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Observation and control of Casimir effects in
a sphere-plate-sphere system

Zhujing Xu1, Peng Ju1, Xingyu Gao1, Kunhong Shen1, Zubin Jacob2,3 &
Tongcang Li 1,2,3,4

A remarkable prediction of quantum field theory is that there are quantum
electromagnetic fluctuations (virtual photons) everywhere, which leads to the
intriguing Casimir effect. While the Casimir force between two objects has
been studied extensively for several decades, the Casimir force between three
objects has not been measured yet. Here, we report the experimental
demonstration of an object under the Casimir force exerted by two other
objects simultaneously. Our Casimir system consists of a micrometer-thick
cantilever placed in between two microspheres, forming a unique sphere-
plate-sphere geometry. We also propose and demonstrate a three-terminal
switchable architecture exploiting opto-mechanical Casimir interactions that
can lay the foundations of a Casimir transistor. Beyond the paradigm of
Casimir forces between two objects in different geometries, our Casimir
transistor represents an important development for controlling three-body
virtual photon interactions and will have potential applications in sensing and
information processing.

The interaction between three objects give rise to many fascinating
phenomena such as chaos of astronomical objects1, Efimov bound
states of ultracold atoms2, and frustrated states of quantum spin
systems3. It is intriguing to consider the potential of three-body inter-
actions arising solely from quantum electromagnetic fluctuations (vir-
tual photons)4–6. As quantum electromagnetic fluctuations exist
everywhere in the universe and in human-made devices, the Casimir
effect is ubiquitous. However, the Casimir effect is often neglected or
treated as a detrimental effect in micro-electromechanical systems and
nano-electromechanical systems7. It will be beneficial to develop useful
applications of the Casimir effect. One application of the Casimir effect
is to provide a new approach to couple mechanical resonators8. Dif-
ferent from optomechanical coupling with real photons in cavity
optomechanics9–12, optomechanical coupling with virtual photons will
not suffer fromcavity loss and thuswill not require a high-quality cavity.
Compared to electrostatic coupling, the Casimir effect does not require
charge and will work for both conductors and insulators. Compared to
the optical force, the Casimir force works for both transparent and

opaque materials. Meanwhile, the use of the Casimir force does not
prevent the use of the electrostatic force and the optical force. They
may be combined to achievemore advanced functions. In addition, the
Casimir effect is energy efficient as it does not require a voltage source
or a light source to maintain, which will be particularly important for
devices operating in the quantum regime at low temperatures.

Recently, the Casimir effect was used to increase the quality factor
of a mechanical resonator13 and couple two separate mechanical
resonators14,15. In addition, the Casimir effect has been utilized to realize
nonlinear oscillation16, quantum trapping and self-assembling17,18. While
the paradigm of Casimir effect between two objects has been exten-
sively explored19–26, the Casimir force between three macroscopic
objects has not been detected yet. The Casimir effect between three
objectswill be important in studyinggravity at shortdistances as ametal
film is often used to separate two test masses to shield electrostatic
interactions27–29. Precision measurement of the Casimir effect has been
used to search for a new force beyond the standardmodel30. Beyond its
fundamental interest, a Casimir system with three objects can open the
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route to realize crucial technological building blocks such as a
transistor-like three-terminal devicewith quantumvacuumfluctuations.

In this article, we report the experimental demonstration of an
object under the Casimir force exerted by two other objects simulta-
neously. We also propose and demonstrate a three-terminal Casimir
system that can switch and amplify quantum-vacuum-mediated energy
transfer, in analogy to a field effect transistor. Our unique sphere-plate-
sphere Casimir system consists of three closely-spaced optomechanical
oscillators, as shown in Fig. 1a. Amicrometer-thick cantilever is placed in
between twomicrospheres which are attached to two other cantilevers.
Their motions are monitored by three independent fiber-optic inter-
ferometers. There are random quantum vacuum fluctuations between
them and hence each cantilever experiences a separation-dependent
Casimir force. We first measure the Casimir force in this sphere-plate-
sphere system.We then apply parametricmodulation on cantilever 2 to
couple their motion by the Casimir effect. In this way, energy can flow
from cantilever 1 to cantilever 2 and to cantilever 3. The center canti-
lever serves as a gate for controlling the energy transfer through the
Casimir effect. By adding gain to the center cantilever with active
feedback, we also realize amplification of the quantum-fluctuation-
mediated energy transfer. Our Casimir transistor will have promising
application in sensing31,32 and information processing33,34.

