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Abstract
Background Hypoparathyroidism-retardation-dysmorphism (HRD) syndrome is a disease composed of hypoparathyroidism, 
growth retardation, severe developmental delay, and typical dysmorphic features caused by the tubulin-specific chaperone E 
gene variant. Many patients succumb in infancy to HRD due to overwhelming infections mainly caused by Pneumococcus 
spp. Knowledge related to the immune system in these patients is scarce.
Purpose To define the immune phenotype of a cohort of HRD patients including their cellular, humoral, and neutrophil 
functions.
Methods The study included HRD patients followed at Soroka University Medical Center. Clinical and immunological data 
were obtained, including immunoglobulin concentrations, specific antibody titers, lymphocyte subpopulations, lymphocyte 
proliferation, and neutrophil functions.
Results Nine patients (5 females and 4 males) were enrolled, aged 6 months to 15 years. All received amoxicillin prophylaxis 
as part of a routine established previously. Three patients had bacteremia with Klebsiella, Shigella spp., and Candida. Three 
patients had confirmed coronavirus disease 19 (COVID-19), and two of them died from this infection. All patients had normal 
blood counts. Patients showed high total IgA and IgE levels, low anti-pneumococcal antibodies in spite of a routine vaccina-
tion schedule, and reduced frequency of naive B cells with increased frequency of CD21lowCD27- B cells. All patients had 
abnormal T-cell population distributions, including reduced terminally differentiated effector memory CD8, inverted CD4/
CD8 ratios, and impaired phytohemagglutinin (PHA)-induced lymphocyte proliferation. Neutrophil superoxide production 
and chemotaxis were normal in all patients tested.
Conclusion HRD is a combined immunodeficiency disease with syndromic features, manifesting in severe invasive bacterial 
and viral infections.
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Introduction

Hypoparathyroidism-retardation-dysmorphism (HRD) 
syndrome, also known as Sanjad–Sakati syndrome [1–3], 
(OMIM # 241,410), is an autosomal recessive disease com-
posed of hypoparathyroidism, both intra-uterine and post-
natal severe growth retardation, severe mental retardation, 
and dysmorphism.

HRD is caused by variants in the gene encoding tubu-
lin-specific chaperone E (TBCE), which is important for 
microtubule assembly pathways [3]. The common cause for 
HRD among the Arab Bedouin population is homozygo-
sity for a founder variant NM_001079515.3:c.155_166del 
(c.155_166del p.Ser52_Gly55del) [3]. Variants in TBCE, 
with autosomal recessive traits, were also described as causing 
Kenny–Caffey syndrome, type 1, KCS1 (OMIM #244,460), 
which shares very similar features. Other important character-
istics of the syndrome are significant delay in achieving devel-
opmental milestones, and significantly arrested gross and fine 
motor skill development. Speech is never achieved by some 
patients, whereas others have incomprehensible speech [4]. 
Eye and brain anomalies are common, as are multiple endo-
crine deficiencies (including hypothyroidism, adrenal insuffi-
ciency, and hypogonadism), epilepsy, and bowel obstruction. 
[5]. Susceptibility to pneumococcal infections is a significant 
aspect of this syndrome, as many patients succumb in infancy 
due to these infections. In a recent publication reporting a long-
term follow-up of a large cohort of HRD patients, 33 out of 
63 patients died before reaching the age of 5 years [4]. All but 
one patient died from infections, which included septic shock, 
meningitis, and pneumonia. The introduction of amoxicillin 
prophylaxis as an institutional practice in 2000 has reduced 
the mortality rate under 5 years of age from 77 to 24% [4]. 
The first clinical descriptions of HRD patients by Richard-
son et al. in 1990 reported normal immunoglobulin levels and 
a reduced number of T-lymphocyte subsets [1]. Sanjad and 
Sakati in 1991 reported normal T- and B-lymphocyte counts 
and mitogen response [2]. A year later, Kalam and Hafeez 
reported one patient with low IgG and IgA levels, normal B- 
and T-lymphocyte subsets and CD8/CD4 ratio, and normal 
thymus in a CT scan [6]. In 2007, Hershkovitz et al. reported 
hyposplenism, impaired neutrophil chemotaxis, and phagocy-
tosis without significant differences in superoxide production 
[7]. Autoimmunity was also reported as some patients were 
described with Hashimoto thyroiditis [5, 8]. In this study, we 
aimed to describe the immune phenotype of a cohort of HRD 
patients including cellular, humoral, and neutrophil functions.

