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INTRODUCTION

An understanding of how human microbiomes interact 
with therapeutics is likely critical to the future of precision 
medicine to tailor therapies to an individual patient.1,2 
Variability in therapeutic responses in a population can 
lead to inadequate dosing and the potential for adverse 
drug reactions for many individuals taking many drugs.3 
Decades of pharmacogenetic research into drug efficacy 
and toxicity have uncovered genetic mechanisms that 
influence a patient’s variability in response to many ther-
apeutics.4–6 However, genetic factors themselves are in-
sufficient to explain all the interindividual variability seen 

in therapeutic response to a drug treatment.6 Human mi-
crobiomes, the collective microbes in and on the human 
body, are likely to exert effects on many drugs and also 
to be affected by many drugs. Thus, understanding these 
relationships between therapies and microbiomes are 
likely to be fruitful in uncovering additional variability 
in drug response and thus, delivering precision medi-
cine2 (Figure 1). For example, indices of the microbiome, 
such as diversity of species7 or presence of specific taxa or 
microbial genes,8 have the potential for utilization as an 
indicator of efficacy9 or adverse drug reaction risk prior 
to drug therapy.10 Pharmacomicrobiomics, a term first 
coined in 2010, refers to the investigation of how variation 
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Abstract
Pharmacomicrobiomic studies investigate drug-microbiome interactions, such 
as the effect of microbial variation on drug response and disposition. Studying 
and understanding the interactions between the gut microbiome and drugs is 
becoming increasingly relevant to clinical practice due to its potential for avoid-
ing adverse drug reactions or predicting variability in drug response. The highly 
variable nature of the human microbiome presents significant challenges to as-
sessing microbes’ influence. Studies aiming to explore drug-microbiome interac-
tions should be well-designed to account for variation in the microbiome over 
time and collect data on confounders such as diet, disease, concomitant drugs, 
and other environmental factors. Here, we assemble a set of important consid-
erations and recommendations for the methodological features required for 
performing a pharmacomicrobiomic study in humans with a focus on the gut 
microbiome. Consideration of these factors enable discovery, reproducibility, and 
more accurate characterization of the relationships between a given drug and 
the microbiome. Furthermore, appropriate interpretation and dissemination of 
results from well-designed studies will push the field closer to clinical relevance 
and implementation.
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in a patient’s microbiomes relates to a patient’s response 
to therapeutics11 and has the potential to shed light on 
uncharacterized inter-patient observed variability in both 
efficacy and toxicity of drug therapy.

Investigating drug-microbiome relationships in hu-
mans poses many technical challenges that must be 
thoughtfully considered to collect the most clinically 
relevant, generalizable data, and capture the inter- and 
intra-patient variability of the microbiome in question. 
For example, human microbiomes’ influence on drug re-
sponse is a burdensome research question due to variation 
in a microbiome’s composition both temporally and be-
tween individuals. A microbiome experiences fluctuations 
in response to genetic influences,12 lifestyle choices,13 
and environmental forces,14 and all these factors make 
up a unique microbial signature for an individual. In 
this review, we will focus on pharmacomicrobiomics of 
the human gut microbiome, first introducing previously 
described gut pharmacomicrobiomic relationships. We 
then discuss methods and considerations for designing a 
human pharmacomicrobiomics study, investigating the re-
lationship between the gut microbiome and drug response 
variability, with a focus on the oral route of administra-
tion. We focus on the gut microbiome because it has a high 
propensity to affect oral drug therapy during metabolism 

and is a logical starting point to uncovering the utility of 
investigating a microbiome for drug response variability. 
We consider the myriad of decisions an investigator must 
make, from inclusion criteria to statistical analysis, to de-
sign a rigorous pharmacomicrobiomic clinical study that 
can adequately account for potential confounders.

THE GUT MICROBIOME HAS 
DIRECT AND INDIRECT EFFECTS 
ON DRUG THERAPY

Through mechanisms, such as biodegradation, activation, 
potentiation, and competition, microbes can directly af-
fect drug pharmacokinetics.15 Microbes can participate 
directly in drug activation and inactivation by biotrans-
forming drugs into secondary metabolites.15 For example, 
the chemotherapeutic irinotecan is reactivated by intesti-
nal microorganisms back into a toxic metabolite contrib-
uting to dose-limiting gastrointestinal side effects of the 
drug.10

Indirectly, microbes can influence drug response 
by producing microbial metabolites that interfere with 
host signaling pathways and gene expression. For exam-
ple, paracetamol (acetaminophen) is indirectly affected 