Results
Casimir force in the sphere-plate-sphere configuration
We first measure the Casimir force in our sphere-plate-sphere system
(Fig. 1). Assuming three surfaces are all made of ideal conductivemetal
and they are sufficiently thick, the Casimir force on the center one is23:
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where d1 and d2 are the separations between cantilever 1 and cantilever
2, and the separation between cantilever 2 and cantilever 3 as shown in
the inset of Fig. 1b. R1 and R2 are the radii of the sphere on cantilever 1
and cantilever 3, respectively. The Casimir force strongly depends on
the separations and is highly nonlinear. Such a large nonlinearity is
crucial for achieving parametric coupling as described in the next sec-
tion. TheCasimir interactionbetween realmaterials canbecalculatedby
the Lifshitz theory15,35. Our customMatlab codes to calculate theCasimir
interaction in a sphere-plate-sphere system are provided in the Supple-
mentary Software. We use the dynamic force measurement scheme to
measure theCasimir force.More details about the calculationofCasimir
interaction in our system can be found in Methods and Supplementary
Note 1. The detailed force measurement schemes and results are
presented in Supplementary Note 2 and Supplementary Figs. 2–5.

Themeasured Casimir force gradient on cantilever 2 in our three-
body system is shown in Fig. 1b. We fix the position of cantilever 1 and
3 such that d1 + d2 = 760 nm.Meanwhile, we change the position of the
cantilever 2 (center). As the center cantilever moves from left side to
the right side, the gradient meets the lowest value when d1 = d2 if
R1 =R2. At this specific separation, the net Casimir force on cantilever 2
is zero. The calculation based onLifshitz’s formula and proximity force
approximation is shown in the solid red curve. The measurement is in
good agreement with the calculation. We also show the measured
Casimir force gradient on cantilever 2 when separation d1 is changed
by moving cantilever 1 in Fig. 1d, and similarly when separation d2 is
changed bymoving cantilever 3 in Fig. 1e. While there have beenmany
studies of Casimir interaction between two objects, our work reports
themeasurement of the Casimir force between three separate objects.
It opens up the possibility for studying Casimir interaction between
more complicated configurations, and can study the nonadditivity
nature36–39 of the Casimir interaction by reducing the thickness of the
center plate (see Supplementary Fig. 1).

Fig. 1 | Casimir interaction between three optomechanical resonators. a Three
modified cantilevers with resonant frequencies ω1, ω2 and ω3 experience Casimir
force between each two nearby surfaces. The vibration amplitudes of three canti-
levers are denoted as A1, A2 and A3. Additional parametric modulations are applied
on the center cantilever to couple themby the Casimir effect.We can switch on and
off the Casimir coupling between cantilever 1 and cantilever 3 by controlling the
parametric modulations. In addition, we can amplify the energy transfer through
Casimir effect by adding an extra gain to cantilever 2. b Measured Casimir force
gradient on cantilever 2 (center) as a function of its position when the other two
surfaces are fixed such that d1 + d2 = 760 nm. The blue circles are experimental

measurements and the red solid line are the theoretical prediction. cThemeasured
Casimir force on cantilever 2 is shown as a function of d2. dMeasured Casimir force
gradient experienced by cantilever 2 as a function of d1 when d2 is fixed at 310 nm.
The red diamonds are the total force gradient � 1

R
dF
dx measured from cantilever 2.

