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Cancer stem-like cells (CSLC) are considered a major contributor to the

development and progression of hepatocellular carcinoma (HCC). Previous

studies indicated that CSLC are characterized by resistance to ferroptosis,

a type of lipid peroxidation-dependent cell death. Here, we identified a set

of ferroptosis-related stemness genes (FRSG) and found that these genes

may be involved in immune infiltration in HCC. A four-FRSG (CDKN2A,

GABARAPL1, HRAS, RPL8) risk model with prognostic prediction was

constructed by a Cox analysis in HCC. Among these four genes, GABAR-

APL1 was downregulated in HCC tumor-repopulating cells (TRC; a type

of CSLC). Its downregulation decreased the sensitivity of HCC TRC to

erastin- or sorafenib-triggered ferroptosis. Together, we uncovered a molec-

ular mechanism via which CSLC could achieve tolerance to ferroptosis.

Further studies may provide potential therapeutic strategies targeting

CSLC in HCC.
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1. Introduction

Hepatocellular carcinoma (HCC) is a major type of

primary liver cancer. Although its treatments have led

to great improvements, patients with HCC still suffer

a poor outcome, being mainly due to the limited effi-

cacy of treatment as well as primary or acquired resis-

tance [1]. Cancer stem-like cells (CSLC) attract a

growing body of attentions for their features (e.g. self-

renewal and differentiation) that could regenerate

all properties of a tumor [2]. Convincing evidence indi-

cates the driving role of CSLC in HCC, greatly con-

tributing to the tumor recurrence and therapy

resistance [2]. Therefore, targeting CSLC was consid-

ered a potential therapeutic strategy for HCC.

Ferroptosis is a novel iron-dependent regulated cell

death (RCD) caused by unlimited lipid peroxidation

and subsequent membrane destruction [3]. It is regu-

lated via two pathways – an extrinsic pathway medi-

ated by the suppression of cell membrane transporters

(e.g. cystine/glutamate transporter, also known as sys-

tem xc−) or by the activation of iron transporter, and

an intrinsic pathway triggered by the inhibition of

antioxidant cascades (e.g. GPX4) [3]. Of note, most

investigations agree that there is a higher iron level in

CSLC than in differentiated tumor cells [4]. Excess

iron can induce ferroptosis via a Fenton reaction [5],

indicating that triggering ferroptosis may be a selective

and potential strategy for killing CSLC. However, a

high level of iron conferred robust sphere-forming

capacity and stemness rather than ferroptosis to CSLC

in some cancer types [4], prompting the suggestion

CSLC may evolve countermeasures against ferroptosis.

For instance, pluripotency factor SOX2 transcription-

ally upregulates SLC7A11, a key component of the

system xc−, and thus accelerates cysteine uptake and

glutathione (GSH) synthesis, and confers ferroptosis

resistance to CSLC in lung cancer [6]. Consequently, it

is of great importance to understand the mechanism

underlying CSLC resistance to ferroptosis, contribut-

ing to the strategy for killing CSLC.

Bioinformatics has attracted growing attention due

to its potent function in mining the molecular mecha-

nism in cancers. In the paper, a one-class logistic

regression (OCLR) machine-learning algorithm was

used to identify ferroptosis-related stemness genes

(FRSG) in HCC [7]. Consensus clustering was first

employed to classify HCC samples from The Cancer

Genome Atlas (TCGA) database and evaluated

its correlation with immune infiltration and tumor

mutational burden (TMB). Cox analysis was then

applied to construct a four-gene risk score (RS) model

for predicting patient survival. Most importantly, we

revealed that one of the hub genes, GABARAPL,

was downregulated in tumor-repopulating cells (TRC,

a kind of CSLC) [8], which was associated with

TRC resistance to ferroptosis inducers (erastin and

sorafenib).

2. Methods and materials

2.1. Bioinformatics analysis

HCC RNA-seq data (TCGA-LIHC) were downloaded

from TCGA (normal, n = 47; tumor, n = 345; https://

portal.gdc.cancer.gov/) and the ICGC database (Inter-

national Cancer Genome Consortium; tumor, n = 231;

https://dcc.icgc.org/projects/LIRI-JP). The clinical

information of these HCC patients is displayed in

Table 1. The RNA-seq data of other 32 types of can-

cers were also downloaded from TCGA database. The

Table 1. Clinical features of tumor patients in TCGA and ICGC

datasets.

