Skip to main content
. 2022 Sep 2;3:292–305. doi: 10.1016/j.jvssci.2022.08.001

Table I.

Overview of Preclinical data of high-intensity focused ultrasound (HIFU) in occlusive and thrombotic arterial disease

Author(s) Year Model Device name Proposed mechanism of action Available specs Clinical application
Effect on arterial plaque and arterial wall
 Shehata et al30 2013 Swine Imasonic Dual-Mode US Array (Voray sur l’Ognon, France) Thermal Frequency: 3.5 MHz, 64-element phased array transducer with fenestrations, through which 10 MHz transducer is applied
Intensity: 4100-5600 W/cm2
Pulse length: 250-2000 ms
Disruption of atherosclerosis in swine PAD model, accompanied by aggregates of lipid laden macrophages with necrosis. No endothelial damage was noted
 Nazer et al50 2015 Sprague Dawley rats (PAD) Duolith SD1 (Storz Medical, Tagerwilen, Switzerland) Biomechanical Frequency: 1.054 MHz
Intensity: 0.1 mJ/mm2
Increase in angiogenesis in hindlimb ischemia model for PAD
 Lu et al51 2016 Diabetic C57BL./6J mice Custom transducer (Institute of Acoustics of Tongji University, Shanghai, China) Biomechanical Frequency: 1 MHz
Intensity: 0.3 W/cm2
Increased perfusion in hindlimb ischemia model for PAD accompanied by increased angiogenic factors, antiapoptotic factors, capillary density
 Wang et al52 2017 ApoE–/– Mice Custom transducer (Harbin Institute of Technology, Harbin, China) Biomechanical Frequency: 1 MHz
Intensity: 0.1-0.4 W/cm2
Inhibition of atherosclerosis via reduction of LDL oxidation
 Sun et al53 2019 New Zealand white rabbits, ApoE–/– mice Custom transducer (Harbin Institute of Technology, Harbin, China) Biomechanical Frequency: 1 MHz
Intensity: 1.5 W/cm2 (rabbits), 0.8 W/cm2 (mice)
Decrease in atherosclerosis in femoral arteries through decrease in macrophages and lipids
 Groen et al54 2020 Swine HIFU Synthesizer, International Cardio Corporation (Edina, MN)
Imasonic Dual-Mode US Array (Voray sur l’Ognon, France)
Thermal Frequency: 3.5 MHz, 64-element phased array transducer with fenestrations, through which 10 MHz transducer is applied
Intensity: 6250 W/cm2
Successful targeting of dorsal wall of the external femoral artery without endothelial damage or complications, accompanied by formation of scar tissue
 Mason et al55 2020 C57BL/6 mice EPIQ 7 (Philips Healthcare, Andover, MA) Biomechanical Frequency: 1.3 MHz Increased perfusion in hindlimb ischemia model for PAD via microcavitation-dependent mechanism
 Yao et al56 2020 New Zealand white rabbits Custom transducer (Harbin Institute of Technology, Harbin, China) Biomechanical Frequency: 1 MHz
Intensity: 1.5 W/cm2 (rabbits)
Decrease in carotid artery atherosclerosis through decreased neointima formation, macrophage content, proliferation SMCs, and collagen
Effect on thrombolysis
 Francis et al36 1995 Blood samples from adult humans Custom apparatus made with piezoelectric transducer (manufacturer not specified) Biomechanical Frequency: 1 MHz
Intensity: 1 W/cm2
Enhanced thrombolysis via increased uptake of tPA with application of ultrasound
 Poliachik et al57 1999 Blood samples from adult humans Sonic Concepts (Sonic Concepts Inc., Bothell, WA) Biomechanical Frequency: 1.1 MHz
Intensity: 560-2360 W/cm2
Cavitation and hemolysis is greater in samples with contrast agent treated with ultrasound, versus without
 Birnbaum et al58 2001 Blood samples from adult humans Sonicator model XL 2020 (Misonix Inc., Farmingdale, NY) Biomechanical Frequency: 20 kHz Ultrasound and nongas-filled particles (HAEMACCEL and HAES) decreased clot burden
 Hölscher et al59 2012 New Zealand white rabbits ExAblate 4000 (Insightec Inc., Tirat Carmel, Israel) Biomechanical Frequency 220 kHz
Intensity: 66-200 W (arterial thrombus model), 100-500 W (venous thrombus model)
Pulse length: 100-200 ms (arterial thrombus model), 0.1-100.0 ms (venous thrombus model)
Mild recanalization in carotid artery stroke thrombosis model, dependent on platelet-activation and cavitation
 Wright et al60 2012 New Zealand white rabbits Custom using function generator (model AFG 3102, Tektronix, Beaverton, OR) and amplifier (model A-500, ENI, Rochester, NY) Biomechanical Frequency: 1.51 MHz
Intensity: 300 W
Pulse length: 0.1-10.0 ms
Increased thrombolysis and partial blood flow restoration in femoral artery clot model, accompanied by cavitation
 Damianou et al61 2014 New Zealand white rabbits Custom device with amplifier (JJ&A Instruments, Duvall, WA) and piezoelectric ceramic transducer (Piezo-technologies, Etalon, Lebanon, IN) Biomechanical Frequency: 1 MHz
Intensity: 10-40 W/cm2
Enhanced thrombolysis in rabbit carotid model via increased uptake of tPA with application of ultrasound
Miscellaneous effects
 Williams et al62 1978 Blood samples from adult humans Sonacell Multiphone (Rank Stanley Cox (Ware, Hertfordshire) Biomechanical Frequency: 0.75, 1.5., 3.0 MHz Release of β-thromboglobulin in platelets is mediated by ultrasound-induced cavitation and release of other aggregating factors
 Vaezy et al63 1999 Swine Sonic Concepts (Sonic Concepts Inc., Woodinville, WA) Thermal Frequency: 3.5 MHz
Intensity: 2500-3100 W/cm2
Control of arterial hemorrhage
 Zderic et al64 2006 New Zealand white rabbits Custom made 111F-U applicator with piezo-electric discs (Stavely Sensors Inc., East Hartford, CT) and a solid aluminum coupling cone Thermal Frequency: 3.5 MHz
Intensity: 3000 ± 100 W/cm2
Control of arterial hemorrhage
 Lei et al65 2021 N/A N/A (mathematical model) Thermal Frequency: 1.1 MHz
Power: 15 W at 20 s
Mathematical model to predict damage of plaque ablation based on wall thickness; thermal effects depend on frequency and power

LDL, Low-density lipoprotein cholesterol; PAD, peripheral artery disease; tPA, tissue plasminogen activator.