the context of PD78–81.
Further GSEA analyses revealed a significant association of our
multiple-dataset dysregulated genes with genes related to key PD
clinical symptoms, including bradykinesia, rigidity, akinesia,
dyskinesia and postural instability. (Fig. 3F and Supplementary
Table 6). Genes associated with resting tremors were not
significantly enriched; however, it should be noted that this early
and cardinal symptom of PD is absent in ~30% of patients82.
Importantly, the associations with parkinsonism, dementia and
PD-like phenotypes were completely abolished when the gene-
dysregulation score relationship was eliminated by random
permutation of the gene labels (Supplementary Fig. 2). Taken
together, our integrative analysis of multiple datasets of PD
patient-reprogrammed neurons reveals a gene expression signa-
ture that captures known phenotypic features of the disease.

Perturbed PD transcriptomic pathways integrated across
datasets
A broad range of cellular functions may be impaired in PD.
Therapeutically, it remains challenging to predict if one drug
targeting a specific pathway in a rare genetic type of PD (e.g.,
LRRK2-G2019S) will also stop the pathology in other pathways and
across the broad spectrum of PD patients. Pre-clinical transcrip-
tomics analysis of bioengineered neurons from patients’ cells is
attractive to advance this issue because it can assess the
dysregulation of all pathways at once in live human cells with
minimal bias. Therefore, we aimed to identify the biological
pathways that are overrepresented among the dysregulated
transcripts in PD midbrain cells integrated across datasets. First,
we performed a pathway enrichment analysis with GSEA83. This
analysis revealed significant (Benjamini-Hochberg FDR-q < 0.01)
enrichment of 579 pathway gene sets, 408 (70%) of which could
be annotated to one of six main biological/functional themes with
previously implicated roles in PD pathogenesis (Fig. 4 and
Supplementary Table 7). “Neurotransmission and synaptic func-
tion” was the major enriched biological theme, comprised of 118
pathways with functions in synaptic transmission, ion channel
regulation, neuronal excitability, and intracellular signalling. Other
enriched pathways were related to cytoskeleton and neuromor-
phogenesis, energy and metabolism, cellular and oxidative stress
responses, inflammation and immunity, and intracellular traffick-
ing (Fig. 4), i.e., all processes which are known or have been
proposed to be implicated in PD20,84–89. Notably, abolishment of
the original gene label–Doverall score relationship by random
permutation of gene labels resulted in zero pathways that reached
significance, indicating the methodological robustness of our
integration approach and the biological specificity of our findings.
Taken together, these results reveal disease-relevant biology
captured in human reprogrammed neurons. These results also
suggest the convergence of various genetic predispositions on the
dysregulation of cellular processes related to synaptic commu-
nication, metabolic function, inflammation and cellular waste
recycling.

Synaptic dysfunction of PD patient reprogrammed neurons
Pathways involved in neurotransmission and synaptic function
comprised the largest group of pathways transcriptomically
dysregulated across all the datasets (Fig. 4). We also observed a
significant overrepresentation of genes related to ontology linked
to “abnormal central nervous system electrophysiology” among
the genes with the highest dysregulation in PD (top ranked Doverall

score) (Fig. 5A). We confirmed the synaptic dysfunction with patch-
clamping by comparing the electrophysiological and synaptic
properties of 169 “mature” (Type 5 definition based on40) neurons
from a subset of patients (n= 2) and controls (n= 2) (Fig. 5B–M).
We selected for patch-clamping the cells with typical neuronal
morphology and evident synapsin:GFP expression following
lentiviral vector transduction after maturation in BrainPhys
neuronal medium (Fig. 5B). We measured evoked action potentials
(in current-clamp) and voltage-dependent sodium/potassium
currents (in voltage-clamp) at an imposed resting membrane
potential of −70 mV by applying a series of incremental
depolarizing steps of current/voltage (Fig. 5C). Our results showed
no difference between PD patient- and healthy subject-derived
neurons in their ability to fire action potentials (Fig. 5D). Similarly,
no significant difference was found in voltage-gated sodium (Nav)
currents (Fig. 5E). These results demonstrate the homogeneity of
our samples and suggest no major impairment in PD iPSC-derived
neurons’ ability to generate healthy action potential trains. We
then investigated the dendritic summation of excitatory and
inhibitory synaptic events, which is essential for shaping the input/
output activity of neural networks. In the human brain, synaptic
excitation is mainly mediated by the neurotransmitter glutamate,
whereas gamma-aminobutyric acid (GABA) is the primary neuro-
transmitter for inhibitory synaptic transmission. Hence, we
examined whether PD iPSC-derived neurons were able to sustain
excitatory (glutamatergic) and inhibitory (GABAergic) basic synap-
tic functions. Spontaneous glutamatergic and GABAergic synaptic
events were distinguished by voltage clamping at the reversal
potential of anions (−70 mV) and cations (0mV) and were further
confirmed with reversible blockade with the receptor antagonist
2,3-dioxo-6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX; to block
AMPA receptors) or SR-95531 (gabazine; to block GABAA recep-
tors). Over 90% of the neurons analysed displayed spontaneously
active AMPA-mediated excitatory synaptic inputs in both PD and
healthy groups (Fig. 5G). The average amplitudes of the synaptic
events recorded were also similar in both groups (~15 pA for AMPA
and ~30pA for GABA) (Fig. 5H, L). However, the frequency of the
excitatory synaptic events was significantly reduced by half in the
PD group (Fig. 5I). The proportion of cells receiving active synaptic
inhibitory inputs was lower by ~3 fold in PD (Fig. 5K) and the
frequency of the inhibitory synaptic events was significantly
reduced by ~5 fold in the PD group (Fig. 5M). Altogether, these
results reinforce our molecular findings suggesting an essential,
relatively early role of synaptic dysfunction in PD pathology.
However, we also observed significant dysregulation of other
pathways, such as bioenergetics, intracellular trafficking and
cellular stress responses, which are critical for effective synaptic
function. Therefore, we do not know if the synaptic dysfunction
occurs upstream or downstream of the pathology. Nevertheless,
these results demonstrate the value of transcriptomics assays on
reprogrammed neurons to assess the health of intrinsically
connected cellular pathways and further implicate synaptic
dysfunction in PD pathology driven by genetic predispositions.