The blue circles are the force gradient contributed from cantilever 1. The red solid
curve is the theoretical prediction of the interactionbetween cantilever 1 and 2. The
gray dashed line is the theoretical predictionof the interaction betweencantilever 2
and 3 and hence it is independent ofd1 under additivity approximation. eMeasured
Casimir force gradient on cantilever 2 as a function of d2 when d1 is fixed at 276 nm.
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Casimir vibration coupling
We now use the Casimir effect to efficiently couple the motions of
three cantilevers for realizing a more advanced Casimir-based
device. The natural frequencies and damping rates of three canti-
levers are ω1 = 2π × 5661 Hz, ω2 = 2π × 6172 Hz, ω3 = 2π × 4892Hz,
γ1 = 2π × 3.22 Hz, γ2 = 2π × 6.06Hz, and γ3 = 2π × 3.58 Hz when they
are far apart. These frequencies shift under Casimir interaction. The
direct Casimir coupling strength between three cantilevers is smaller
than the frequency differences between them. To solve this issue, we
use parametric coupling15,40 by modulating the separation between
each two cantilevers at a slow rate ωmod1,2 and a modulation ampli-
tude δd1,2. This is achieved by changing the position of the cantilever
2 as δd1 cosðωmod1tÞ+ δd2 cosðωmod2tÞ. Such parametric modulation
effectively couples three cantilevers when ωmod1 = ∣ω1 −ω2∣ and
ωmod2 = ∣ω3 −ω2∣, as shown in Fig. 2a. Different from direct coupling
that requires identical resonant frequencies, parametric coupling
provides more freedom to couple different resonators. Under the
parametric coupling scheme, the simplifiedHamiltonian of the three-
cantilever system in the interaction picture is (see Methods and
Supplementary Note 4 for detailed derivations)15:
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where γ1,2,3 denote the damping rates of the three cantilevers.
g12 =

Λ1
2
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p are the coupling strengths
between cantilever 1 and cantilever 2, and between cantilever 2 and
cantilever 3, respectively. Here we have Λ1 =

d2FC
dx2 ∣d10

δd1 and
Λ2 =

d2FC
dx2 ∣d20

δd2. Here d10,20 is the equilibrium separation when there
is no modulation applied. δ2 =ω1 +ωmod1 −ω2 and δ3 =ω1 +ωmod1 −

ωmod2−ω3 are the detuning of the system which depend on the
modulation frequencies. The eigenvalues of this Hamiltonian near
resonant coupling conditions are shown in Fig. 2b. We can observe a
clear two-fold anti-crossing when the detunings δ3 = δ2 = 0.

Our experimental results of the level repulsion behavior due to
the Casimir coupling between three cantilevers are show in Fig. 2c, e.
We study this behavior experimentally by scanning the power spec-
trum densities (PSD) of cantilever 3 (Fig. 2c) and cantilever 2 (Fig. 2e)
as a function of the modulation frequency ωmod2 when ωmod1 = ∣ω1 −
ω2∣. Figure 2e shows three branches which correspond to the hybrid
modes of three cantilevers after being projected to cantilever 2. Since
ωmod1 is fixed at the resonant value that can couple cantilever 1 and
cantilever 2, we notice a clear anti-crossing behavior (a horizontal
dark line around 6080Hz) independent of ωmod2. The two horizontal
branches describe the coupled motion of cantilevers 1 and 2.
When we vary ωmod2, we also observe an inclined branch with a fre-
quency ω3 +ωmod2 which corresponds to the motion of cantilever 3.
When this inclined branch intersects with the other two branches at
ωmod2 = ∣ω3 −ω2∣, a more complicated level repulsion is observed. One
mode disappears in the PSD of cantilever 2 as this mode only involves
the motion of cantilever 1 and 3. More detailed discussions about the
eigenvalues and PSD of the system is included in Supplementary
Note 4. Numerical simulation results are shown in Fig. 2d, f, which
agree well with experimental results. Thus we have strongly coupled
the motions of three objects with quantum vacuum fluctuations.

Casimir switch
Our three-terminal Casimir system enables switching (Fig. 3a) and
amplifying quantum-fluctuation-mediated energy transfer in analogy
to a field effect transistor (Fig. 3b). The quantum-fluctuation-mediated
energy transfer between cantilever 1 and 3 can be easily switched on
and off by controlling the modulation on cantilever 2 (Fig. 3c). When