Methods

This study included genetically diagnosed HRD 
patients, who were followed at Soroka University Med-
ical Center in a study conducted during 2021–2022. 

Clinical data were obtained from electronic medical 
records and included demographic, clinical, and labo-
ratory data.

The immunological evaluation was performed during 
ambulatory clinic visits, while patients were free of infec-
tion. All patients received vaccinations as per the mandatory 
schedule, including diphtheria-tetanus-pertussis, conjugated 
pneumococcal Prevenar 13, hepatitis B, and Hemophilus 
influenza type B vaccines. Four patients received Pneu-
movax vaccine during the last 6 months of the study period. 
The workup included IgG, IgM, IgA, and IgE levels; spe-
cific antibodies (anti-tetanus, pneumococcal, hepatitis B, and 
diphtheria); lymphocyte subpopulations by flow cytometry; 
lymphocyte proliferation by PHA; and neutrophil functional 
tests including superoxide production and chemotaxis. For 
detailed methods, please see the Supplemental Materials 
section.

Results

Patient Cohort and Clinical Course Nine patients (5 
female and 4 male) were enrolled in the study, with an 
age range from 6 months to 15 years (mean 6.3 years). 
Two patients died from COVID-19 infection a few weeks 
after enrollment (Table 1). All patients were homozygous 
for the NM_001079515.3:c.155_166del variant. Table 1 
outlines the main infection events during the patients’ 
lifetime and other significant clinical features. As part 
of institutional routine, all patients received amoxicillin 
prophylaxis, yet suffered from recurrent episodes of oti-
tis media and pneumonia. Two patients (5 and 6, respec-
tively) had bacteremia with Klebsiella and Shigella spp., 
and another patient experienced septic shock due to Can-
dida. Patients 7 and 8 had urinary tract infections with E. 
coli spp., as did another patient due to Candida (Table 1). 
As for viral infections, seven out of nine patients were 
tested for COVID-19. Three were positive and two of them 
died due to acute respiratory distress syndrome (ARDS) 
associated with the virus. Infections with common viruses 
such as influenza A, adenovirus, parainfluenza, and RSV 
virus were severe enough to warrant hospitalization in six 
patients (Table 1).

In agreement with the known phenotype of the syn-
drome, all patients exhibited hypoparathyroidism, severe 
growth retardation, severe progressive developmental 
delay, and hearing loss. The oldest patient’s weight did 
not exceed 15 kg, and none of the patients was able to com-
municate verbally. Of note are two patients with additional 
endocrinopathies—hypothyroidism in one and adrenal 
insufficiency in the other—who did not survive COVID-
19 infection.
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Immunological Workup

Immunoglobulins and Specific Antibodies

High IgG levels were recorded in three out of nine 
patients, elevated IgA titers in five of nine, and IgE levels 
were also markedly increased, up to 1000 IU/mL, in four 
out of six patients tested. All patients were vaccinated 
according to schedule including diphtheria-tetanus-per-
tussis (DTP), hepatitis B vaccine, and conjugated anti-
pneumococcal vaccine (Prevenar 13). Four of the older 
patients received Pneumovax vaccine. All patients had 
low total anti-pneumococcal antibodies in spite of serial 
Prevenar 13 vaccination and recurrent ear and pulmonary 
infections. Only one patient had a post-Pneumovax vac-
cine antibody titer. Two patients had low, non-protective 
anti-tetanus antibody titers, and two had only short-term 
protective levels (Table 2).

