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Canwe predict the evolutionary response of organisms to climate changes? The
direction of greatest intraspecific phenotypic variance is thought to correspond
to an ‘evolutionary line of least resistance’, i.e. a taxon’s phenotype is expected to
evolve along that general direction, if not constrained otherwise. In particular,
heterochrony, whereby the timing or rate of developmental processes are modi-
fied, has often been invoked to describe evolutionary trajectories and it may be
advantageous to organismswhen rapid adaptation is critical. Yet, to date, little is
known empirically as towhich covariation patterns, whether static allometry, as
measured in adult forms only, or ontogenetic allometry, the basis for hetero-
chrony, may be prevalent in what circumstances. Here, we quantify the
morphology of segminiplanate conodont elements during two distinct time
intervals separated bymore than 130 Myr: theDevonian-Carboniferous bound-
ary and the Carnian-Norian boundary (Late Triassic). We evidence that the
corresponding species share similar patterns of intraspecific static allometry.
Yet, during both crises, conodont evolution was decoupled from this common
evolutionary line of least resistance. Instead, it followed heterochrony-like trajec-
tories that furthermore appear as driven by ocean temperature. This may have
implications for our interpretation of conodonts’ and past marine ecosystems’
response to environmental perturbations.
1. Introduction
The ambition of evolutionary biology is to decipher the relative role of evol-
utionary processes in shaping the diversity of life. Because the evolution of
new forms necessarily involves tinkering with the developmental processes of
already existing forms [1], evolution is likely to follow trajectories that are
biased by those developmental processes (see for instance [2] and references
therein). In other words, some morphologies may be more readily generated
than others (e.g. [3,4]) and this may drive evolution in preferential directions.
For instance, the direction of greatest intraspecific phenotypic variance (Pmax),
as measured on adult forms only, is thought to correspond to an ‘evolutionary
line of least resistance’, and morphological evolution is expected to parallel Pmax

in a context of weak selection [5–8]. Similarly, heterochrony, whereby the timing
or rate of developmental processes are modified within an individual or a
taxon, can be considered as an alternative evolutionary line of least resistance
and it has long been recognized as a key evolutionary pattern, with countless
examples across the animal kingdom [2,9,10]. In the fossil record, this is exem-
plified by documented occurrences of paedomorphoclines (trend towards
retention of juvenile characters in adults) or peramorphoclines (trend towards
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Figure 1. Anatomy of ozarkodinin segminiplanate elements and location of the traits of interest. Oral, lateral and aboral views of a P1 element of Siphonodella
cooperi (left, Carboniferous) and a P1 element of Epigondolella rigoi (right, Late Triassic). The location of the used landmarks and sliding landmark curves are
indicated in red. (Online version in colour.)
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extension of growth period resulting in adding new develop-
mental stages compared to ancestral sequence) [11–14].
Heterochronic shifts may produce large phenotypic effects
with relatively few or no genetic modifications. They may
then be particularly advantageous to organisms when rapid
adaptation is critical, for instance during large environmental
perturbations [11]. Yet, to date, little is known empirically as
to which evolutionary mode, whether static allometry, as
measured on adult forms only, and ontogenetic allometry,
i.e. the patterns of covariation observed within an organism’s
growth, which are the support for heterochrony, may be
prevalent in what circumstances.

Conodonts are extinct marine jawless vertebrates [15,16].
Their phosphatic feeding structures called conodont elements,
are abundant in the fossil record from the Cambrian to the ear-
liest Jurassic [17]. They are arranged in a complex feeding
apparatus usuallymade of seven pairs and one central element.
All of them display some level of morphological diversity. Yet
themost dorsal pair of elements called P1 exhibit a morphologi-
cal diversity like no others, and some of the highest rates of
morphological evolution of all Palaeozoic and Triassic fossils.
Hence, theyare used extensively for relative dating and correlat-
ing rocks (e.g. [18]). Some P1 elements are considered to have
had a mammal-like occlusion and they were probably used
for crushing and processing food items [19]. Therefore, their
morphology may reflect their feeding function and their
bearer’s diet. They are also useful for reconstructing the evol-
ution of palaeoenvironments and environmental pressures
(e.g. [20]). Yet, so far, the potential of the conodont fossil
record for evolutionary studies has remained somewhat under-
exploited (but see for instance [21–24]). Several studies have
implicitly highlighted patterns of covariation within conodont
P1 elements (e.g. [25]) and many conodont workers have
observed morphological trends within specific intervals. Yet,
no one to our knowledge has ever explored the universality of
such patterns within conodonts. It is still unclear for instance
whether the morphologies of conodont elements follow any
generic rule of covariation. Similarly, the existence of common-
alities between species in their evolutionary responses to
distinct major events has never been tested.