Prediction of disease-modifying therapeutics for PD based on
perturbed transcriptomic pathways
All current PD treatments pivot on restoring dopamine levels in
the brain to reduce the severity of symptoms. PD is a chronic
neurodegenerative disorder. However, no available treatments
can halt or slow the accelerated cellular loss. To identify potential
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drug candidates based on the PD transcriptional signature from
the reprogrammed neurons, we performed a GSEA of the ranked
list of dysregulated genes against DrugBank’s database of 5,724
drug-target gene associations90. Our analysis revealed significant
enrichment for 18 therapeutic drug candidates, most of which
have established or predicted roles in the regulation of
neurotransmission and cellular/oxidative stress responses (Fig.
6A). Two enriched candidates (i.e., glutamate and aspartate)
directly function as neurotransmitters. Several other candidates
(i.e., calcium phosphate dihydrate, calcium citrate, calcium
phosphate, copper and zinc) affect the levels of calcium and
metal ions, which can modulate neurotransmitter action, release
and metabolism through their interaction with ion channels and

synaptic vesicles91–96. Calcium ions are essential for the regulation
of both synaptic vesicle exocytosis and endocytosis, as well as
some forms of synaptic plasticity97–100. Notably, the chemicals
affecting calcium levels accounted for three of the five candidates
with the highest enrichment scores. We also identified robust and
significant enrichment for several antioxidant molecules, including
ascorbic acid, glutathione and phenyl-ethyl isothiocyanate (PEITC),
all of which can mitigate the oxidative stress resulting from
mitochondrial dysfunction in the context of PD (ascorbic
acid:101–103; glutathione:104,105; isothiocyanate:106,107). Surprisingly,
Lanoteplase, a third-generation thrombolytic agent used to treat
acute myocardial infarction108, was the candidate with the
strongest and most significant enrichment. Future studies should

Fig. 4 Gene Set Enrichment Analysis identifies transcriptomic pathways perturbed in Parkinson’s patient-derived neurons. Enrichment
map representation of the main biological processes dysregulated in PD versus control reprogrammed neurons. Pathway gene sets (n= 5654
passing size filters) corresponding to gene ontology (GO) biological process terms were tested for enrichment by Gene Set Enrichment
Analysis (GSEA)133 following a recent protocol83. GSEA revealed significant (FDR-q < 0.01) overrepresentation of 579 pathway gene sets at the
top of the list of expressed genes (n= 24,693) rank-ordered by decreasing overall dysregulation score (Doverall, genes with highest
dysregulation across all studies at top). Functionally related pathway sets were assigned a label and grouped together based on similarity,
resulting in 408 dysregulated pathways related to six main biological themes, including (i) neurotransmission and synaptic function, (ii)
cytoskeleton and neuromorphogenesis, (iii) cellular and oxidative stress responses, (iv) energy and metabolism, (v) glia, inflammation and
immunity, and (vi) intracellular trafficking. Node size is proportional to the number of genes in the pathway gene set, and node color intensity
indicates the statistical significance of GO term enrichment. Edge thickness represents the degree of gene overlap between connected
biological pathways. Detailed pathway enrichment results are provided in Supplementary Table 7.
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investigate whether and how this new drug could be beneficial in
treating PD. Although some of these drugs may not be suitable in
clinics, they could be substituted with more clinically relevant
candidates with similar mechanisms of action, some of which are
already being evaluated in clinical trials.

Therapeutics in PD clinical trials align with dysregulated
pathways in PD reprogrammed midbrain neurons
A recent meta-analysis review identified 145 registered and active
clinical trials for therapeutics for PD2. The majority of these trials
(n= 88, 61%) focus on symptomatic relief; the remaining (n= 57,
39%) employ a disease-modifying strategy. We performed a
literature search for each therapeutic and linked its molecular
function(s) to the transcriptomic pathway(s) identified as dysre-
gulated in iPSC-derived PD neurons (Fig. 6B–D). This analysis
revealed that most clinical trials for disease-modifying therapies
attempt to combat cellular and oxidative stress by targeting

alpha-synuclein and clearing reactive oxygen species, reducing
inflammation or increasing mitochondrial function (Fig. 6B, C).
Overall, our data further support the rationale of these current
clinical trials that target dysregulated pathways across our PD
transcriptomics datasets. In particular, our observation that
synaptic transmission is dysregulated at both the transcriptional
and functional levels in PD reprogrammed neurons further
reinforces the need for clinical trials aiming to improve neuronal
synaptic function. Although neurosynaptic interventions represent
the vast majority of symptomatic therapies (Fig. 6D), currently,
they might be under-appreciated as potential disease-modifying
treatments (Fig. 6B).

DISCUSSION
We investigated the transcriptomic signature of Parkinson’s
disease with reprogrammed midbrain neurons from 42 individuals
(80 bulk, 5,315 single-cell RNA-seq and 44 Patch-seq samples).

Fig. 5 Synaptic impairments in PD patient reprogrammed neurons. A GSEA shows significant enrichment (FDR-q < 0.0001) of the Human
Phenotype Ontology gene set for “abnormality of central nervous system electrophysiology” (HP:0030178) among the genes dysregulated in
PD patient-derived neurons. B Example image of a typical neuronal culture used for patch-clamping electrophysiology in DIC (top image) or
filled with Rhodamine (bottom image). Cells with characteristic neuronal morphology and brightest Synapsin:GFP expression were selected
for patch-clamp recordings after a minimum of three weeks (average 43 days) of maturation in BrainPhys™ neuronal medium. Cells were
patched from a total of 76 coverslips. C, D All patch-clamped neurons included in the analysis (n= 80 healthy subject-derived, n= 89 PD
patient-derived) were classified as “Type 5” cells40, indicating equivalent functional maturity (see Methods for details). C Typical evoked action
potential (AP) traces from PD patient and control-derived neurons following a 500-ms depolarizing current step. D The maximum firing
frequency of evoked APs with amplitudes above -10 mV was similar between PD and control neurons. E Voltage-dependent sodium current
characteristics were similar between PD and control neurons. F–M Synaptic properties of patch-clamped midbrain neurons from PD and
healthy controls. F Typical recordings of excitatory postsynaptic synaptic currents mediated by AMPA receptors (left) and superimposed
detected events and average trace (right). Data are presented as mean ± SEM. P values determined via nonparametric Mann-Whitney test
(two-tailed, unpaired).
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The success of patient-derived stem cell models relies on the
presence of genetic predispositions conserved throughout cellular
reprogramming. Parkinsonism is increasingly described as a
spectrum disorder originating from complex interactions between
genetic predispositions, environmental stressors and aging.