Fig. 2 | Coupling the vibrations of three cantilevers with the Casimir effect.
a Parametric modulation of the Casimir interaction is applied in our system. When
ωmod1 =ω2 −ω1, cantilever 1 and cantilever 2 are coupled. Similarly, cantilever 2 and
cantilever 3 are coupled when ωmod2 =ω2 −ω3. Here ωmod1,2 is the modulation fre-
quency. b Three eigenvalues of the Hamiltonian in Eq. (2) as a function of δ3 when
δ2 = 0 and ∣g12∣ = ∣g23∣ = 2π × 20Hz. Here δ2 =ω1 +ωmod1−ω2 and δ3 =ω1 +ωmod1 −ω

mod2 −ω3 are the detuning of the system. g12 and g23 are the coupling strengths

between cantilever 1 and cantilever 2, and between cantilever 2 and cantilever 3,
respectively. cMeasuredpower spectrumdensity (PSD) of cantilever 3 as a function
of themodulation frequencyωmod2. e PSDof cantilever 2 as a functionofωmod2. The
modulation amplitudes are δd1 = 10.4 nm and δd2 = 14.1 nm. The modulation fre-
quency ωmod1 is fixed at 440Hz. d, f The simulated PSD for two cantilevers. The
separations are d10 = 88nm and d20 = 90 nm.
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ωmod1 and ωmod2 are on resonance, vibration energy from cantilever 1
can be transferred to cantilever 3 efficiently (Fig. 3e). However, when
the modulation is off, the excitation on cantilever 1 can not be trans-
ferred to cantilever 3 efficiently (Fig. 3d). In Fig. 3f, the measured
amplitude ratio A3/A1 is shown as a function of modulation frequency
ωmod2 for both switch on and off cases. We notice that the amplitude
ratio can achieve up to 0.44when themodulation is on resonance, and
close to zerowhen themodulation if off resonance. Thuswe can switch
on and off the quantum-fluctuation-mediated energy transfer with
high contrast. The separations in Figs. 3 and 4 are larger than those
separations in Fig. 2 and give smaller coupling strengths: g12 = 2π ×
3.5 Hz and g23 = 2π × 3.9 Hz. These coupling strengths are comparable
to the damping rates of the cantilevers so there is nomode splitting in
this case.

Under the steady state when the cantilever 1 is driven at ω1 with a
small amplitude and the parametric modulation on cantilever 2 is on
resonant, the transduction ratio A3/A1 in this three-cantilever Casimir
system is (see Methods):

A3

A1
= ∣

Λ1Λ2

4m2m3ω2ω3γ2γ3 +Λ
2
2

∣: ð3Þ

where Λ1 =
d2FC
dx2 ∣d10

δd1 and Λ2 =
d2FC
dx2 ∣d20

δd2. For Fig. 3, the cantilever 1 is
driven at 5649Hz, which is its resonant frequency in this situation. In
Fig. 3g, themeasured transduction ratio A3/A1 is shown as a function of
modulation amplitude δd1 when δd2 = 1.42δd1. The transduction ratio is
close to zero when the parametric modulation is off-resonant. As

expected, the ratio A3/A1 increases when δd1 increases under resonant
coupling. Our experimental results agree well with Eq. (3) and
numerical simulation results (Fig. 3g).

Casimir amplification
To realize a Casimir transistor with high efficiency, we introduce an
extra gain to the system (Fig. 4a) to amplify the quantum-fluctuation-
mediated energy transfer. The extra gain is applied to cantilever 2 by
feedback control such that the damping rate of cantilever 2 becomes
γ2 = γ20−G, where γ20 is the natural damping rate of cantilever 2 and G
is the gain coefficient (More details can be found in Supplementary
Note 3 and Supplementary Fig. 6). γ2 becomes negative when G > γ20.
Based on Eq. (3), the transduction ratio A3/A1 increases when γ2
decreases. Under such condition, energy from cantilever 1 is first
transferred to cantilever 2 and get amplified and then transferred to
cantilever 3. For example, we apply a fixed gain to cantilever 2 such
that G = 2π × 8.73Hz to realize the amplification of energy transfer, as
shown in Fig. 4b. Other parameters are the same as those in Fig. 3e.