F I G U R E  1   Translational pharmacomicrobiomics. With careful study design, pharmacomicrobiomics datasets will be invaluable in 
uncovering drug response heterogeneity that may or may not be useful in clinical prediction. Through biopsy or stool sample collection, the 
microbiome can be surveyed through the metagenome (DNA), metatranscriptome (RNA), metametabolome (metabolites), metaproteome 
(proteins), and an ever-increasing amount of biological data. Typical analyses include profiling communities for their species and functional 
potential, and creating networks to uncover relationships hidden in the expansive data.
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by the microbial metabolite p-Cresol. Individuals with 
high levels of p-Cresol are at an elevated risk of hepato-
toxicity due to poor metabolism of the drug.16 Further, 
changes in the composition of the gut microbiome can 
lead to a variation in drug response.17,18 A typical ex-
ample of this is seen with the drug digoxin, which will 
produce an unwanted side effect if the gut microbiome 
contains a specific gene encoded by Eggerthella lenta.8 
These examples of microbes, directly and indirectly, af-
fecting drug therapy demonstrate a need for studies to 
understand drug-microbiome interactions in order to 
safely deliver therapeutics.

Therapeutics effect the gut microbiome

Orally ingested drugs will pass through the gastrointesti-
nal tract where they encounter the gut microbiome and 
its inhabitants. Some drugs modify bacterial growth or 
metabolism, thereby changing the gut microbiome’s over-
all composition and function. For example, the effects of 
antibiotic therapy on the gut microbiome are well-studied: 
antibiotics deplete bacteria, often selectively, and reduce 
important bacterial metabolites, such as short-chain 
fatty acids and secondary bile acids.19,20 These antibiotic-
induced changes, called dysbiosis, in the gut microbiome 
can increase infection susceptibility, compromise im-
mune homeostasis, and deregulate metabolism.20

Outside of antibiotics, studies are beginning to report 
the pharmacodynamic relationships of commonly used 
drugs with aspects of the gut microbiome, mainly focusing 
on how drugs impact the growth of bacterial species.21–24 
A high-throughput drug screening study found that nearly 
25% of drugs inhibited the growth of at least one represen-
tative gut bacterial strain in vitro.22 Beyond depletion of 
the microbiome, drugs can influence the diversity of spe-
cies present in a microbiome. Two extensively described 
examples of the impact of drugs on the diversity of the 
gut microbiome are proton pump inhibitors (PPIs)23 and 
metformin.24 Weakened function of the gastric mucosal 
barrier leaves PPI users at high risk of gastroenteritis in-
fection and bacterial overgrowth in the small intestine.25 
Metformin treatment significantly benefits microbial en-
vironments by increasing the abundance of Escherichia 
spp. and decreasing the abundance of Intestinibacter.24

Because drugs have been shown to disturb the gut 
microbiome through multiple pathways, more thorough 
investigations into gut-microbiome associations will be 
necessary to determine mechanisms of these pharma-
comicrobiomic interactions. Additionally, future research 
may uncover drugs responsible for microbiome perturba-
tions and drugs exhibiting response variability due to mi-
crobiomic indices that remain unknown.

CLINICAL STUDY DESIGNS 
FOR PHARMACOMICROBIOMIC 
INVESTIGATIONS

Ideal studies in human systems biology longitudinally 
collect information on participants, such as diet, lifestyle, 
presence of disease, and use of drugs, while incorporat-
ing multiple “omics” data sources, such as information on 
the genome, transcriptome, proteome, and metabolome. 
The incorporation of “meta’omics” allows investigators 
to visualize a comprehensive picture of the host and the 
microbiome in question. A benchmark feat in microbi-
ome research is the Human Microbiome Project (HMP), 
which collected stool samples longitudinally from healthy 
and diseased individuals.26 Additional large biobanks that 
capture gut microbiome data have been established, such 
as the LifeLines-DEEP cohort27 and UK Biobank.28 These 
large-scale collaborative projects have provided a founda-
tion for our understanding of host–microbe interactions 
in health, disease, and drug therapy. Extensive funding 
requirements make comprehensive multi-institutional 
research endeavors not particularly feasible for many re-
search groups. Thus, we discuss the advantages and dis-
advantages of study designs that can be implemented in 
discrete hypothesis testing clinical pharmacomicrobiom-
ics studies. Because pharmacomicrobiomic data have not 
yet been collected in most cases, we focus our attention on 
prospective studies in this review.

Accounting for temporal changes in the 
gut microbiome

To examine inter- and intra-patient variability in the re-
lationship between the gut microbiome and clinical drug 
outcomes, longitudinally observing patients is ideal. For 
example, warfarin doses, in some patients, change contin-
ually and capturing this variability along with microbiomic 
variability at multiple timepoints is likely to provide addi-
tional insights over a cross-sectional approach. However, 
cross-sectional studies may still capture microbiomic vari-
ability, especially given stark differences across groups of 
prescription medicine users. Cross-sectional studies in-
vestigating microbiome-drug interactions have one major 
limitation: they do not account for the natural variance 
of the gut microbiome over time. Some studies have re-
ported that higher levels of bacterial taxa (i.e., phyla and 
class) are stable over time,29,30 thus, cross-sectional stud-
ies may be sufficient to capture the between-participant 
differences in the microbiome if species level variance is 
less important.