However, reliable and clinically relevant stratifications of PD
patients remain limited. Currently, the best stratification relies on
single nucleotide polymorphisms (SNPs) of a handful of genes
loosely associated with PD. This approach creates a strong
research bias toward rare single-gene mutations with relatively
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high mendelian inheritance (e.g. LRRK2, GBA), which are rare in
global PD populations. Sporadic PD accounts for about 85% of
cases globally, whereas the remaining 15% of cases are familial20.
As a result, rare mendelian cases do not represent the sporadic PD
cohorts enrolled in most clinical trials, creating a disconnect
between pre-clinical and clinical research. Therefore, we combined
the transcriptomes of sporadic genotypes (n= 10 individuals) and
familial genotypes (n= 7 individuals; PARK2, LRK2-G2019S, SNCA-
A53T). Despite the relatively large number of individuals analysed
in our study compared to the current standard in the iPSC field (n
total = 42), the cohort was still too small to gain substantial
insights into differences between genetic and clinical groups of
PD. Instead, we focused on identifying PD transcriptomic
signatures that can be generalized to a broad PD population,
including hereditary and sporadic cases. Significant variation
between neuronal transcriptomics of genetic and sporadic cases
and lack of clustering was also reported previously39. To the best
of our knowledge109, this is the most extensive database exploring
the transcriptomic profiles of PD using patient-derived repro-
grammed neurons to date. As such, this study will serve as a solid
starting point, which can be refined in the future with new data.
The neural stem cell reprogramming field has rapidly prolifer-

ated since the seminal discovery of iPSCs110,111. All agree that
more rigorous technical harmonization between laboratories
would increase reproducibility. However, researchers continue to
improve the protocols for neural reprogramming, differentiation
and maturation, and a gold-standard consensus has not been
reached yet. For the moment, different methods have advantages
and limitations, which may be more or less suited for specific
laboratories or projects112. Therefore, in this study, we compared
and combined the transcriptomics signature from PD patients
using the two major neural reprogramming strategies from
fibroblasts: iPSC reprogramming and direct conversion. Midbrain
and dopaminergic neuronal profiles were enriched in all the
datasets included in our study. Accordingly, the transcriptomes
were remarkably similar to adult brain biopsies for the midbrain
substantia nigra and striatum. In our integrative transcriptome
analysis, we prioritized genes expressed in adult human substantia
nigra to further increase clinical relevance and reduce cellular
reprogramming biases.
Despite the significant progress in human neuronal reprogram-

ming technologies, it is evident that human brain tissue in vitro
cannot fully recapitulate the complexity of the adult brain in vivo.
As such, we cannot exclude the possibility that the transcriptomic
signatures reported in this study are missing clinically relevant
features. However, bio-engineered human neuronal models
address major limitations of 1) postmortem brain transcriptomic
studies, which essentially highlight differences between “healthy”
diseased brains and those damaged by decades of PD pathology,
and 2) animal models, which have different genetics than humans.
Instead, bio-engineered neuronal tissues represent a unique
experimental opportunity to reveal the molecular dysregulations
that precede neurodegeneration in humans. The PD transcrip-
tomic signature of midbrain cells of this cohort was significantly
associated with the human phenotype ontology relevant to

Parkinson’s. Our analysis highlighted known and new genetic
signatures that may guide or reinforce future therapeutic
pipelines. In particular, we identified six major pathways
dysregulated in PD patients across our entire cohort: neurotrans-
mission, energy and metabolism, neuromorphogenesis, intracel-
lular trafficking, glia inflammation and immunity, and cellular and
oxidative stress responses. These cellular functions are highly
interdependent, and we do not know which occurs upstream of
the others and should therefore be targeted therapeutically as a
priority to slow PD pathology. However, this study highlights
candidate therapeutics that can target each of these pathways.
Future studies will be required to assess their pharmacological
potential to rescue multiple transcriptomic pathways dysregulated
in PD neurons.

METHODS
Ethics statement
All human cell lines and experimental protocols in the present
study were used with approval and in accordance with policies of
the following ethics committees: Women’s and Children’s Health
Network Human Research Ethics Committee, South Australia,
Australia [HREC/17/WCHN/70]; Salk Institute Institutional Review
Board, La Jolla, USA. All subjects gave written informed consent to
the derivation of iPSC and/or iN lines from skin biopsies, mutation
screening and use of tissue for research. H9 (WA09) human
embryonic stem cells were obtained from WiCell (Agreement No.
20-W0500).

Human pluripotent stem cell culture and midbrain neuronal
differentiation
Primary fibroblast cultures were derived from participants’ dermal
skin punch biopsies and reprogrammed either by retroviral
delivery or non-integrating (Sendai virus or episomal vectors)
methods in different laboratories. Subject details and source
information are provided in Supplementary Table 1.
The differential analysis in this paper was performed on six

independent datasets from human midbrain neuronal cultures
generated either through iPSC reprogramming (sc-iPS-PatchSeq,
sc-iPS-10XSeq, bulk-iPS-Dopa, bulk-iPS-Mixed) or direct fibroblast
conversion (bulk-iN-Mixed, bulk-iN-Dopa) as follows:

Midbrain cultures for sc-iPS-PatchSeq dataset. Human induced
pluripotent stem cells and WA09 (H9) embryonic stem cells
(WiCell, Wisconsin, U.S.A.) were maintained in mTeSR™1 medium
(STEMCELL Technologies #85850) on cell culture ware coated with
human Embryonic Stem Cell (hESC)-qualified Matrigel (Corning
#354277) as per manufacturer’s instructions. Differentiation of
pluripotent cells into neural progenitor cells (NPCs) was performed
using an embryoid body (EB)-based protocol as described
previously113,114. NPCs were expanded for three to five passages
(split ratio of 1:2–1:3 per passage) on Matrigel-coated six-well
plates and cryobanked in vapour nitrogen. For experiments, cells
were thawed and expanded for at least one extra passage in
neural progenitor medium (NPM). NPM was composed of DMEM/