Lymphocyte Phenotyping and Proliferation Studies

Both T- and B-cell population distributions were abnormally 
skewed in most patients. In seven patients, an inverted CD4/
CD8 ratio was recorded, attributed to CD8 expansion, as 
none of our patients had CD4 lymphopenia (Table 2). In 
six patients, a detailed T- and B-subpopulation analysis 
was performed. A reduced frequency of naive B cells and 
increased percentage of plasmablast B cells were found in 
four patients. An increased frequency of CD21lowCD27- B 
cells was evident in all patients. As for T-cell populations, 
three out of six patients had a low percentage of CD4 effec-
tor memory and of terminally differentiated subsets that 
expressed CD45RA (TEMRA). There was notable CD8 lym-
phocytosis with an increased percentage of central memory 
cells, a low percentage of effector memory, and a prominent 
reduction in TEMRA cells in all tested patients (Table 3). 
Lymphocyte proliferation tests by mitogen stimulation with 
PHA were poor—at or below 50% of controls in four out 
of the nine of patients tested (Table 2). Neutrophil func-
tions, as tested by superoxide production and chemotaxis, 
were normal in all patients tested (Table 4). Of note are the 
results from the severe combined immunodeficiency (SCID) 
newborn screening program using a T-cell receptor exci-
sion circle (TREC) assay that was introduced in 2015. Three 
patients enrolled in this study were born after 2015, and all 
had normal TREC results.

Discussion

Our study establishes HRD syndrome, due to the previ-
ously described Arab founder variant in the TBCE gene, 
as an inborn error of immunity that should be classified as Ta
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a combined immunodeficiency (CID) disease with syndro-
mic features. Patients frequently display impaired mito-
gen responses, T cell-dependent antibody responses, and 
reduced frequencies of CD4 + and CD8 + effector memory 
of CD4 + and CD8 + TEMRA and naive B cells, with an 
increased proportion of CD21lowCD27- B-cell popula-
tions. They suffer from varied bacterial infections in spite 
of amoxicillin prophylaxis and display opportunistic viral 
and fungal infections.

Historically, these patients had a high mortality rate 
due to pneumococcal infections, but this was reduced sig-
nificantly upon introduction of amoxicillin prophylaxis (4). 
Although patients continued to die due to severe sinopul-
monary infections, these invasive pneumococcal infections 
were significantly lower in patients adhering to this regimen. 
TBCE is important for assembly pathways of microtubules, 
and hypoparathyroidism causes impaired calcium homeosta-
sis. Thus, HRD syndrome encompasses two features that can 
influence normal activity of the immune system.

Microtubules are essential for immunological synapse 
(IS) formation of both T and B lymphocytes [9, 10], exocy-
tosis of cytotoxic granules, secretion of chemokines from 
T cells [11], and antigen-dependent CD8 T-cell activation 
[12]. Our findings are in line with other known CIDs with 
cytoskeleton abnormalities such as Wiskott–Aldrich syn-
drome (WAS) and dedicator of cytokinesis 8 (DOCK8). 
As shown in the presented study, HRD patients share some 
phenotypic features with those disorders, including ele-
vated IgA and IgE concentrations and abnormal humoral 
response. All HRD patients are afflicted with hypoparathy-
roidsm, and are thus treated with calcium supplements and 
active vitamin D metabolites. Hypocalcemia is the most 
prevalent complication seen among our patients, starting 
a few hours after birth, and both hypo- and hypercalcemia 
are common complications, reflecting treatment difficulties. 
Regulated changes in calcium concentrations in lympho-
cytes control the complex pathways of proliferation, differ-
entiation, antibody and cytokine secretion, and cytotoxicity, 
and diseases such as  Ca+2 release-activated  Ca+2 (CRAC) 
channelopathy (ORAI1, STIM1, etc.) can cause immuno-
deficiency [13–17]. At present, there are no data to support 
such a mechanism in HRD patients, and we believe this to 
be worth future study.

An interesting finding found in all six patients with a 
detailed analysis of lymphocyte subpopulations was an 
increase in CD21lowCD27- B cells. The frequency of these 
cells is often increased in immunodeficiency patients, such 
as in common variable immune deficiency (CVID) and 
in those with autoimmunity disorders [18]. These cells 
have been described as anergic naive B cells to resemble 
exhausted memory B cells [19]. This finding, although non-
specific, may further point to the fundamental immunologi-
cal abnormalities in HRD patients.Ta

bl
e 

4 
 N

eu
tro

ph
il 

ch
em

ot
ax

is
 a

nd
 su

pe
ro

xi
de

 p
ro

du
ct

io
n 

FM
LP

, f
or

m
yl

-m
et

hi
on

yl
-le

uc
yl

-p
he

ny
la

la
ni

ne
; N

D
, n

ot
 d

on
e;