Longitudinal study designs, on the other hand, are ca-
pable of investigating temporal relationships and provide 
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a way to study not only variability seen between individ-
uals (inter-)31 but also variability within a single person 
(intra-),32 both of which exhibit high variability in species 
level composition. The number of repeated measurements 
needed for your longitudinal analysis will largely depend 
on the necessary power and changing environmental in-
fluences, whereas the length of time needed between 
measurements depends largely on the variability in the 
therapy being studied.33 Ideally, the time between sam-
ples will be uniform among participants, but this will be 
primarily determined by the drug and outcome of inter-
est. In longitudinal studies, dropouts will need to be pre-
emptively accounted for during recruitment and a plan 
will need to be implemented for missing data in the anal-
ysis phase. Both cross-sectional studies and longitudinal 
studies can be used to investigate the association of the 
gut microbiome with drug response; longitudinal studies 
may answer more questions but costs may limit the scope 
of the investigation.

To intervene or observe?

Along with choosing whether a longitudinal or cross-
sectional approach will be applied, deciding if an inter-
ventional or observational study design will be used is 
a big step in designing a pharmacomicrobiomic study. 
Interventional studies are useful for evaluating the ef-
fectiveness of an intervention, such as drug therapy. 
Randomized control trials (RCTs) remain the gold stand-
ard of causation studies and an important step in imple-
mentation of new drugs and clinical approaches. Unlike 
genetic variation, pharmacomicrobiomic variation may be 
perturbed by drug therapy, dietary interventions, probiotic 
replacement, fecal transplants, and many other clinical in-
terventions. As a corollary, a myriad of RCTs have been 
performed evaluating the effect of interventions directed 
at changing microbial composition in efforts to improve 
disease.34–37 However, RCTs are often exclusive and not a 
reflection of real-world situations where a patient’s daily 
activities are not in controlled conditions.38,39 For instance, 
a controlled diet among participants would be desired in 
an RCT in order to avoid confounding effects of diet on 
the microbiome. Because of these controlled conditions, 
RCTs may overestimate the effect of an intervention in the 
general population. Importantly, in pharmaceutical stud-
ies, RCTs may be confronted with ethical issues as we may 
not be able to administer the drug-of-interest in a healthy 
population and, conversely, may not be able to restrict the 
drug of interest in a population. Although RCTs may not 
be a requirement prior to clinical translation of pharmac-
omicrobiomics, they remain essential to assigning causa-
tion to our findings. Observational studies are often the 

principal avenue for observing patients long-term, when 
investigating rare effects, or in cases where RCTs would 
be unethical or unfeasible. As opposed to interventional 
studies, observational studies are generally less expen-
sive and typically require less time to be carried out. 
Observational studies are more likely to reflect real-world 
situations that can be generalized to broader populations 
with available data. Case–control studies are able to con-
trol for a multitude of confounders and the assessment of 
multiple exposures. However, as an individual’s microbi-
ome is highly specific, it can be challenging to match case 
and control individuals, leading to a lower power to detect 
true effects.40 Crossover study designs may also be imple-
mented, where a patient is exposed to both conditions and 
may serve as their own control. Whereas a crossover study 
design is a robust way to account for confounders, it is not 
always feasible if patients have a clinical indication for the 
drug of interest.

Although no study design fits all potential investiga-
tions into the effects of the microbiome on human health, 
some important considerations can be used to inform re-
searchers regarding the most appropriate study design. 
Prospective cohort studies afford the ability to control for 
multiple confounders, sample the microbiome at multi-
ple timepoints, and explore various outcomes but can be 
time-intensive and costly. Interventional prospective stud-
ies, such as RCTs, offer the potential benefits of assess-
ment of causation and enabling rapid clinical translation. 
Cohort studies are also susceptible to selection bias, infor-
mation bias, and confounding from variables that are not 
prospectively captured.41 If patients are able to complete 
study procedures both on and off of drug treatment, a 
crossover design would likely be the optimal study design 
to account for intra-patient variation in a pharmacomicro-
biomic analysis. When choosing the type of observational 
study to implement, one must consider the time, effort, 
and financial support available to choose the best fitting 
design appropriately.