Here, we quantified the morphological evolution of
ozarkodinin (suborder Ozarkodinina Dzik 1976) segminipla-
nate P1 elements around two distinct major intervals
separated by about 130 Myr: siphonodellids (Siphonodella)
from the Devonian-Carboniferous boundary (DC) and gon-
dolellids (Carnepigondolella, Epigondolella, Metapolygnathus)
from the Late Triassic Carnian-Norian boundary (CN). Both
considered intervals are similarly long (respectively 5 Myr
and 3 Myr) and were affected by putative global changes in
sea-surface temperature: a 4° warming and a 6° cooling,
respectively [26,27]. We focused on DC siphonodellids and
CN gondolellids because the P1 elements in both groups
share superficial similarities that facilitate their comparison
within a single empirical morphospace: they are segminipla-
nate [28], and possess both a variably ornamented platform
and a relatively high blade that is partly free at the anterior
end (figure 1). In both cases, the chosen material is abundant
and well-preserved, and numerous previous studies have
characterized or constrained their biochronology [18,29,30],
ontogeny [31] and phylogeny [28,32–34] (figure 2).

Based on the suprageneric analysis of Donoghue et al.
[35], these groups belong to two distinct superfamilies
(siphonodellids and gondolellids) that probably diverged in
the Ordovician, about 100 Myr before the first appearance
of siphonodellids, which means both groups are separated
by more than 300 Myr of independent evolution.

The present study quantifies morphological changes of
these two assemblages through time. We evaluate the relative
role of environmental and developmental processes as evol-
utionary forces driving their evolution and assess the impact
of heterochronic shifts in observed evolutionary trends.
2. Results
(a) Main morphological axes of variation
We used geometric morphometrics to quantify the intraspecific
and interspecific patterns of variation of element shape within
the two assemblages (see Methods). Only adult P1 elements
were considered (GS4–6 in [31]). In conodont elements, identifi-
cation of adulthood is based on empirical growth stages. For the
considered taxa, the growth stages have been described by [36]
and [31]. The position of the species in the morphospace is
strongly correlatedwith its phylogenetic position (permutation
test; two groups: p-value < 0.001; Carboniferous group only:
p-value = 0.0093; Triassic group only: p-value = 0.0002). The
holotypes of the species present in our collection are located
within the respective 95% concentration ellipses (figure 3). Not-
withstanding whether or not the holotype specimens were
included in the dataset (seeMethods), the principal component
analysis (PCA) on the corresponding Procrustes coordinates
showed that only four principal components (PCs) explained
more than 5% of variance and are therefore considered signifi-
cant (see methods and the electronic supplementary material,
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Figure 2. Phylogeny of the DC siphonodellids (left) and CN gondolellids (right). Modified respectively after [32] and [33]. S., Siphonodella; P., Paragondolella; N.,
Norigondolella; H., Hayashiella; C., Carnepigondolella; M., Metapolygnathus; E., Epigondolella. Both Hayashiella and Carnepigondolella appear as polyphyletic. The stars
designate species sampled in this study.
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figures S3–S4). When the holotypes are included, the first PCs
explain about 83% (PC1: 49.93%, PC2: 18.19%, PC3: 7.82%,
PC4: 7.01%) of the total variance of the Procrustes coordinates
(see the electronic supplementary material, table S3). When
they are not included, the first four PCs explain about 89% of
the total variance (figure 3; electronic supplementary material,
table S3; PC1: 55.44%, PC2: 18.21%, PC3: 8.06%, PC4: 7.20%).
The main axis (PC1), which roughly discriminates between
the DC taxa (siphonodellids, negative PC1 values) and the
CN taxa (gondolellids, mostly positive PC1 values), corre-
sponds to subequal, antero-posterior shifts of the pit and of
the anterior ends of the platform (geniculation points), associ-
ated with a change in the curvature of the posterior platform
margin: an anterior shift of the pit and geniculation points
(negative PC1values,DC taxa) corresponding to amore tapered
posterior platform end (higher positive curvature), and a pos-
terior shift (positive PC1 values, Triassic taxa) corresponding
to a flatter (zero curvature) or even concave (negative curvature)
posterior platformmargin. In other words, DC taxa differ most
from CN taxa by having P1 elements whose platform is more
extended anteriorly and pointier posteriorly and whose pit is
locatedmore anteriorly: DC taxa tend to have an ovate platform
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with a pointed posterior extremity,whereas theCN taxa have an
oblong to sub-cuneate platform with a rounded to sub-squared
posterior margin.

