Skip to main content
. 2022 Sep 16;9:1015367. doi: 10.3389/fsurg.2022.1015367

Table 3.

Linear regression predicting blame across scenarios.

Robot blame Surgeon blame Hospital blame Other/No blame
Past Surgery −.05 (−2.76)** .01 (0.55) .06 (2.87)** −.01 (0.71)
Gender (0 = Male; 1 = Female) −.01 (−0.56) −.04 (−2.01)* .01 (.056) .07 (3.49)**
Age range −.04 (−2.21)** .01 (0.87) −.03 (−1.75) .09 (4.52)**
Education Level −.07 (−2.82)** .04 (1.63) −.00 (−.07) .04 (1.77)
Profession Business −.00 (0.01) .08 (3.39)** −.03 (−1.38) −.09 (−3.77)**
Profession Computing −.04 (−1.65) .05 (2.17)* .01 (0.50) −.04 (−1.82)
Profession Healthcare −.09 (−3.49)** .11 (4.17)** −.04 (−1.57) .01 (0.66)
Overall R R = .16
F(7,2183) = 8.89**
R = .13
F(7,2183)= 6.15**
R = .08
F(7,2183) = 2.50*
R = .17
F(7,2183) = 9.67**

Regression predicting total blame distribution across 5 scenarios. Standardized regression beta values presented, t values presented in parentheses.

*p < .05, **p < .01.