DETERMINING THE STUDY 
POPULATION FOR A 
PHARMACOMICROBIOMIC 
INVESTIGATION

Choosing the appropriate study population is vital to the 
success of the research in answering the question at hand. 
Due to the unique nature of a pharmacomicrobiomics 
study in its need for a medication-taking population and 
access to representative gut microbiome samples, there 
are essential questions to consider when selecting a target 
population for a pharmacomicrobiomic study. Here, we 
consider two critical aspects of subject recruitment in a 
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pharmacomicrobiomic study, (1) inpatient versus outpa-
tient and (2) inclusion/exclusion criteria.

Inpatient or outpatient, does it make a 
difference?

Gut microbiome sampling may be more easily performed 
in an inpatient population due to easy access to patient 
bowel movements or the ability to collect an intestinal bi-
opsy, as well as close monitoring and stability of daily diets 
and adherence to drug dosing schedules. Despite this ben-
efit, observational studies of outpatient medication users 
may provide more generalizable information about those 
users rather than inpatient care, which itself can affect the 
gut microbiome. Additionally, outpatient studies mimic 
real-world scenarios that are not necessarily apparent 
when conducting inpatient research, such as medication 
adherence. Some drugs, such as those that require thera-
peutic drug monitoring or are given via nonoral routes of 
administration, may also dictate the use of outpatient or 
inpatient populations, respectively.

Considerations for exclusion and 
inclusion criteria

Robust data will need to be collected to account for 
variables confounding the relationship of the microbi-
ome and drug therapy. There are significant effects of 

age, disease, and medication-use on the microbiome 
that should be considered when determining a study’s 
exclusion criteria (Table  1). Infants and children have 
been shown to have rapid changes to their gut microbi-
ome, and elderly patients experiencing frailty display a 
marked decrease in microbial diversity, thus, including 
these age groups when investigating a general popula-
tion may bias results.42 Regardless, if the indication of 
the drug designates the age of the study population, 
accounting for the effects of age on the microbiome, 
will be important. Exclusions related to disease his-
tory should also be assessed because numerous diseases 
are associated with microbiomic fluctuations. Diseases 
with known relationships with the gut microbiome in-
clude inflammatory bowel disease,43,44 psychological 
disorders,45 autoimmune disorders,46,47 cardiovascular 
diseases,48 and various cancers.49–51 When choosing 
which diseases to exclude from a target population, it 
is advisable to assess which diseases must be excluded 
as to still represent the target population and obtain a 
sufficient sample size. Finally, some drugs dramatically 
change an individuals’ microbiome and should be con-
sidered when deciding on exclusion criteria. Antibiotics 
are well-studied and linked to the gut microbiome’s dep-
rivation, with variability in the microbiome’s recovery 
time among individuals. Unless antibiotics are the drug 
of interest, it may be useful to delay study recruitment 
for those who have recently been prescribed antibiot-
ics. It is suggested that the microbiome can return to its 
pre-antibiotic state after 4 weeks, but several bacteria 

T A B L E  1   Factors to consider in population recruitment for a pharmacomicrobiomic analysis

Factor Finding Recommendation

Aging

Adulthood Temporal stability30 Consider selecting an age range, take multiple 
measurements if not studying adults

Frailty Reduced diversity of core microbiota42 Consider setting a maximum age for enrollment 
or studying an older population separately

Antibiotic use Compositional changes (i.e., decreased 
Bacteroides52)

Consider a minimum time since antibiotics of at 
least 4 weeks

Concomitant medications

Metformin Compositional differences (i.e., increased 
Akkermansia muciniphila24)

Collect medication history information

Proton pump inhibitors Stark compositional differences (i.e., increased 
Streptococcaceae23)

Collect medication history

Diet The microbiome adapts to a participant’s diet58 Obtain dietary records/recalls or utilize 
standardized meal plans

Medical conditions

Inflammatory bowel diseases Loss in species diversity43,44 Collect medical history, consider exclusion

Cancer Dysbiosis compared to healthy controls49,50 Collect medical history, consider exclusion

Autoimmune disease Dysbiosis compared to healthy controls46,47 Collect medical history, consider exclusion
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have been shown to be depleted for up to 6 months.52 
Apart from antibiotics, other drugs, such as PPIs25,53 
and metformin,54 have been shown to affect the gut mi-
crobiome of users and may be considered as exclusion 
criteria when necessary for the phenotype of interest. 
Numerous additional confounders are likely to exist 
in studies of the gut microbiome, such as pets in the 
house55 and mode of birth,14 and should be evaluated 
when sample sizes permit.

CONSIDERATIONS FOR DATA 
COLLECTION

Careful data collection will be pivotal to discerning a rela-
tionship between the gut microbiome and drug response. 
In addition to collecting gut microbiome data, we suggest 
prioritizing data related to the patient’s diet and concomi-
tant drugs. Within each of these data subsets, we discuss 
options available to researchers and how different meth-
ods compare in the context of a pharmacomicrobiomic 
study.