Along PC2, the pit and geniculation points move in oppo-
site directions along the antero-posterior axis (contra PC1; see
the arrows in figure 3c). As along PC1, the antero-posterior
shift of the pit is associated with a change in the curvature of
the posterior platform margin. Extreme positive values of
PC2 correspond to elements with a relatively short platform
(and hence a relatively large free blade), a pit located in front
of the geniculation points and a rounded to tapered posterior
end, whereas extreme negative values of PC2 correspond
to elements with a longer, narrower, anteriorly extended
platform, a posterior pit and a flat to concave posterior end.

(b) Covariation of the relative position of the pit and
the shape of the posterior margin

As for PC1 andPC2, PC4 suggests a positive correlationbetween
the relative distance of the pit to the posterior margin and the
sharpening of the posterior margin, quantified as the curvature
of the posterior margin at the posterior end (flat to circular to
pointy geometry corresponding to a gradient from low to high
curvature at the tip) (figure 3). Inorder to test for such correlation
we ran a PCA analysis on a subset of our data where the Pro-
crustes coordinates of the pit, anterior end and geniculation
points were removed. The corresponding principal components
(PCcontour) can be used as main descriptors of the changes in the
platform outline, in particular of its posterior margin (electronic
supplementary material, figure S9). We then verified (see
Methods and the electronic supplementary material, figure S9)
that the relative position of the pit within the element (the dis-
tance between the pit and the posterior margin divided by the
element’s length) is significantly correlated with the four main
PCcontour (electronic supplementary material, figure S9), in par-
ticular, it is strongly negatively correlated with PC4contour
(Pearson’ r and Spearman’s D-tests, p< 10−20, R2 > 0.9; see
the electronic supplementary material, figure S9): the larger
the distance, the narrower the posterior part of the platform rela-
tive to its anterior. In other words, when the pit is closer to the
posteriormargin, theposteriormargin tends to bemore squared;
closer to the consensus, the posterior margin is sub-circular;
when the pit is more anteriorly located, the posterior margin
tends to taper to a point.

(c) Long-term stability of Pmax within ozarkodinin
conodonts

The Pmax of most species are aligned with one another (χ2

(same slope in PC1-PC2 plane) = 21.422; p-value = 0.0649;
electronic supplementary material, figure S6). The relatively
low number of measured specimens for Siphonodella isoticha
and Siphonodella quadruplicata precludes an accurate lineariza-
tion, leading to their Pmax not being aligned with that of other
species. If these two species are removed, we obtain χ2 (same
slope) = 13.898; p-value = 0.1259. The analysis of the within-
group variation shows that most taxa share similar patterns
of intraspecific variation among adults: they occupy roughly
the same region of the PC1-PC2within morphospace and differ
mostly along PC3within (Triassic taxa) or PC4within (DC taxa)
(electronic supplementary material, figure S7). The main
axis of this within-group variation (PC1within) corresponds
to an anterior extension (resp. reduction) of the platform
associated with opposite movements of the geniculation
points relative to the pit and anterior end (electronic sup-
plementary material, figure S7). The second main axis
(PC2within) describes the amount of asymmetrical variation
and corresponds approximately to the PC3 mentioned earlier.

The within group variation evolved mostly (and sub-mono-
tonously) along thePC4withinwithin siphonodellids (variation in
the relative position of the pit and the shape of the posterior
margin; see the electronic supplementary material, figure S7),
whereas it evolved essentially along the PC3within among the
CN taxa (variation in lateral expansion of the platform, see
also [36]), that is, along axes that are, by construction, orthogonal
to one another.