Fig. 6 Prediction of therapeutics for Parkinson’s disease based on dysregulated transcriptomic pathways. A GSEA against DrugBank’s
database of drug-target gene associations90 (n= 5,724 gene sets) identifies 18 therapeutic drugs, each associated with a minimum of 15
target genes, that are significantly (FDR-q < 0.05) overrepresented among PD-dysregulated genes. The top 15 enriched drug candidates with
the highest significance and enrichment score are annotated on the right, with FDA-approved drugs indicated by asterisks. The color code
indicates each drug’s main mechanism of action in relation to the major biological themes dysregulated in PD reprogrammed neurons (Fig. 5).
B, D. Chord plots of disease-modifying (B) and symptomatic (D) PD clinical trial therapies in 2020 (identified by2, left semicircle) and their
involvement in dysregulated transcriptomic pathways in PD (right semicircle). Therapies were filtered for redundancy and are grouped by
clinical trial phase (see legend). Asterisks indicate repurposed therapeutics. Symptomatic therapies in (D) are categorized into those targeting
movement symptoms (left) and those targeting non-motor symptoms (right). C, E. The number of disease-modifying (C) and symptomatic (E)
clinical trials targeting the various dysregulated molecular pathways implicated in PD, subcategorized by clinical trial phase.
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F12+ GlutaMax™ basal medium (Thermo Fisher Scientific
#10565018) supplemented with 1× N2 (Thermo Fisher Scientific
#17502048), 1× B27 (Thermo Fisher Scientific #17504044), FGF-8b
(100 ng/mL, PeproTech #100-25), Sonic Hedgehog (200 ng/mL,
R&D Systems #1314SH) and laminin (1 μg/mL, Thermo Fisher
Scientific #23017015). For neuronal maturation, NPCs were
dissociated and re-plated (density of 1.5 × 105 cells/cm2) onto
glass coverslips (Fisher Scientific #12-545-80) coated with 10 μg/
mL poly-L-ornithine (Sigma-Aldrich #P3655) and 5 μg/mL laminin
(Thermo Fisher Scientific #23017015) in 24- or 48-well plates.
Twenty-four hours later, the cells were switched gradually (half
medium change) to neuronal maturation medium (NMM):
BrainPhys™ basal medium114 supplemented with 1× N2 (Thermo
Fisher Scientific #17502-048), 1× B27 (Thermo Fisher Scientific
#17504-044), BDNF (20 ng/mL, Thermo Fisher Scientific #450-02),
GDNF (20 ng/mL, PeproTech #450-10), dibutyryl cyclic AMP (1mM,
Sigma-Aldrich #D0627), ascorbic acid (200 nM, Sigma-Aldrich
#A0278), and laminin (1 μg/mL, Thermo Fisher Scientific
#23017015). Half of the neuronal medium was gently replaced
three times a week. Plates were kept in a humidified incubator at
37 °C with 5% CO2 and 21% O2. The osmolarity (~300–305
mOsmol/L) and pH (~7.3–7.4) of the medium were maintained
constant over time.

Midbrain cultures for sc-iPS-10XSeq dataset38. Details regarding
the dopaminergic neuronal differentiation of wild-type (WT) and
isogenic SNCA-A53T iPSCs are available in the original
publication38.

Midbrain cultures for bulk-iPS-Dopa dataset. The neuronal cul-
tures for the bulk-iPSC-Dopa dataset were generated following a
published protocol115 . Briefly, small molecules/factors (SB431542,
LDN193-189, purmorphamine, FGF-8, SAG, CHIR99021, BDNF,
GDNF, TGFb, ascorbic acid, cAMP) were used to differentiate
iPSCs into midbrain DA neurons. These cells were not sorted but
instead simply peeled off using a three to five minutes Accutase
treatment at room temperature.

Neuronal cultures for bulk-iPS-Mixed dataset31. Details regarding
iPSC maintenance and midbrain dopaminergic neuron differentia-
tion are available in the original publication31. Briefly, iPSCs were
maintained in E8 medium on Matrigel and passaged every five
days (split ratio of 1:6–1:12 per passage) using Versene. For
neuronal differentiation, iPSCs were grown to ~80% confluency,
singularized using Accutase (Millipore/Sigma #SCR005) for 5 min
at 37 °C, and plated as a fully confluent monolayer (density of 2 ×
105 cells/cm2) onto Matrigel-coated 6-well plates in E8 medium
containing Y-27632 (5 μM, StemGent). Twenty-four hours after
plating, the medium was changed to Stage 1 medium (50%
DMEM/F12 and 50% Neurobasal supplemented with 1× N2, 1×
B27-vitamin A, LDN-193189 [LDN] and SB431542 [SB]) for 3 days,
then to Stage 2 medium (50% DMEM/F12 and 50% Neurobasal
supplemented with 1× N2, 1× B27-vitamin A, LDN, SB, purmor-
phamine [PMN], CHIR99021 [CHIR], SHH and FGF8) for 4 days, then
to Stage 3 medium (50% DMEM/F12 and 50% Neurobasal
supplemented with 1× N2, 1× B27-vitamin A, LDN, CHIR and all-
trans retinoic acid [ATRA]) for 4 days, and finally to Stage 4
medium (50% DMEM/F12 and 50% Neurobasal supplemented
with 1× N2, 1× B27-vitamin A, BDNF, GDNF, dbCAMP, L-ascorbic
acid, γ-secretase inhibitor (DAPT), CHIR and TGF-β3) for 3 days.
Stage 1, Stage 2, Stage 3 and Stage 4 media changes were
performed daily. On day 15, cultures were dissociated to single
cells using Accutase (20 min at 37 °C), re-suspended in maturation
medium (50% DMEM/F12 and 50% Neurobasal supplemented
with 1× N2, 1× B27-vitamin A, BDNF, GDNF, dbCAMP, L-ascorbic
acid, DAPT and TGF-β3) plus Y-27632 (5 μM), and re-plated onto
Matrigel-coated culture ware (density of 2 × 105 cells per cm2) or
coverslips (density of 2 × 105 cells per 50-μl drop). Cells were

allowed to attach for 45 min at 37 °C, and maturation medium was
then added to a final volume of 3 or 1.5 mL/well for, respectively,
six-well plates and 24-well plates with coverslips. The medium was
changed 48 hours after seeding and gently replaced every three
days until day 30.

Neuronal cultures for bulk-iN-Mixed dataset39. Primary human
dermal fibroblasts were directly reprogrammed into induced
neurons (iNs) as previously described39,116. Briefly, cells were
cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supple-
mented with 15% tetracycline-free fetal bovine serum and 0.1%
NEAA (Thermo Fisher Scientific), transduced with lentiviral
particles for EtO (117,118) and XTP-Ngn2:2 A:Ascl1 (N2A), and
expanded in the presence of G418 (200 µg/ml; Life Technologies)
and puromycin (1 µg/ml; Sigma-Aldrich). For iN conversion,
fibroblasts were pooled into high densities and the medium was
changed to neuron conversion (NC) medium after 24 hours, for
three weeks. NC medium was composed of DMEM:F12/Neurobasal
(1:1) supplemented with 1× N2 and 1× B27 (Thermo Fisher
Scientific), doxycycline (2 μg/ml; Sigma-Aldrich), laminin 1 μg/ml;
Thermo Fisher Scientific), dibutyryl cyclic AMP (500 μg/ml; Sigma-
Aldrich), human recombinant Noggin (150 ng/ml; PeproTech),
LDN-193189 (0.5 μM; Cayman Chemicals), A83-1 (0.5 μM; Stem-
gent), CHIR99021 (3 μM; LC Laboratories), forskolin (5 μM; LC
Laboratories), and SB-431542 (10 μM; Cayman Chemicals). The
medium was changed every third day. For further maturation, iNs
were switched to DMEM:F12/Neurobasal-based neural maturation
medium (NMM) containing N2, B27, GDNF and BDNF (both 20 ng/
ml; R&D Systems), dibutyryl cyclic AMP (500 μg/ml), doxycycline
(2 μg/ml), and laminin (1 μg/ml). For maturation on astrocyes, iNs
were dislodged during week 4 using TrypLE, replated on a feeder
layer of mouse astrocytes, and cultured in NMM containing 1%
knockout serum replacement (KOSR) (Thermo Fisher Scientific).
Successfully induced neurons were purified from non-converted