Collecting patient dietary data

Diet has a significant effect on the composition of the 
gut microbiome and thus is important to capture.56,57 
For example, diets high in animal products (low-fiber 
and high-fat) have been shown to promote growth of 
bile-tolerant microorganisms.57 In comparison, plant-
based diets have shown an elevated abundance of 
polysaccharide-digesting microorganisms.56 Further, 
the microbiome can change rapidly due to the effects of 
diet, with a study showing that dietary alterations can 
induce large species-level microbial shifts within 24 h.58 
Dietary habits can be either prescribed during study 
involvement or statistically accounted for by rigorous 
collection proximal to sampling the microbiome. If an 
inpatient study design is applied, controlling or stand-
ardizing diet may be useful to minimize the confound-
ing effects of diet. In an outpatient setting, data should 
be collected to account for the variation in study partici-
pants’ diets. An outpatient study design may also seek to 
decrease diet variability by providing a predetermined 
diet for study participants, however, predetermined 
diets have also shown to decrease microbiome biodi-
versity,59 which may lead to non-generalizable results. 
Administering all study participants’ a controlled diet 
is particularly important to avoid confounding in RCTs. 
Because controlling for, through scheduled diets or sta-
tistical tools, variation in the gut microbiome due to diet 
is necessary, dietary assessments are an essential tool.

Dietary records, food frequency questionnaires, and 
24-h dietary recalls are open-ended surveys that collect 
a variety of detailed information about food consumed 
over a predetermined period of time.60 In the dietary re-
cord approach, the respondent records foods and bev-
erages and the amounts of each consumed over 1 or 
more days at the time of consumption, thus not relying 
on the participant’s memory. The dietary record method 
can provide quantitatively accurate information on food 
consumed during the recording period. In a 24-h dietary 
recall, each respondent is asked to remember and report 
all consumed foods and beverages in the preceding 24 h 
or on a preceding day. Validated 24-h dietary recall sur-
veys are useful for generating high-quality dietary data 
and are considered the preferred tool for studying diet-
related associations. The National Cancer Institute has 
developed a free, web-based tool that enables multiple, 
automatically coded, self-administered 24-h diet recalls 
and single or multiday food records. The Automated 
Self-Administered 24-h food recall survey (ASA24) is a 
reliable method to complete a dietary assessment that 
accurately approximates dietary food intake.61 To assess 
long-term dietary intake, food frequency questionnaires 
are often used as they can be developed uniquely for 
each study. A food frequency approach asks respondents 
to report their usual frequency of food consumption 
from a list of foods for a specific period. The purpose of 
a food frequency questionnaire is to obtain a crude es-
timate of the usual total daily intakes over a designated 
time period. When deciding to use a food frequency or 
24-h food recall survey, barriers to participation need to 
be assessed. The ASA24, for example, which relies heav-
ily on access to and knowledge of technology, may be 
prohibitive for some individuals. Any option, unfortu-
nately, is prone to missing data and incomplete records, 
however, minimal research has been done into appro-
priate handling of this missingness.62 Because a study 
participants’ diet is the fuel for the microbes in their gut, 
understanding what the participants eat is essential.

Data related to medication use and  
adherence

Both medication adherence and concomitant medica-
tions have the potential to confound a pharmacomicro-
biomic analysis. Not only do many medications have an 
effect on the microbiome, but there are also drug–drug 
interactions that should be considered. Further, a par-
ticipant on multiple medications makes drawing con-
clusions on the microbiome’s relationship with one drug 
difficult, particularly if therapy fluctuates. As discussed 
above under determining the study population, many 
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medications have been shown to interact with the gut 
microbiome through direct and indirect mechanisms. 
It will be valuable to collect information on concomi-
tant drug use and statistically control for use of these 
medications as they may skew study results related to 
the microbiome.

Drug nonadherence will also skew results or lead to an 
inability to find true relationships in the data during anal-
ysis.1 Direct measures of drug adherence (e.g., measuring 
drug metabolites in blood) can be the best route for track-
ing a patient’s medication adherence but have a downside 
of being costly to implement and not always feasible in 
outpatient studies. Subjective or indirect adherence mea-
sures, which include patient-clinician reports and self-
reported adherence surveys, are simple and less costly 
than direct measure. We refer the reader to a review of 
self-report measures of drug aherence.63 Surveys of both 
concomitant drug use and target medication adherence 
will allow control over drug-related confounding of phar-
macomicrobiomic results.