(d) A common, main axis of morphological evolution
that is distinct from Pmax

Both groups vary essentiallyalong the same axiswithin the PC1-
PC2plane of the empiricalmorphospace.Wehave reconstructed
the likely chronological sequence of the considered taxa at
both the generic and the species levels. For the siphonodellids
the following sequence can be inferred from Sandberg’s phylo-
genetic hypothesis ([32], his fig. 1), as supported by more
recent works (e.g. [29]): Siphonodella praesulcata + Siphonodella
sulcata, Siphonodella bransoni (=Siphonodella duplicata M1),
S. duplicata, Siphonodella cooperi, Siphonodella obsoleta + Siphono-
della sandbergi + Siphonodella carinthiaca, S. quadruplicata,
Siphonodella crenulata. Notwithstanding whether we compute
the average or the median of the PC2 scores of the taxa present
in our collection or the PC2 scores of the holotypes, there is a sig-
nificant decreasing trend inPC2 scores for the correspondingDC
interval (Mann-Kendall test, p< 0.05; see the electronic sup-
plementary material, file S12). Similarly, if we consider the
sequence leading from Carnepigondolella (or ‘Carnepigondolella’
1 and 2, since Carnepigondolella appears as polyphyletic, see
Material and Methods) to Metapolygnathus to Epigondolella, the
average (and mean) PC scores of these genera increase monoto-
nously. Using Tethyan range charts at the species level [18,38],
we can derive a sequence ofmaximal association ‘zones’ (similar
to Oppel zones; see the electronic supplementary material, file
S12) and then compute the average (or mean) PC2 scores of
the taxa present in a given ‘zone’ (using the scores of the holo-
types). If we exclude the genus Norigondolella, whose range is
discontinuous near the CN boundary [18], and consider only
the carnepigondolellids, their descendants (Metapolygnathus
and Epigondolella) and their probable ancestor Paragondolella,
then there is a significant (submonotonous) increasing trend in
PC2 scores (Mann-Kendall test, S =−17, p = 0.0054; see
the electronic supplementary material, file S12).

Considering the current phylogenetic model, this increasing
trend is paralleled in two distinct lineages: the one leading to
Metapolygnathus, and the one leading to Epigondolella.

This pattern of morphological evolution highlights a
common main evolutionary path sub-parallel to the PC2
axis. Yet, evolution proceeded in opposite directions at the
Carnian-Norian boundary (increasing trend in PC2 scores) as
compared to theDCboundary (decreasing trend in PC2 scores).

(e) In both intervals the main evolutionary axis aligns
with ontogenetic trajectories

Ontogenetic series are available for the presentmaterial. For the
Triassic taxa in particular, those series have been reconstructed
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Figure 4. Growth series for Paragondolella noah (left), Epigondolella uniformis (centre) and Siphonodella cooperi (right). Modified after Mazza & Martinez-Perez [31]
and Zhuravlev et al. [36].

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

289:20220614

5

in detail by Mazza & Martinez-Perez [31] using synchrotron-
based imaging techniques and by virtually subtracting
growth lamellae andanalysing the evolution of themorphology
within single adult specimens. The ontogeny in these species is
marked by a relatively higher growth rate of the platform later-
ally and of both platform and blade towards the anterior side,
which corresponds to a relative posterior shift of the pit
(figure 4). For the siphonodellids, growth series have been pro-
posed by Zhuravlev et al. [36] and display similar patterns
(figure 4).

Within both groups (and more generally in most segmini-
planate conodonts), the platform gets relatively larger with
ontogenetic age, extending both anteriorly (the free blade
gets relatively smaller inmoremature individuals) and poster-
iorly: in species like Paragondolella noah and Epigondolella
uniformis (figure 4), the posterior margin of the platform
gradually changes from tapered to sub-circular to subqua-
drate. A similar transformation of the posterior margin is
observed in all considered Late Triassic taxa. Similarly, in
siphonodellids, the posterior margin of the platform is tapered
throughout the ontogeny but it gets progressively broader and
more rounded. Furthermore, in species like E. uniformis
(figure 4), the pit may be initially located at the same level as
the geniculation points along the antero-posterior axis. As
the element grows and the platform extends anteriorly, this
is no longer the case in ontogenetically older specimens.
These descriptions, combined with the newly described corre-
lation between the relative position of the pit and the shape
of the platform’s posterior margin, strongly suggest that
morphologies associated with increasingly mature elements
will get smaller (or more negative) scores on the PC2 axis.