fibroblasts by fluorescence-activated cell sorting (FACS) of cells
with high expression the polysialylated form of Neuronal Cell
Adhesion Molecule (PSA-NCAM). In particular, after three weeks of
iN conversion, cells were detached using TrypLE and stained for
PSA-NCAM (1:100, Milteny) for 45min at 4 °C in sorting buffer (PBS
containing 1% KOSR, 250mM myo-inositol and 5 μg/ml polyvinyl
alcohol [PVA]). Cells were washed, stained with Alexa-647-
conjugated anti-mouse IgM secondary Ab for 30 min at 4°,
resuspended in sorting buffer supplemented with EDTA and
DNase, and filtered through a 40-μm cell strainer. Alexa-647-
positive cells were sorted directly into TRIzol LS Reagent, and RNA
was isolated and digested using TURBO DNase (Thermo Fisher
Scientific) following manufacturer’s instructions.

Neuronal cultures for bulk-iN-Dopa dataset. Method for iN-Dopa
conversion is based on the same as iN-mixed protocol, adding an
extra lentiviral vector XTP-Lmx1a to the transcriptional factor cocktail
and purmorphomine (2 μM; Adooq Bioscience), SAG(0.25 μM; Adooq
Bioscience), and FGF-8 (100 ng/mL, Peprotech) in the conversion
medium. Neurons were harvested at week 4 for RNA extraction.

Sample preparation for RNA-seq
Three sample preparation methods (bulk RNAseq, single-cell
RNAseq and Patch-seq) were used as follows:

RNAseq sample preparation for sc-iPS-PatchSeq dataset. Individual
coverslips containing neurons were transferred into a heated
(25 °C) recording chamber and continuously perfused (1 ml•min−1)
with either BrainPhys™ basal medium114 or artificial cerebrospinal
fluid (ACSF) bubbled with a mixture of CO2 (5%) and O2 (95%).
ACSF composition was adjusted to match the inorganic salt
concentration and osmolarity of BrainPhys™ basal and contained:
121mM NaCl, 4.2 mM KCl, 1.1 mM CaCl2, 1 mM MgSO4 (or 0.4 mM
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MgSO4 and 0.3 mM MgCl), 29 mM NaHCO3, 0.45 mM NaH2PO4-
H2O, 0.5 mM Na2HPO4 and 20mM D-glucose (all chemicals from
Sigma-Aldrich). Whole patch-clamp electrophysiological record-
ings were performed on single neurons infected with and
expressing Synapsin:GFP lentiviral vector according to the
protocol detailed below under “Patch-clamp recordings”. Single
neurons were collected after electrophysiological recording as
previously described40,41. Briefly, negative pressure (−0.15 PSI)
was applied to the patch pipette to establish a strong seal
between the patch electrode and the recorded neuron following
patch-clamp recording. The neuron, including its processes (axon
and dendrites), was then slowly withdrawn from the rest of the
culture and transferred (in a volume of ~2 μl of internal patch
solution) into 8.0 μl of sample lysis buffer (SMARTer™ Ultra Low
Input RNA kit, Clontech #634828) by breaking the tip of the
electrode along the inside wall of the PCR tube. Successful cell
collection was always confirmed by DIC optics, and cDNA was
synthesized from poly(A)+ RNA with minimal delay after sample
collection following manufacturer’s instructions (Clontech
#634828). cDNA samples were assessed for quality (2100
Bioanalyzer, Agilent) and quantity (Qubit fluorometer, Thermo
Fisher Scientific), and construction of mRNA-seq libraries was
performed with 0.25 ng of input cDNA using Nextera XT DNA
sample prep reagents (Illumina #FC-131-1096). Library fragments
were size-selected, purified, quantified and examined for the
correct size (2200 TapeStation High Sensitivity D1K ScreenTape
Assay, Agilent #5067-5363), and equimolar amounts of uniquely
barcoded libraries were multiplexed and sequenced on a HiSeq
2000 or 2500 platform (Illumina) using 100-bp paired-end
sequencing. Only functionally mature neurons were included in
the analysis (AP types 4 and 5 based on40).

RNAseq sample preparation for sc-iPS-10XSeq dataset38. Details
regarding the neuronal sample preparation for single-cell
transcriptomics with the 10x Genomics Chromium™ system are
available in the original publication38. Briefly, after three weeks of
differentiation into dopaminergic neurons, cells were dissociated
using Accutase (Thermo Fisher Scientific), counted, and assessed
for viability. Cell suspensions (8000 viable single cells) were loaded
onto a 10x Chromium instrument (10x Genomics) according to the
manufacturer’s protocol.

RNAseq sample preparation for bulk-iPS-Mixed dataset31. mRNA
was isolated in triplicate for each differentiated cell line and
prepared for sequencing as per previously described methods in
the original publication31,119. RNA samples were assessed for
quality (2100 Bioanalyzer, Agilent) and quantity (Qubit fluorom-
eter, Thermo Fisher Scientific), and up to 1 μg of total RNA per
sample was processed for cDNA synthesis, amplification and
library construction using the TruSeq Stranded mRNA library
preparation kit (Illumina). Constructed libraries were purified using
Agencourt AMPure XP beads (Beckman Coulter #A63881),
quantified for yield (Qubit fluorometer), and quality-assessed by
fragment analysis (2100 Bioanalyzer). Sample libraries were then
multiplexed and sequenced on a NextSeq 500 sequencer
(Illumina) using 75-bp single-end SBS chemistry.

RNAseq sample preparation for bulk-iPS-Dopa, bulk-iN-Mixed and
bulk-iN-Dopa datasets. mRNA-seq libraries were constructed
using the TruSeq Stranded mRNA Sample Prep kit following the
manufacturer’s protocol (Illumina) and sequenced on a HiSeq
2500 platform (Illumina) using 50-bp single-end SBS chemistry.