CAPTURING THE MICROBIOME

Appropriate sampling of the microbiome will be central 
to any pharmacomicrobiomic study. Both sampling meth-
ods and DNA isolation have been shown to affect bacterial 
composition.64 Further, anaerobic bacteria cannot survive 
outside of the gut making capturing the true state of a mi-
crobiome difficult.65 Thus, sampling the gut microbiome 
presents a significant challenge. Although we will not dis-
cuss the methods in DNA isolation here, below we discuss 
sampling and sequencing methods of the gut microbiome 
in-depth. Please see Lim et al. for an evaluation of popular 
DNA extraction protocols.66

Sampling methods

There are two popular methods in which gut microbial 
information can be collected: biopsy or stool sample.67 A 
biopsy may represent the most accurate picture of the gut 
microbiome and can more easily be performed in inpa-
tient studies and via routine colonoscopy. However, be-
cause colonoscopies typically use high potency laxatives 
prior to the procedure, the gut microbiome can become 
disrupted and depleted.68 Additionally, biopsies are inva-
sive, expensive, and require a medical professional, thus, 
this section will focus on the benefits and drawbacks of 
stool sample collection and major stool sample collection 
methods. No matter which sample collection method is 
used, the golden rule of all methods is to avoid tempera-
ture fluctuations.

Stool samples are often used as representative proxy 
samples from the gut microbiome. Whereas stool sam-
ples are abundantly available for all patients, sample 
collection can be challenging due to sample degradation 
as well as patient comfort and compliance. One study 
found that stool collections pose high barriers to pa-
tient participation due to concerns related to hygiene, 
contamination, discretion, and lack of information.69 
Providing sterile gloves and sufficient patient educa-
tion, and choosing a collection method that allows for 
discrete sampling will help reduce barriers to stool sam-
ple collection.69 There are several options for collecting 
stool samples that involve immediate cooling, the use of 
a stabilizing mechanism, or minimal sample collection 
(Table 2) and are discussed below.

Flash-freezing and refrigerating are recommended 
in any stool sample collection method in order to try 
to preserve the microbial signature and DNA.70 Lower 
temperatures limit the proliferation of bacteria and 
can bridge the time between collection and process-
ing.71 Flash-freezing has been shown to produce the 
least change in microbiomic samples, however, it is 
problematic in terms of batching samples, and the 
time from sample collection to flash freezing depends 
largely on patient proximity to flash freezing equipment. 
Refrigerated samples, alternatively, need to be processed 
within 24 h. However, even if the sample is kept cold, 
bacteria in the sample that thrive at refrigeration tem-
peratures will proliferate.71 Although immediate cooling 
methods have been shown to produce the most reliable 
microbiome data, stabilizing methods may reduce the 
researchers’ and study participants’ burden.

Stool collection methods with mechanisms for sta-
bilizing the sample may be desired to reduce bacterial 
shifts and are particularly useful in outpatient stud-
ies. A stabilizing solution allows study participants to 
collect samples in the privacy of their own home and 
discreetly ship samples to the laboratory. One popular 
stabilizing solution system is DNAgenotek’s Omnigene 
GUT•200 (DNA Genoteck), which is a simple to use sys-
tem that stabilizes the stool at room temperature for up 
to 60 days.72 Studies have shown no significant changes 
in microbial composition or alpha diversity with the 
Omnigene system, compared to flash-frozen sam-
ples.71,73 Other stabilizing solutions include RNALater 
and 95% ethanol. With these solutions, samples are 
collected in a container and submerged into an RNA 
stabilization reagent and are stable for up to 7 days at 
room temperature with minimal shifts in diversity.74 
RNA stabilization comes with limitations, such as time 
stable at room temperature, need to remove RNAlater 
before downstream methods, and yield and quality of 
DNA when compared to other stabilizing methods. The 
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95–99% ethanol comes with its own limitations, such as 
stability for 48 h at refrigerated temperature and special 
shipping requirements because ethanol is a flammable 
liquid.

Methods of stool sampling that require only a min-
imal sample amount are fecal swabs and fecal occult 
blood tests.75 Swab and card methods reduce deviations 
from the original sample and require little effort from 
the study participant. Swabs are as simple as dipping 
the swab into the stool and storing it into a tube with 
solution. Nucleic acid stabilizing cards are another min-
imal collection method that stabilizes DNA and RNA 
by trapping nucleic acids in a fiber matrix; this method 
yields low amounts of DNA and increases contamina-
tion risk.75 These two minimal methods require modi-
fied DNA extraction methods due to the small amount 
of stool collected.