Figure 4c shows amplification of quantum-fluctuation-mediated
energy transfer with our Casimir transistor. When a gain is applied to
cantilever 2, energy transfer from cantilever 1 to cantilever 3 shows a
similar resonant behavior as the no-gain case, but has an improvement
by a factor of 8 on the transduction ratio . The additional gain improves
the quantum-fluctuation-mediated energy transfer efficiency sig-
nificantly. As expected, the transduction ratioA3/A1 increaseswhen the
parametric modulation amplitude (Fig. 4e) or the gain coefficient
(Fig. 4d, f) increases until the system becomes unstable when the

Fig. 3 | Switching quantum-fluctuation-mediated energy transfer. a A symbolic
switch. b A symbolic field effect transistor. c The quantum-fluctuation-mediated
energy transfer between cantilever 1 and 3 can be switched on and off by the
modulation on cantilever 2. The position of cantilever 2 is modulated with mod-
ulation amplitudes δd1,2 and modulation frequencies ωmod1,2. d Measured dis-
placement of two cantilevers (x1 and x3) when modulation is off. e Measured
displacement of two cantilevers whenmodulation is on. Energy from cantilever 1 is
transferred efficiently to cantilever 3. Here ωmod1,2 = 2π × 465Hz, ωmod2 = 2π ×
1230Hz, δd1 = 6.0 nm, and δd2 = 8.5 nm. The separations are d10 = 100nm and

d20 = 105nm. f The transduction ratio A3/A1 is shown as a function of the modula-
tion frequency ωmod2 when ωmod1 is on resonant. A1 and A3 are the vibrational
amplitudes. The blue circles and the reddiamonds correspond to the switch onand
off case, respectively. The magenta solid line is the simulation. g The transduction
ratio A3/A1 as a function ofmodulation amplitude δd1 whenωmod2 = 2π × 1231 Hz (on
resonant, blue circles) andωmod2 = 2π × 1150Hz (off resonant, red diamonds).ωmod1

is on resonant for both cases. The magenta solid curve is the simulation and the
green solid curve is the calculation based on Eq. (3).
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modulation amplitude or the gain is too large. Thus we have demon-
strated amplification in a three-terminal Casimir system. The amplifi-
cation function will be crucial for future applications of Casimir-based
devices. For example, Casimir parametric amplification has been the-
oretically proposed for zeptometer metrology31 and ultrasensitive
magnetic gradiometry32.

Discussion
We have measured the Casimir interaction between three objects,
and demonstrated efficient coupling of three optomechanical reso-
nators with virtual photons. Compared to the conventional opto-
mechanical coupling with real photons in a high-Q cavity9,10,
optomechanical coupling with virtual photons8,41 does not need a
high-Q cavity. Inspired by a field effect transistor, we also demon-
strate switching and amplifying quantum-fluctuation-mediated
energy transfer in our three-terminal Casimir system. As proposed
by former theoretical studies, Casimir-based amplification and
switching will have applications in sensing31,32 and information
processing33,34. The realization of Casimir coupling between three
resonators is an important step toward realizing a scalable Casimir
array. The three resonators can also be modified to realize a circu-
lator in the future, which can have non-reciprocity between any two
of the three resonators42. By reducing the thickness of the center
cantilever, the system can be used to study non-pairwise additive
effects38,39. The Casimir effect between three objects is also impor-
tant in studying gravity at short distances27–29.

Methods
Casimir force calculation
At a finite temperature, the Casimir interaction comes from
both quantum and thermal fluctuations. At temperature T and
separation x, the Casimir energy per unit area between two surfaces
is given by35:

Eðx,TÞ= kBT
2π

P1
l =0

0 R1
0 k?dk?fln½1� r2TM ðiξ l ,k?Þe�2xq�+ ln½1� r2TE ðiξ l ,k?Þe�2xq�g,

ð4Þ

where ξ l =
2πkBTl

_ is the Matsubara frequency and k? =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
x + k

2
y

q
is the

wave vector parallel to the surface. rTE(iξl, k⊥) and rTM(iξl, k⊥) are
reflection coefficients of the transverse-electric and transverse-
magnetic modes. The separation between two surfaces is far smaller
than the dimensions of the cantilever and the sphere. Therefore, we
can apply the proximity-force approximation and the Casimir force
between a spherewith radiusR and aplate is FC(x, T) = − 2πRE(x, T). The
calculation in ref. 15 has shown that the contribution from thermal
fluctuations at roomtemperature is less than4%when the separation is
less than 800 nm. Thus, the Casimir interaction in our system is
dominated by quantum vacuum fluctuations. In our system, the
thickness of the center cantilever is 1μm and the typical separation in
our measurement is from 50 to 800nm. Under such condition, the
contribution from the nonadditivity is negligible compared to the sum
of the pair potential and hence we take the additivity approximation36.