Bioinformatics RNA-seq data processing, expression
quantification, and quality control
All transcriptomics data was processed from raw FASTQ files. Bulk
RNA-seq data. FASTQ files from all bulk RNA-seq datasets were

read-trimmed using TrimGalore (v0.6.6) on default settings.
Trimmed, high-quality reads were pseudo-aligned, and
transcript-level abundances were quantified using Salmon120

(v1.3.0) with a decoy-aware transcriptome index for the Homo
sapiens GRCh38 genome built from human GENCODE v35
annotation. Read quality, trimming performance and alignment
statistics were assessed for each sample using FastQC (v0.11.9)
and MultiQC (v1.9)121. The average number of mapped reads
across all bulk RNA-seq samples was 28.3 million (minimum 14.6
million), with 78 of 80 samples having >75% mapped reads
(average 85%, minimum 57%). Quality control metrics for each
sample are detailed in Supplementary Table 3. Single-cell 10x
Chromium RNA-seq data. Transcript quantification from sample-
demultiplexed 10x Chromium FASTQ files (dataset sc-iPS-
10XSeq38) was performed with Salmon’s single-cell processing
module Alevin122 using the same GRCh38 (GENCODE v35)-based
transcriptome index as used for the bulk RNA-seq datasets. 60% of
all reads were properly mapped in the two 10x samples processed.
The gene-by-cell matrix of counts was imported into R (v4.0.2)
using tximport123 (v1.16.1) for further filtering with Seurat124,125

(v4.0.0). For downstream analysis, we conservatively only retained
higher-quality cells with an overall mapping rate of at least 50% of
reads43. For each of these cells, we quantified the number of total
genes and housekeeping genes42 detected (i.e., genes with at
least one read count). We then excluded all cells with fewer than
1,000 detected genes or with less than 66% housekeeping genes
expressed (based on Tirosh et al.’s curated list of 98 HK genes42).
To exclude potential cell doublets or multiplets from downstream
analysis, we additionally removed cells with an exceptionally high
gene or UMI content (i.e., more than 8000 genes or 37,500 unique
molecular identifiers detected). This left us with a total of 5,315
QC-passed cells for further analysis. Single-cell PatchSeq data. For
the PatchSeq dataset (dataset sc-iPS-PatchSeq), FASTQ reads were
adapter and quality trimmed with Trimmomatic126 (v0.39) using a
custom list of adapter/primer sequences and the following
parameters: ILLUMINACLIP:path/to/adapters.fa:2:30:10 LEADING:3
TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36. Transcript quantifica-
tion was carried out using Salmon as performed for bulk RNA-seq
data, but with the invocation of the --gcBias argument to correct
for fragment-level GC biases in the paired-end input data, and
using a decoy-aware index that included sequences for added
RNA spike-ins (ERCCs and ArrayControl spikes) and used
fluorescent reporters in addition to the human GRCh38 (GENCODE
v35) reference. Cells (n= 6) with a read alignment rate below 50%
were considered poor quality and removed from further analysis.
Transcript-level counts from Salmon were summarized to the gene
level using tximport123 (v1.16.1) with countsFromAbundance set to
“lengthScaledTPM”, and imported into with Seurat124,125 (v4.0.0)
for calculation of per-cell QC metrics and cell filtering. Consistent
with the QC performed on the 10x Chromium data, cells with
fewer than 1000 or more than 8000 total genes detected, or with
fewer than 65 detected housekeeping genes, were removed.
Across all remaining cells (n= 44), the average number of mapped
reads was 6.4 million, corresponding to an alignment rate of 77%.

GTEx RNA-seq data processing
Genotype-Tissue Expression (GTEx)127,128 v8 transcriptome data
(dbGaP Accession phs000424.v8.p2, accessed December 2020)
and sample annotation information for 55 adult tissue types were
retrieved from the GTEx portal ((http://www.gtexportal.org/). The
expression data (read counts and transcripts per million [TPM]
values) were read into R using the read.gct function from the
CePa129 (Centrality-Based Pathway Enrichment) package (v0.7.0).
Transcriptome samples were filtered to only include those with an
RNA integrity (RIN) score of 7.5 or higher (SMRIN column of
annotation file) and that have been identified by the GTEX
Consortium to be best suited for RNA-seq analysis (SMAFRZE
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column of annotation file). We subsetted the data for substantia
nigra (n= 19) and striatum (caudate, n= 126; putamen, n= 70)
tissue samples for clustering with data from reprogrammed
neurons (Fig. 2A, B, analysis details provided below).

Clustering analysis
Principal components analysis (PCA) and hierarchical clustering of
reprogrammed neuron and GTEx (post-mortem adult substantia
nigra and striatum tissue) samples passing quality control was
performed using R (v4.0.2) and RStudio (v1.3.1073) software based
on normalized expression values. PCA (Fig. 2A): For proper
comparison with bulk RNA-seq data, we generated artificial bulk
samples for the two single-cell RNA-seq datasets by summing the
read counts across all cells sequenced from each subject. PCA
analysis of reprogrammed neuron (n= 80 bulk and 6 artificial
bulk) and GTEx substantia nigra (n= 19 bulk) samples was
performed on variance-stabilized transformed counts using the
plotPCA function in DESeq2130 (v.1.28.1) using all genes expressed
at a minimum of 10 counts across all samples. Hierarchical
clustering (Fig. 2B): Salmon TPM (Transcripts Per Million) values for
all samples were imported into R using tximport123 (v1.16.1). For
the heatmap clustering of datasets based on an Euclidean
distance metric, TPM values were averaged across all cells or
samples in each respective dataset, log-transformed and Z-scaled,
and computed distances were clustered by average-linkage
hierarchical clustering. Only genes expressed at greater than or
equal to 1 TPM across the total number of samples were used to
compute Euclidean distances. Heatmap visualization was per-
formed using the pheatmap131 package (v1.0.12) in R.

Differential gene expression analysis
Differential gene expression analyses were performed on Salmon-
generated gene counts and TPM values using slightly different
methods to identify genes dysregulated in each dataset of PD
versus healthy control reprogrammed neurons. Single-cell RNA-
seq datasets were tested for differentially expressed genes using
both (i) Seurat124,125 (v4.0.0)’s standard Wilcoxon rank sum test
applied to count data, and a (ii) Wilcoxon rank sum test applied to
raw TPM data within R (wilcox.test function). For bulk RNA-seq
datasets, differential expression analysis on raw counts was
performed using the DESeq2130’s (v1.28.1) Wald test, and raw
TPM data were analysed by Wilcoxon rank sum test as performed
for single-cell RNA-seq data. Non-expressed genes had their p
values set to 1. The raw p values generated by the two DE analysis
tests were combined into a single combined p-value by logit
method (logitp function from the metaseqR package, v1.28.0).
Log2-fold changes of mean gene expression were calculated for
each of the two DE analysis tests separately and then averaged to
obtain a single-fold change measure for PD versus control
reprogrammed neurons.