Shotgun or amplicon sequencing

Identification and characterization of the microbes in-
habiting the gut is a significant focus of pharmacomi-
crobiomic research. Sequencing the human microbiome 
provides vital insights into bacterial community struc-
ture and diversity. There are two main ways to survey 
the microbes in the gut microbiome with DNA: (1) am-
plicon sequencing (16S sequencing) and (2) shotgun 
sequencing (metagenomics). Review papers by Ranjan 
et al.76 and Jovel and Patterson et al.,77 have in-depth 
summaries of the benefits and drawbacks of choosing 
16S or shotgun sequencing. Briefly, amplicon sequenc-
ing uses the 16S ribosomal gene that exists in all bacteria. 
This gene has regions throughout that are highly varia-
ble between species. The conserved and variable regions 
in the 16S gene differentiate between bacterial genera, 
and uniquely tag bacteria such that filtering human se-
quences from a biosample is straightforward. The 16S 
sequencing is a cost-effective solution to surveying gut 
bacterial communities with a fast turnaround of results 
(i.e., straightforward computational analysis). If re-
searchers are interested in the entire microbiome, how-
ever, shotgun sequencing surveys the entire genome of 
all the organisms present in a sample, including human, 
viral and fungal DNA.76 Shotgun sequencing offers the 
ability to detect species of organisms in the microbiome 
to a much higher resolution and reveal the genes that 
potentially influence the phenotype, whereas 16S se-
quencing provides information on the 16S gene alone. 
The appropriate sequencing methodology depends 
mainly on the specific research question. Questions re-
garding presence or absence of bacterial genera can be 
answered with 16S sequencing but questions regarding 

specific genes or species will only be answered with 
shotgun sequencing.

Beyond bacterial genomes

Understanding the gut microbiome and its influence on 
drug variability will often require a multi-meta-omics 
approach. Multi-meta-omics combines multiple “omes” 
such as the metagenome, metaproteome, metatranscrip-
tome, and metametabolome to study a complex outcome 
holistically. The ability to use this type of approach is pri-
marily defined by the method of gut microbiome sampling 
(Table  2). Although metagenomics is a useful tool for 
identifying microbes in the gut, it only provides informa-
tion about genetic signatures that have the potential to be 
expressed, not what is actually being expressed in the cell. 
Applying multiple meta-omics techniques can character-
ize functional pathways and how they are impacted by or 
impact drug therapy.

Metatranscriptomics use sequences of RNA to identify 
repressed or enhanced gene activity.78 High-quality RNA 
is needed for metatranscriptomic analyses, which can be 
difficult due to RNases in stool and general RNA insta-
bility. Highly expressed transcripts will be overinflated 
and could obscure the detection of rare, functionally im-
portant transcripts. Not all transcripts are translated into 
proteins, thus, evaluating proteins in a stool sample can 
provide insight into what the microbiome is doing func-
tionally. Proteins are typically analyzed through mass 
spectrometry and there are reviews on the analysis of such 
information. Metaproteomics, analyzing all the proteins 
in a microbiome, may capture additional information on 
top of metatranscriptomics. Metaproteomics, however, is 
challenging due to the instability of proteins, the fact that 
only 10–20% of expressed proteins will be captured, and 
the issue of supersaturation of abundant proteins from 
inflated gut microbes.79 Finally, the metabolome mea-
sures metabolites from both the host and microbiome. 
Pharmacometabolomic studies, in theory, could report 
pharmacokinetic drug responses alongside the creation 
of a prediction model that includes metabolite mark-
ers.80 With the implementation of multiple meta-“omic” 
approaches, genes to functional pathways can be inter-
rogated to understand the microbiome’s role in drug re-
sponse variability.

ANALYSIS OF 
PHARMACOMICROBIOMIC DATA

Quality control methods used and analyses conducted 
depends on the type of sequencing performed. The most 
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popular tool for 16S studies is QIIME2.81 This program 
untangles sequence data into discrete units called opera-
tional taxonomic units, which are then taxonomically as-
signed using reference databases, such as Greengenes or 
SILVA.82,83 As previously stated, the analysis of metagen-
omic data is computationally intensive. Perhaps most 
important, shotgun metagenomic sequencing requires 
preprocessing to remove host DNA sequences. Shotgun 
data can then be compiled with tools, such as Kraken84 and 
HUManN2,85 to generate taxonomic and functional pro-
files through steps such as assembly, binning, and align-
ment. Even if all other factors are held constant, results 
will vary with different analytic methods and programs. 
Thus, it is exceeding important to create thorough docu-
mentation of your quality control and analysis methods.