Our results support previous observations by Zhuravlev
et al. [36] and Mazza & Martinez-Perez [31]. The evolution of
the consideredDC taxa towardsmore anteriorly developedplat-
formswith a posterior shift of the pit and a relative shortening of
the free blade, is concordantwith aperamorphosis heterochronic
shift (a delayedmaturationor faster development). Additionally,
the evolution of the considered Triassic taxa towards elements
with a less developed platform, an anteriorly shifted pit and
an enlarged free blade, is compatible with a paedomorphosis
shift (the retention of juvenile traits into adulthood). We argue
that all considered taxa within one or the other group (DC
taxa or CN taxa) share similar ontogenetic trajectories, namely
a straight line along the PC2 axis. Similarly, we consider that
most of their evolutionary trajectories follow the same line. In
our view, the data is compatible with heterochrony being the
main process involved, although not necessarily the only one.
3. Discussion
The putative peramorphocline of the DC siphonodellids and
paedomorphocline of the CN gondolellids parallel respect-
ively, and presumably time compatible, environmental shifts
that are also opposite: the DC interval corresponds to a 4°
warming of the oceans, whereas the CN interval corresponds
to a 6° cooling. In other words, morphological change within
both intervals parallels the PC2 axis, corresponds to a
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heterochronic shift, and is associated with a shift in seawater
temperature, thereby suggesting that smaller PC2 values
correspond to higher temperatures (figure 5).

Temperature is known to affect the growth rates of organ-
isms [39–46]. For instance, aquatic ectotherms experience
temperature-based phenotypic plasticity [47–50] and some of
this plasticity may arise from altered growth rate. It is possible
that temperature had a similar effect on the growth of conodont
elements. Several authors have previously documented cono-
dont morphoclines during intervals of environmental
perturbations, in particular within Late Devonian genera (e.g.
Palmatolepis, Icriodus, Ancyrodella, Polygnathus, but not Siphono-
della until now) as responses to Late Devonian events such as
the Kellwasser events (e.g. [25,51–53]). For instance, Renaud &
Girard interpreted the evolutionary response of icriodids
during these events as possibly involving paedomorphosis
(‘progenesis’, [25, p. 31]). The respective responses of ancyrodel-
lids, polygnathids or palmatolepids also parallel, to a certain
extent, the palaeotemperature records ([54], but [53]), but they
may or may not involve heterochronic shifts [25,51].

The latter authors tended to favour an indirect, ecological
link over a physiological one: morphological modifications of
dental elements are often related to functional shifts, i.e.
associated with distinct feeding behaviours [55,56] and
trophic disturbances have been indeed invoked for explaining
the Kellwasser events [57]. Given that juvenile and adult con-
odonts do not necessarily share the same feeding habits [58],
the two alternative propositions are not mutually exclusive
and we can imagine scenarios whereby temperature-driven,
physiologically induced heterochronic shifts may facilitate
ecological adaptation to new, more abundant prey. Nonethe-
less, temperature is not the only factor that may impact
conodonts’ growth rate. Nutrient availability is a plausible
alternative [54] that is also climate-dependent: awarmer climate
usually implies more humidity, more weathering, more conti-
nental runoff, and may ultimately cause modifications in the
communities of prey on which conodonts probably fed; it
may also lead to eutrophication, and to hypoxia, another
common agent of physiological changes. Ginot & Goudemand
[59] have shown that conodontsmay be affected byother abiotic
factors, such as sea level (see also [53,60]), whose fluctuations
may also parallel those of seawater temperatures. Hence,
although temperature may appear as a plausible and attrac-
tively ‘simple’ driver (but see [61]) for the described
evolutionary trajectories, its role is still elusive.

Because the groups considered here are distant in phylo-
geny, time, geography and probably ecology, the commonality
of their evolutionary responses to climate changes may reflect
some generic aspect of conodont’s evolutionary biology. We
propose here that some major aspect of the conodont element’s
development dependeddirectly or indirectly on seawater temp-
erature. Yet, as shown by Leu et al. [62], seawater temperature
changes may have had contrasting effects on the evolution of
different conodont taxa in terms of size. It is therefore expected
that the pattern described here as a common response to
temperature variation most likely accepts exceptions.