Calculation of per-dataset gene dysregulation scores (Ddataset)
For all genes expressed (≥1 TPM in at least 10% of cells or
samples) in each dataset d, the combined gene fold changes and
combined p-values were each mapped to a continuous 0.01-
1 scale using desirability functions provided by the desiR
package48. Specifically, the gene with the lowest (most significant)
p value received maximum desirability of 1, whereas genes with
values >0.05 all received low desirability of 0.01. Genes with p-
values in between these cut-offs received intermediate value
desirability values. Desirability values for fold changes were
computed in a similar way. We considered genes with a large
fold change (>2) maximally desirable (value of 1), and genes with
a small fold change (<1.25) minimally desirable (value of 0.01);
intermediate desirability values were assigned to genes with a fold
change in between these cut-offs. Additionally, we calculated a

midbrain expression desirability score for each gene, where genes
with transcript detection in the adult midbrain above cut-off
(NX ≥ 1; as per The Human Brain/Protein Atlas132) were considered
maximally desirable (score of 1), and genes not detected in
midbrain received a low score of 0.25. A value of 0.01 instead of
zero was chosen as the minimum desirability score for each
dataset’s gene fold change and p-value as we did not want to
exclude any genes, only make them least important.
For each gene in each dataset, the desirability scores computed

for p-value, fold change and midbrain expression were subse-
quently combined into a dysregulation score (Ddataset), using a
weighted geometric mean with weights of 1, 0.5 and 0.01,
respectively. The midbrain expression desirability score was
integrated at a low weight of 1/100th that of the p value
desirability score and 1/50th that of the fold change score to
ensure the Ddataset scores were predominantly driven by the
differential testing results, with midbrain gene expression level
only serving as a soft adjustment variable to the final ranking of
the genes. Genes not expressed in the dataset were given a
minimal Ddataset score of 0.01. All source data are in Supplementary
Data 1.

Calculation of multiple-dataset gene dysregulation scores
(Doverall)
To identify a common signature of genes perturbed in PD
reprogrammed neurons across multiple datasets, we combined
the individual dataset dysregulation scores into a higher-level
overall dysregulation score (Doverall). Score Doverall is calculated by
geometric averaging of all individual (n= 6) dataset dysregulation
scores (at equal weights) with a factor that adjusts for
concordance of directionality of fold change values between
datasets (at one-tenth of the total weight); i.e., Doverall score is
proportionally reduced with the degree of discordance in fold
change directionality between the datasets in which the gene is
expressed. Refer to Supplementary Data 1 for source data.

Functional enrichment analysis
Functional enrichment analysis of the top 200 genes with the
highest Doverall score was performed using ToppFun (https://
toppgene.cchmc.org/, database March 2021) to test for over-
representation in Gene Ontology (GO) biological process (Fig. 3B)
and cellular component (Fig. 3C) terms, as well as gene-chemical
interactions curated by the Comparative Toxicogenomics Data-
base67 (CTD; Fig. 3D). Benjamini-Hochberg method was used to
adjust P-values for multiple testing, with enriched terms being
considered significant for adjusted P-values < 0.05. Detailed
enrichment results are provided as Supplementary Table 4.

Gene Set Enrichment Analysis
Gene Set Enrichment Analysis (GSEA)133 was performed to explore
whether the multiple dataset dysregulated genes showed a
significant correlation with genes involved in Parkinsonism,
dementia and schizophrenia (Fig. 3E), PD symptoms (Fig. 3F) and
abnormal central nervous system electrophysiology (Fig. 5A). Input
data were (1) our list of genes (n= 24,693 unique expressed in ≥1
dataset) rank-ordered by decreasing Doverall score, and (2) one of
several phenotype gene sets retrieved from the Human Phenotype
Ontology (HPO) database131: “Parkinsonism”/HP:0001300 (n= 74
genes), “Dementia”/HP:0000726 (n= 132 genes), “Schizophrenia”/
HP:0100753 (n= 51 genes); “Akinesia”/HP:0002304 (n= 19 genes),
“Bradykinesia”/HP:0002067 (n= 68 genes), “Dyskinesia”/HP:0100660
(n= 164 genes), “Postural instability”/HP:0002172 (n= 42 genes),
“Rigidity”/HP:0002063 (n= 131 genes), “Resting tremor”/HP:0002322
(n= 28 genes); “Abnormality of CNS electrophysiology”/HP:0030178
(n= 358 genes). The Doverall-ranked gene list was analyzed for
overrepresentation of each HPO gene set at the top using
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GSEAPreranked (v4.1.0) with default parameters (enrichment
statistic: weighted; min size: 15; max size: 500; normalization mode:
meandiv; the number of gene-set permutations: 1000). All p-values
were FWER-corrected to exclude any possibility of false-positive
enrichment. As an additional validation step, gene labels were
manually shuffled at random to destroy the original gene
label–Doverall score relationship, and the resulting randomized gene
list was tested for enrichment for the same gene sets (Supplemen-
tary Fig. 2). Detailed enrichment results are provided in Supple-
mentary Table 4.

Pathway enrichment and network analysis
Pathway enrichment analysis was performed (Fig. 4) to explore
whether the genes commonly dysregulated between datasets
showed significant correlation with genes annotated to known
biological pathways83. We rank-ordered the entire list of genes
(n= 24,693 unique genes expressed in ≥1 dataset) by decreasing
Doverall score and statistically tested for overrepresentation of a
broad collection of pathway gene sets at the top of the list using
Gene-Set Enrichment Analysis (GSEA;83,133). The collection of
18,684 pathway gene sets was downloaded as a single GMT file
from download.baderlab.org/EM_Genesets (Human_GOBP_All-
Pathways_no_GO_iea_February_05_2021_symbol.gmt) and fil-
tered for gene set size (min = 15 and max = 250 features after
restricting to dataset). The remaining 5,654 pathways were
analyzed for statistical overrepresentation using GSEA’s “pre-
ranked” tool with default parameters (enrichment statistic:
weighted; normalization mode: meandiv; 1000 gene-set permuta-
tions). The Enrichment Score (ES) calculated for each pathway
reflects the degree of overrepresentation of pathway genes at the
top of the ranked list. Pathway genes were randomly permuted
1,000 times, and the significance of the actual ES versus the 1,000
times permuted ES evaluated to calculate significance (p-value).
Pathway ES scores were normalized relative to pathway size to
obtain a normalized enrichment score (NES) that was used to rank
the biological pathways by degree of enrichment in the list of
dysregulated genes. Enrichment results were interpreted and
statistically significant pathways (FDR-q < 0.01) visualized as a
network representation using Cytoscape v3.8.0 with the Enrich-
mentMap v3.3.1 and AutoAnnotate v1.3.3 plug-ins as per a
previously described protocol83 (also available at https://
cytoscape.org/ cytoscape-tutorials/protocols/enrichment-pipeline)
using Jaccard Overlap combined coefficient >0.375 with com-
bined constant = 0.5. As an additional validation step to confirm
the specificity of the identified biological pathways, gene labels
were manually shuffled at random to destroy the original gene
label–Doverall score relationship. The resulting randomized gene list
was tested for enrichment for the same collection of pathway
gene sets. Random permutation of gene labels resulted in no
significant enrichment of any pathway gene set (FDR-q < 0.01).
Detailed enrichment results of this analysis are provided in
Supplementary Table 8.