For both sequencing methods, higher-level analyses, 
such as describing diversity, are used to evaluate patterns 
of variation prior to downstream analyses. Diversity is a 
measure of both richness, how many different species are 
in a sample, and their abundance, how much of each spe-
cies is in the sample. The microbiome can be described 
in terms of alpha and beta diversities. Alpha diversity can 
be thought of as the variance within-subjects. There are 
three main indices to examine this relationship: CHAO1 
index,86 Simpson diversity index,87 and Shannon diversity 
index,88 each with its strengths and limitations. Beta di-
versity, on the other hand, is how patient samples differ 
or are similar between each other. Beta diversity can be 
calculated and visualized by four main methods: Bray-
Curtis dissimilarity,89 UniFrac distances,90 and Principal 
Coordinates Analysis (PCoA).91 Both types of diversity 
indices consider two aspects: how many organisms are 
present in the sample and their abundances. Alpha and 
beta diversities can be inferred from both cross-sectional 
and longitudinal studies; however, longitudinal analysis 
holds the advantage of being able to study beta diversity 
between samples from one patient.

Statistical analyses of community 
composition

Pharmacomicrobiomic studies have three main investiga-
tive components: host, drug therapy, and microbiome. We 
can think about testing associations between these vari-
ables as three separate testable hypotheses. First, testing 
an association between the host and drug therapy, which 
will not change from other biomedical research questions 
involving the host and an intervention. Second, testing the 
association between the microbiome and the host, which 
will answer questions regarding the composition of the 
microbiome and phenotypic variability. Third, testing 
the association of drug response variability on a specific 

microbiome composition. Here, we will focus on the lat-
ter two types of hypotheses. Although these two types of 
hypotheses ask different questions, they may both investi-
gate various components of the microbiome, such as spe-
cies richness or evenness, alpha diversity, total number 
of reads, or phylogenetic diversity. For example, if we hy-
pothesize that warfarin has antibacterial effects, we may 
wish to investigate the total number of reads of treated 
versus untreated patients. If we hypothesize that the gut 
microbiome effects stable warfarin dose, we may wish to 
investigate alpha diversity among low and high warfarin 
responders.

Many common tests are appropriate for analyzing the 
microbiome. We may use a t-test or the corresponding 
nonparametric test, for example, to investigate differences 
between alpha diversities of experimental groups. The 
analysis of the human gut microbiome is complexified, 
however, by numerous advanced statistical features. The 
data are (1) compositional (parts of a whole), (2) high di-
mensional (data with many columns), (3) overdispersed 
(highly variable in read count), and (4) sparse with many 
zeros (many taxa have a zero read count).92 Thus, we may 
choose to use more advanced statistical models, such as 
a negative binomial model or zero-inflated negative bino-
mial to account for the excess zeros and overdispersion. 
Further, if longitudinal studies are used, repeated mea-
sures analyses, such as general linear mixed models or 
generalized estimating equations, will be required to as-
sess changes in a response variable over time. Although 
classical tests may be appropriate, advanced models will 
account for more features of the data.93 As statistical anal-
ysis of the gut microbiome is increasingly challenging, we 
refer the reader to Statistical Analysis of Microbiome Data 
with R, by Xia, Sun, and Chen, for an in-depth review of 
analyzing microbiome data.92

Bioinformatic pipelines and R packages are central 
to microbiome analyses. QIIME94 and mothur95 are two 
comprehensive bioinformatics pipelines with copious 
documentation for the analysis of metagenomic as well as 
16S amplicon sequencing data. Additionally, R packages 
can be repurposed from other fields to aid in microbiome 
analyses. DESeq2,96 and edgeR,97 for example, were devel-
oped to analyze transcript data and are useful in handling 
the overdispersed data of the gut microbiome.

CONCLUSIONS

The microbiome is providing pharmaceutical research-
ers with new insights into the mechanisms of variability 
in drug response, which allows for increases in drug ef-
ficacy and the potential to lower drug toxicity. Although 
large cohorts have been assembled to investigate 
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pharmacomicrobiomic relationships, independent stud-
ies are necessary to answer specific questions, such as 
how does one’s microbial signature effect the dosing of 
a drug of interest or how does a metabolite produced 
in the gut interfere with a drug’s mechanism of action. 
Studies investigating pharmacomicrobiomic associa-
tions are challenging due to the many confounding vari-
ables, the number of methodological options available 
to researchers, and the advanced statistical methods 
required for analysis. We recommend first deciding on 
which sequencing method will be appropriate to answer 
the research question because it may determine the 
sampling method that will be used and will influence 
analyses that can be performed. Further, we recom-
mend choosing as many exclusion criteria as feasible to 
still achieve a reasonably representative study popula-
tion. Finally, we recommend researchers consider the 
advanced features of the microbiome when performing 
statistical analyses to decrease bias in results. Here, we 
provide a resource for researchers to aid in designing a 
pharmacomicrobiomic study that includes multiple rig-
orous options for each step of the study design process, 
helping weigh the benefits and drawbacks of the numer-
ous currently available approaches.
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