The long-term stability of the Pmax in these conodonts is
somehow surprising. Static allometry (intraspecific variation
among adults) is not expected to persist among related
species [2,63], although evidence from the literature may be
conflicting ([6], and references therein). This stability may
be partly explained by the herein-described correlation
between the relative position of the pit (respectively of the
cusp) and the shape of the posterior margin. Similar
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morphometric analyses have been performed on Late Devo-
nian Polygnathus elements [53] and on Anisian (Middle
Triassic) Paragondolella elements [64] and the corresponding
plots seem to support the generality of such correlation.
In both cases, the axis that reflects allometric growth (‘PC2–
3Dcar’ in [53], their fig. 3; ‘RW1’ in [64], their fig. 6) corre-
sponds also roughly to our PC2, thereby supporting our
interpretation that this axis parallels ontogenetic and
heterochronic shifts, and suggesting that it may be relevant
to the evolutionary biology of many other conodont taxa.

Several authors have shown that the Gmax, respectively the
Pmax, may be good, short-term predictors of evolutionary
change (e.g. [7,65] and references therein). Long-term evolution
however may be decoupled from within-population variation.
Besides the fact that the nonlinear nature of the genotype-pheno-
typemap of organs such as dental elements is expected to falsify
the underlying linear models ([66], see also [67,68]) and may
thus partly explain short-term discrepancies from those predic-
tions, our results suggest that global environmental crises have
the capacity to accelerate such decoupling (see also [69]). Here,
the Late Devonian Hangenberg event and the late Carnian plu-
vial event may have forced conodonts to find evolutionary
solutions to adapt to their changing environment. In both
cases, conodonts seemingly resorted to heterochronic shifts
that are compatible with some sort of temperature-induced
‘evolutionary plasticity’.
4. Material and methods
(a) Material and environmental context
The DC assemblage is composed of closely related species of
Siphonodella from lower Tournaisian (Lower Mississipian,
Carboniferous) rocks of Montagne Noire, France. The CN assem-
blage is composed of closely related species of Carnepigondolella,
Epigondolella, Metapolygnathus and Hayashiella from upper Carnian
and lower Norian (Upper Triassic) rocks of Pizzo Mondello, Sicily,
Italy (figure 2).

The DCmaterial was collected from the Puech de la Suque sec-
tion in the Montagne Noire, France, and is currently housed in the
collections of the Institut des Sciences de l’EvolutiondeMontpellier,
France. It corresponds to a time-interval ranging from the Siphono-
della jii Zone (PS17) to the S. quadruplicataZone (PS28) and includes
elements of eight species of the genus Siphonodella: S. praesulcata,
S. sulcata, S. bransoni, S. duplicata, S. carinthiaca, S. isosticha,
S. quadruplicata and S. cooperi (see the electronic supplementary
material, table S1). To date, no cladistics-based phylogenetic
hypotheses have been proposed for this clade. The most recurrent
view [28,32] is that S. praesulcatawere the rootstock of all siphono-
dellids (figure 2) of the late Devonian and early Mississipian
(Carboniferous). The corresponding evolutionary radiation started
first with the appearance of S. sulcata at (and possibly marking) the
Devonian/Carboniferous boundary, followed by those of
S. bransoni (duplicata morphotype 1) and S. duplicata. The latter
two species are considered as the ancestors of all the younger sipho-
nodellids, which emerged during the upper duplicata Zone (now jii
Zone). Thematerial originates from an interval that begins approxi-
mately 0.5 Myr after the Devonian/Carboniferous boundary and
extends over 2 Myr. Locally at the Puech de la Suque section, this
period is marked by a regression-transgression cycle, with sedi-
ments corresponding to a shallow dip into the photic zone,
followed by a slow deepening beyond the photic zone [70]. Glob-
ally, the stable oxygen isotope ratios (δ18O) measured on
conodont apatite from Europe and Laurentia evidence a mean
global negative shift of about 1‰ from the top of the Hangenberg
event to the quadruplicata Zone, which corresponds to an average
global 4° warming of the ocean waters [26]. This global warming
is associated with a coeval 1.5‰ drop of the stable carbon isotope
ratio (δ 13C) as measured on carbonates [26].