Drug prediction based on dysregulated transcriptomic
pathways
DrugBank’s database of n= 5,724 drug-target gene associations90

was obtained as a single GMT file from download.baderlab.org/
EM_Genesets (Human_DrugBank_all_symbol.gmt). To test for
overrepresentation of DrugBank therapeutic candidates amongst
the rank-ordered list of PD-dysregulated genes, a GSEA was
performed using GSEAPreranked (v4.1.0) with default parameters
(enrichment statistic: weighted; min size: 15; max size: 500;
normalization mode: meandiv; the number of gene-set permuta-
tions: 1000). We downloaded McFarthing et al.’s2 comprehensive
list of 145 registered and active clinical trial therapies for PD (the
year 2020) and performed a systematic literature search to link
each therapy’s mechanism(s) of action to the major theme(s) of

transcriptomic dysregulation. Clinical trial therapies were categor-
ized into disease-modifying and symptomatic therapies similar to
McFarthing et al.’s classification2 and grouped by clinical trial
phase. Trials were filtered for redundancy, keeping only the trial in
the most advanced trial phase.

Patch-clamp recordings
A total of >169 mature (Type 5; see definition below) neurons
were patched and analyzed (Fig. 5). For whole-cell patch clamp
recordings, individual coverslips were transferred into a heated
recording chamber and continuously perfused (1 ml•min-1) with
either artificial cerebrospinal fluid (ACSF) or BrainPhys™ basal
media114,134 bubbled with a mixture of CO2 (5%) and O2 (95%),
and maintained at 25 °C. For targeted whole-cell recordings, we
used a 40x water-immersion objective, differential interference
contrast filters (all Olympus), an infrared digital camera (Rolera XR
– Qimaging), a digidata 1440 A/Multiclamp 700B and Clampex
10.3 (Molecular Devices). Patch electrodes were filled with internal
solutions containing 130 mM K-gluconate, 6 mM KCl, 4 mM NaCl,
10 mM Na-HEPES, 0.2 mM K-EGTA; 0.3 mM GTP, 2 mM Mg-ATP,
0.2 mM cAMP, 10 mM D-glucose, 0.15% biocytin and 0.06%
rhodamine. The pH and osmolarity of the internal solution were
close to physiological conditions (pH 7.3, 290–300 mOsmol). Data
were all corrected for liquid junction potentials (10 mV). Electrode
capacitances were compensated on-line in cell-attached mode
(~7 pF). Recordings were low-pass filtered at 2 kHz, digitized, and
sampled at intervals of 50 ms (20 kHz). To control the quality and
the stability of the recordings throughout the experiments, access
resistance, capacitance and membrane resistance were continu-
ously monitored on-line and recorded. The resistance of the patch
pipettes was between 3 and 5 MOhm. The access resistance of the
cells in our sample was ~40 MOhm on average. Synaptic
antagonists were only used on a subset of neurons to confirm
the nature of the spontaneous synaptic events detected. All
events showing typical synaptic AMPA receptor-mediated kinetics
were blocked by NBQX (10 µM; Sigma-Aldrich Cat. No. N183) and
were observed exclusively in voltage clamp at −70 mV (close to Cl-

reversal potential). All events showing typical synaptic GABAA

receptor-mediated kinetics were blocked by gabazine (SR95531,
10 µM; Sigma-Aldrich Cat. No. S106) and were observed exclu-
sively in voltage clamp at 0 mV (close to Na+ reversal potential).

Action potential (AP) type classification
Action potential type classification was based on a previously
published definition40 as follows: “Type 0 cells” are most likely
non-neuronal cells and do not express voltage-dependent sodium
currents; “Type 1 neurons” express small Nav currents but are not
able to fire action potentials (APs) above −10mV; “Type 2
neurons” fire only one AP above −10mV, which is typically
followed by a plateau; “Type 3 neurons” also fire an AP above
−10mV and one or a few aborted spikes below −10mV; “Type 4
neurons” fire more than one AP above −10mV but at a frequency
below 10 Hz; “Type 5 neurons” fire APs above −10mV at 10 Hz or
more. The threshold of −10mV was chosen as it is close to the
reversal potential of cations (0 mV), and a sign of healthy
mature APs.

Statistical analysis of electrophysiological data
Statistical analysis of electrophysiology data was assisted with
Clampfit 10.3, MATLAB 2011b, Igor Pro v6, GraphPad Prism v8,
MiniAnalyis and Microsoft Excel. Data are presented as mean ±
SEM. Statistical significance was assessed with two-tailed non-
parametric paired (Wilcoxon) or unpaired (Mann Whitney) tests.
The criterion for significance was set as P < 0.05.
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DATA AVAILABILITY
The following sequencing datasets available under NCBI GEO or ArrayExpression
accession codes were used in this study: “ArrayExpress E-MTAB-9154” (10x Chromium
single-cell RNA-seq data of iPSC-derived dopamine neurons; dataset sc-iPS-10XSeq38,
“GEO GSE120746” (transcriptome data from midbrain dopaminergic mixed neural
cultures; dataset bulk-iPS-Mixed31, and “ArrayExpress E-MTAB-3037” (transcriptome
data from PSA-NCAM-positive iNs sorted from mixed cultures; dataset bulk-iN-
Mixed39. Datasets sc-iPS-PatchSeq, bulk-iPS-Dopa and bulk-iN-Dopa are not publicly
available due to specific consents of individuals who donated biological material to
conduct this study but are available on reasonable request from the corresponding
author to qualified researchers to the extent permitted by the Research Ethics
Committee. All other relevant data supporting the key findings of this study are
available within the article and its Supplementary Information files, or from the
corresponding author upon request. Patient-related information not included in the
manuscript may be subject to patient confidentiality.

CODE AVAILABILITY
The code for data cleaning and analysis is available at https://github.com/bardylab/
RNAseq_iPSC_PD.git or from the corresponding author.
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