Fig. 4 | Amplifying quantum-fluctuation-mediated energy transfer. a An extra
gain G is applied on cantilever 2 by feedback control together with parametric
modulation. b The signal on cantilever 1 (x1) is transmitted to cantilever 3 (x3) with
amplification. c The transduction ratio A3/A1 is shown as a function of modulation
frequency ωmod2 when the gain is on (red diamonds) and off (blue circles).ωmod1 is
on resonant for both cases.G is the gain coefficient on cantilever 2. Under the extra
gain, the damping rate of cantilever 2 becomes γ2 = γ20−G, where γ20 is the natural
damping rate. The cyan and magenta solid curve are the simulations. d The

vibrational amplitude A3 is shown as a function of amplitude A1 for three different
gain coefficients G. The parametric modulation is applied resonantly at the same
time. The green, magenta and blue solid line are the simulated results for three
different gain coefficients. e The ratio A3/A1 is shown as a function of modulation
amplitude δd1 for cases with gain, no gain, and off-resonant modulation.
δd2 = 1.42δd1. f The transduction ratio A3/A1 (blue circles) is shown as a function of
the extra feedback gain G applied on cantilever 2. The red solid curve is the
simulation.
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Under the thermal equilibrium, the force on the center cantilever can
be simplified as F2,C = − FC(d1, T) + FC(d2, T). Under the additivity
approximation, the force gradient between cantilever 1 and cantilever
2 is calculated by subtracting the force gradient between cantilever 2
and cantilever 3 from the total gradient experienced by cantilever 2, as
shown in Fig. 1d.

Experimental setup and force measurement
In the experiment, we use three modified AFM cantilevers to build the
three-terminal Casimir system. The left and right cantilever has a
dimension of 450× 50 × 2μm3. The center cantilever has a dimension
of 500 × 100 × 1μm3. Two 70-μm-diameter polystyrene spheres are
attached to the free end of the left and right cantilevers to create the
sphere-plate-sphere geometry. Additional 100-nm-thick gold layers
are coated on both the sphere and cantilever surfaces.

During the measurement, we use phase-lock loop to track the
resonant frequency in the presence of the Casimir interaction. Then
we can get the force gradient as dF

dx = � 2k δω
ω , where k is the spring

constant of the cantilever, δω is the frequency shift in the presence of
the interaction and ω is the natural resonant frequency. The
separation between each two surfaces is calibrated by the electro-
static force. The frequency shift due to the electrostatic force and the
Casimir force is Δω= � ω

2k
πϵ0R
x2 ½ðV ext � V cÞ2 +V 2

rms� � ω
2k

dFC
dx , where Vext

is the external voltage applied on the surface, Vc is the patch
potential,Vrms is the rms voltage fluctuations. dFC

dx is the force gradient
of the Casimir interaction at separation x. By measuring the fre-
quency shift of the cantilever for different external voltage Vext, we
can calculate the real separation between two surfaces. Our mea-
surements show that the contribution from the rms voltage fluc-
tuations is negligible compared to the Casimir force. After canceling
the contribution from electrostatic force, we can get the Casimir
force gradient. The Casimir force gradient can be integrated over
separation to obtain the Casimir force.

Casimir force coupling and energy transfer
Under a slowmodulation on cantilever 2, the separation between each
two cantilevers is time-dependent such that:

d1ðtÞ=d10 � δd1 cosðωmod1tÞ � δd2 cosðωmod2tÞ
+ x1ðtÞ � x2ðtÞ,

d2ðtÞ=d20 + δd1 cosðωmod1tÞ+ δd2 cosðωmod2tÞ
+ x2ðtÞ � x3ðtÞ:

ð5Þ

Here d10,20 is the equilibrium separation when there is no mod-
ulation applied, δd1,d2 is themodulation amplitude, andωmod1,2 are two
modulation frequencies. x1(t), x2(t) and x3(t) describe vibrations of
three cantilevers near their equilibrium positions. The motions of the
cantilevers follow equations:

m1 €x1 +m1γ1 _x1 +m1ω
2
1x1 = FC ðd1ðtÞÞ

m2 €x2 +m2γ2 _x2 +m2ω
2
2x2 = � FC ðd1ðtÞÞ+ FC ðd2ðtÞÞ

m3 €x3 +m3γ3 _x3 +m3ω
2
3x3 = � FC ðd2ðtÞÞ

ð6Þ

Herewegeneralize the displacements x1,2,3(t) to complex values z1,2,3(t)
such that x1,2,3(t) =Re[z1,2,3(t)]. We separate the fast-rotating term and
the slow-varying term for z1,2,3(t) such that:

z1,2,3ðtÞ=B1,2,3ðtÞe�iω1,2,3t , ð7Þ

where B1,2,3(t) is the slow-varying amplitudes and we can neglect their
second derivative terms €B1,2,3ðtÞ in the equations of motion. Under the
limit of the small damping rate of three cantilevers such that
γ1,2,3≪ω1,2,3 and the rotating wave approximation, the equation of

motion can written as:

i
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where Λ1,2 =
d2FC
dx2 ∣d10,20

δd1,2. We have applied the transformation such
that B0

1ðtÞ=B1ðtÞ, B0
2ðtÞ=B2ðtÞeiδ2t , and B0

3ðtÞ=B3ðtÞeiδ3t , where
δ2 =ω1 +ωmod1−ω2 and δ3 =ω1 +ωmod1−ωmod2 −ω3 are the system
detunings. Under the steady condition, _B1, _B2, and _B3 all equal to zero.
The vibration amplitude of three cantilevers A1,2,3 is the absolute value
of the slow-varying component so we have A1,2,3(t) = ∣B1,2,3(t)∣. In this
way, the ratio of A3/A1 is:

A3

A1
= ∣

B3

B1
∣= ∣

Λ1Λ2

4m2m3ω2ω3γ2γ3 +Λ
2
2

∣: ð9Þ

The vibrations of the three cantilevers can be quantized as pho-

nons. By introducing normalized amplitudes c1 =
ffiffiffiffiffiffiffiffi
m1ω1
_

q
B0
1,

c2 =
ffiffiffiffiffiffiffiffiffi
m2ω2

_

q
B0
2, and c3 =

ffiffiffiffiffiffiffiffiffi
m3ω3

_

q
B0
3, we obtain the equation of motion for

the phonon modes as:

i

_c1
_c2
_c3

0
B@

1
CA=

�i γ12
g12
2 0

g12
2 �i γ22 � δ2

g23
2

0 g23
2 �i γ32 � δ3

0
B@

1
CA

c1
c2
c3

0
B@

1
CA, ð10Þ

where g12 =
Λ1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2ω1ω2

p = d2FC
dx2 ∣d10

δd1
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2ω1ω2

p , and g23 =
Λ2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2m3ω2ω3

p =

d2FC
dx2 ∣d20

δd2
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2m3ω2ω3

p . Here we consider a special case that g12 = g23,

γ1 = γ3, and δ2,3 = 0. The eigenvalues of the Hamiltonian are:

λ1 = � i
γ1
2
,

λ2 = � i
γ1 + γ2

4
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g2

12 � ðγ1 � γ2Þ2
q

4
,

λ3 = � i
γ1 + γ2

4
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8g2

12 � ðγ1 � γ2Þ2
q

4
:

ð11Þ

When the coupling strength is large compared to the damping
difference such that ∣g12∣>

∣γ1�γ2 ∣
2
ffiffi
2

p , we have Imðλ2Þ= � γ1 + γ2
4 and hence

the steady state requires that:

γ1 + γ2 >0: ð12Þ

When the coupling strength is small compared to damping dif-

ference such that ∣g12∣<
∣γ1�γ2 ∣
2
ffiffi
2

p , we have Imðλ2Þ= � γ1 + γ2
4 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ1�γ2Þ2�8g2

12

p
4 .

The steady state requires that:

γ1 + γ2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ1 � γ2Þ2 � 8g2

12

q
>0: ð13Þ

Data availability
All other data that support the plots within this paper and other find-
ings of this study are available from the corresponding authors upon
request. Source data are provided with this paper.

Code availability
The custom codes that support the findings of this study are provided
with this paper.
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