The Triassic material, housed in the collections of the Diparti-
mento di Scienze della Terra ‘ A. Desio ‘ (Università degli Studi di
Milano) and at the Department of Geosciences (University of
Padova), is from the Pizzo Mondello section, located in the Sicani
Mountains, Western Sicily, Italy. The elements belong to seven
species, currently arranged in four genera:Carnepigondolella pseudo-
diebeli, and Carnepigondolella zoae; Hayashiella tuvalica; Epigondolella
quadrata, Epigondolella rigoi and E. uniformis; and Metapolygnathus
communisti (electronic supplementary material, table S1). We
follow here the cladistics-based phylogenetic model proposed by
Mazza et al. [33]. Paragondolella polygnathiformis and
Paragondolella praelindae were presumably the only two species to
survive the Carnian Pluvial event. They gave rise to the genera Car-
nepigondolella and Norigondolella. Carnepigondolella itself appears to
be a polyphyletic group that would have branched into, on one
hand Metapolygnathus and, on the other hand, Epigondolella.
Recently, Kilic et al. [71] reassigned ‘Carnepigondolella’ tuvalica and
‘Carnepigondolella’ carpathica to a new genus Hayashiella, from
which, in their view, all carnepigondolellids stemmed. Yet, this is
not supported by the analysis of Mazza et al. [33] as Hayashiella
would appear polyphyletic too. Alternatively, it might be con-
venient (although not optimal) to group the carnepigondolellids
(including Hayashiella) leading to Metapolygnathus on one hand
and the ones leading to Epigondolella on the other, as two distinct
paraphyletic groups (coined here ‘Carnepigondolella’ 1 and ‘Carnepi-
gondolella’ 2). Based on abundant material from Black Bear Ridge,
British Columbia, Canada, Orchard proposed a different taxonomi-
cal approach to Carnian-Norian ‘platform’ conodonts [72,73],
which initially rendered comparisons with conodonts from Pizzo
Mondello very challenging. In a more recent work, Orchard [34]
suggested that many taxa previously considered as endemic to
Black Bear Ridge or to Pizzo Mondello were in fact shared by the
two localities and he proposed numerous synonymies. Because
the generic classification of Orchard emphasizes somewhat arbitra-
rily (but possibly rightfully so) the configuration of the anterior
platformmargins over platform shape, posterior ornament, relative
blade-carina length, and pit position, we have preferred here the
arguably more agnostic cladistic approach adopted by Mazza
et al. [33]. It is noteworthy that despite the differences in taxonomic
approaches, the same evolutionary trends are common at both
localities ([34], p. 54). The studied interval, ranging from the P. poly-
gnathiformisZone to the E. rigoi-E.quadrataZone, spans the Carnian-
Norian boundary (CNB, Late Triassic). This interval corresponds to
amajor conodont turnover subsequent to theCarnian Pluvial Event
[74,75]. The rocks of the Pizzo Mondello section record a less than
1‰ positive shift of the δ13C at the base of the CNB interval
[74,76]. Although there is no local evidence for any change in sea-
water temperatures or in sea level (see also [77]), a positive shift
of 1.5‰ has been reported by Trotter et al. [27] in the δ18O signal
at thewider scale of the sub-tropical Tethys, evidencing a presumed
global 6°C cooling of the oceans (see also [78]).

All studied elements are considered adult forms following
the growth stages as defined and illustrated by [36] and [31],
respectively. Since most authors adopt a typological approach,
and although the morphological variation within a given species
is likely to evolve in time, we assume here that any significant
evolutionary change within a species would have led authors to
define a new species. In otherwords,we assume that the herein esti-
mated intraspecific variation (and hence thePmax) of the considered
species approximate accurately the ‘true’ intraspecific variation of
those taxa, despite being based onone location and for some species
on one horizon only (electronic supplementary material, table S1).
This is a relatively strong hypothesis but it is in our view justified
by the large temporal and taxonomic breadth of our study.
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In order to assess the validity of the observed evolutionary
patterns across the corresponding evolutionary lineages, we con-
sidered additionally the holotypes of all the species belonging to
the considered genera, as based on the considered phylogenies
(figure 2), irrespective of whether they were present or not in
our collections. In those rare cases where the illustrations of the
holotypes available from the literature were not appropriate for
our analysis (e.g. broken specimens), we selected alternative,
well-preserved, complete specimens from the literature (see
details in the electronic supplementary material, table S2).