 O
Z,

 o
ps

on
iz

ed
 z

ym
os

an
; P

M
A,

 p
ho

rb
ol

 m
yr

ist
at

e 
ac

et
at

e

Pa
tie

nt
P1

P2
P3

P4
P5

P6
P7

P8
P9

Re
fe

re
nc

e 
ra

ng
e

Su
pe

ro
xi

de
 p

ro
du

ct
io

n
Re

sti
ng

3
3

9
3

5
3

8
5

7
1–

6 
nm

ol
  O

2/1
06  c

el
ls

/m
in

FM
LP

54
38

34
27

18
N

D
73

N
D

N
D

13
–4

2 
nm

ol
  O

2/1
06  c

el
ls

/m
in

O
Z

56
38

38
22

19
N

D
51

N
D

N
D

11
–3

8 
nm

ol
  O

2/1
06  c

el
ls

/m
in

PM
A

60
43

62
46

35
38

40
54

58
12

–4
6 

nm
ol

  O
2/1

06  c
el

ls
/m

in
C

he
m

ot
ax

is
FM

LP
30

 (7
1%

)
42

 (1
00

%
)

40
 (9

5%
)

19
 (4

4%
)

26
 (C

M
)

42
 (9

3%
)

42
 (1

00
%

)
33

 (8
0%

)
33

 (8
3%

)
35

–4
5 

(%
co

nt
ro

l)
R

an
do

m
 m

ig
ra

tio
n

19
 (6

8%
)

24
 (1

14
%

)
27

 (9
6%

)
13

 (4
3%

)
20

 (C
M

)
21

 (8
8%

)
23

 (1
10

%
)

21
 (7

5%
)

18
 (8

2%
)

20
–3

0 
(%

co
nt

ro
l)

C
he

m
ot

ax
is

 A
-B

1.
6

1.
8

1.
5

1.
5

1.
3

2.
0

1.
8

1.
6

1.
8

R
at

io
 c

on
tro

l/p
at

ie
nt

355Journal of Clinical Immunology  (2023) 43:350–357

1 3



Two of the patients who tested positive for COVID-
19 died during the research period. This, at least in part, 
could be attributed to the apparent combined immunodefi-
ciency involving both T- and B-cell defects, in combination 
with other features. It is of importance to note that both 
patients were on the severe spectrum of the syndrome, with 
extremely restricted growth and developmental delays, and 
one of these patients had adrenal insufficiency, which may 
serve as a significant risk factor for mortality. As far as other 
possible mechanisms, abnormal type I interferon responses 
serve as a risk factor for higher morbidity and mortality 
from COVID-19. [20] Assembly pathways of microtu-
bules, as well as calcium signaling impairment, have also 
been reported to affect interferon response [21]. However, 
the very small number of patients affected, as well as those 
willing to be vaccinated, mandates further follow-up, data 
collection, and study before any conclusions can be drawn 
in regard to this intriguing issue.

The limitations of this study are reflected in the inclu-
sion of patients with a single variant and the relatively small 
sample size. Since it is possible that other HRD patients 
may have similar or different immune abnormalities, further 
research with HRD patients who are homozygous for other 
TBCE variants is required.

As far as treatment options for CID, hemotopoietic stem 
cell transplantation (HSCT), currently the definitive and 
most rewarding option, is less likely to be beneficial to our 
patients. The severe physical and mental developmental 
delays, as well as hypoparathyroidism, are the most pro-
nounced aspects of this severe syndromic inborn error of 
immunity (IEI), which cannot be corrected by HSCT and 
will probably not contribute to either patient life quality or 
longevity. However, considering our current results, it is 
worthwhile to compare the added benefit of IVIg treatment 
in some of these patients to the current antibiotic prophylac-
tic regimen as part of their routine treatment.

Conclusion

In this study, we demonstrated that HRD patients should 
be classified as IEI group of CID with syndromic features, 
manifesting in varying degrees of severity. This should alert 
physicians and mandate an in-depth investigation and careful 
follow-up for each patient, with administration of appropri-
ate prophylaxis regimens.
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