(b) Digitization
All the elements were glued on wooden sticks and digitized at
1 µm cubic voxel resolution using a Phoenix nanotomeS X-ray
microtomograph (μCT, AniRA-Immos platform, SFR Biosciences,
UMS 3444, ENS Lyon). The element surfaces were reconstructed
in three-dimensional and pictures were taken in a standardized
aboral view (figure 1) using the AMIRA software (v. 6.3.0). For
comparison purposes, dextral elements were mirrored into vir-
tual sinistral ones and lumped together. No systematic
differences between sinistral and dextral elements were found
after this transformation according to a multivariate analysis of
variance (PERMANOVA, p-value < 0.0001).

(c) Geometric morphometrics
Throughout the life of a conodont, the feeding elements were not
shed and replaced as in polyphyodont vertebrates but retained
and grown/repaired via outer-apposition of new growth lamellae
[79,58]. This mode of growth, which resembles that of ganoid
scales in fishes, implies for instance gradual addition—and some-
times fusion—of denticles, and renders the definition of
biologically homologous parts and hence the quantitative com-
parison of conodonts elements particularly challenging [80,81].
To quantify the shape of the elements, we adopted a landmark-
based approach using TPSDIG 2.0 [82]: five landmarks were digi-
tized that correspond to the anterior and posterior extremities of
the elements, the growth centre of the element (the so-called
pit), and the antero-lateral extremities of the platform (the so-
called geniculation points). Two sets of 10 equally distributed slid-
ing landmarks were also digitized on the platform margins
between the geniculation points and the posterior extremity
(figure 1; electronic supplementary material, figure S10). Orna-
mentation features may be critical for distinguishing between
two closely related species but it is challenging to quantify those
in a way that would be relevant for comparison between Carbon-
iferous and Triassic forms. Hence, ornamentation was not taken
into account in the present study.

All measured individuals were subjected to a generalized full
Procrustes superimposition using the two sets of landmarks in
TPSRELW [83]. This procedure allowsus to standardize the configur-
ations of landmarks for scale and orientation. The Procrustes
coordinates (individual residuals to the resulting consensus) were
used as shape variables in the subsequent analyses. Deformations
along the axes of the PCA were visualised using the ‘Geometry/
Landmarks/PCA’ function in PAST ([37], v. 4.05).
(d) Statistics
The Procrustes coordinates were analysed using a PCA on the
variance-covariance matrix using the above-mentioned function
in PAST [37]. Only the axes explaining more than 5% of variance
were considered significant and included in subsequent analysis
(see the electronic supplementary material, figures S3–S4). An
option in that software allows us to assess within-group vari-
ation, where the average within each group is subtracted prior
to eigenanalysis, essentially removing the differences between
groups. For the general case (‘Disregard groups’ option), 1000
iterations were computed using the bootstrap option. Shape
differences between genera were tested using a PERMANOVA
(non-parametric multivariate analysis of variance based on
9999 permutations) and associated pairwise post-hoc tests. Fol-
lowing protocol from [38], Pmax is estimated as the reduced
major axes (RMA) of each species and was calculated on PC1
and PC2 of the total dataset without holotypes. This regression
is specifically formulated to handle errors in both the x and y
variables by minimizing the sum of the areas (thus using both
vertical and horizontal distances of the data points from the
resulting line) [84]. Slopes differences were tested using the χ2

test for multiple comparison of RMA slopes available in PAST.
The significance of the phylogenetic structure of the morphospace
has been tested using a permutation test against the null hypothesis
of no phylogenetic signal (1000 iterations) using the MORPHOJ soft-
ware [85]. Temporal trends were tested using the non-parametric
Mann-Kendall test (as implemented in the ‘Timeseries’ module of
PAST, [37]) and correlations were assessed using Pearson (linear
r) and Spearman’s D statistics (as implemented in the ‘Univariate’
module of PAST, [37]). The trend is documented against ranked
temporal position for the CN fauna at the generic level and for
theDCsiphonodellids at the species level (under two slightly differ-
ent ways of classifying DC taxa). In both cases those sequences are
consensual at those levels.

Data accessibility. The morphometry are available at the following links,
(DC specimens: http://morphobank.org/permalink/?P4424; CN
specimens: http://morphobank.org/permalink/?P4048). The mor-
phometrical data is available in the electronic supplementary
material [86].
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