Characteristics

TCGA

(n = 345)

ICGC

(n = 231)

Age

< 65 205 82

≥ 65 139 149

Sex

Male 235 170

Female 110 61

Stage

I 162 36

II 78 105

III 80 71

IV 3 19

Grade

G1 53

G2 162

G3 113

G4 12

NA 5

Body mass index

< 18.5 19

18.5–24.9 144

≥ 25 154

NA 28

Fibrosis Ishak score

0 – no fibrosis 72

1,2 – portal fibrosis 30

3,4 – fibrous septa 24

5 – nodular formation and

incomplete cirrhosis

8

6 – established cirrhosis 67

NA 141
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OCLR algorithm was applied to calculate the mRNA

expression-based stemness index (mRNAsi) of each

sample from TCGA [7]. Ferroptosis-related genes

(FRG, n = 248) were obtained from the FerrDb data-

base (http://www.zhounan.org/ferrdb/legacy/index.

html#) [9]. The package ‘limma’ of R (version 4.1.0)

was employed to identify the differential expressed

genes (DEG) between normal and HCC tissues based

on TCGA [10]. Gene Ontology (GO) analysis was con-

ducted by using the ‘clusterProfiler’ package [11].

Consensus clustering achieved by the ‘Consen-

susClusterPlus’ package was employed to classify HCC

patients [12]. Kaplan–Meier (K–M) curve was plotted

using the ‘survival’ package (https://cran.r-project.org/

package=survival) to achieve the survival analysis.

The tumor microenvironment was evaluated by ESTI-

MATE, MCPcounter and ssGSEA algorithms [13–15].
The tumor immune dysfunction and exclusion (TIDE)

algorithm was used to predict patients’ responses to

immune checkpoint inhibitors (ICI) [16]. The mutation

information was obtained from TCGA and analyzed

using the ‘maftools’ package [17].

According to the discovery cohort TCGA, univari-

ate Cox analysis was employed to confirm the candi-

date genes with prognostic signature (P < 0.05 as the

threshold). Multivariate Cox analysis (P < 0.05 as

the cutoff value) was thenapplied to construct a risk

model as followed: RS = ∑CoefmRNAs × ExpmRNAs.

The model was further estimated by the K–M curve

and receiver operating characteristic (ROC) curve in

both the discovery cohort (TCGA) and the validation

cohort (ICGC). Subsequently, univariate Cox analysis

proceeded to estimate the clinical characteristics and

RS, with P < 0.2 as the cutoff value. Further multi-

variate Cox analysis identified the factors for a con-

structing nomogram, with P < 0.05 as the threshold.

Considering the importance of stage, the nomogram

was established by variables including RS, sex and

stage, using the ‘rms’ package (https://cran.r-project.

org/package=rms). Moreover, the protein expression

of GABARAPL1 was investigated using the Human

Protein Atlas (HPA) database (https://www.

proteinatlas.org/) [18]. Finally, survival analysis of

GABARAPL1 in HCC was conducted by the Kaplan–
Meier Plotter online tool [19].

2.2. Cell lines and reagents

All cell lines were from the Liver Cancer Institute,

Zhongshan Hospital, Fudan University (Shanghai,

China). Human liver cancer cell lines SNU449, SK-

Hep1, MHCC97H, SMMC7721, LM3, Huh7 and

PLC/PRF/5, and normal human liver cell line L02

were maintained in Dulbecco’s modified Eagle medium

(DMEM; GNM12800-2, GENOM, Zhejiang, China)

with 10% FBS (Sigma, St. Louis, MO, USA) and 1%

penicillin–streptomycin (GNM-15140, GENOM).

Human liver cancer cell line Hep3B was cultured in

Minimum Essential Medium (MEM; GNM41500-2,

GENOM) with 10% FBS and 1% penicillin–strepto-
mycin. Cells were kept at 37 °C in 5% CO2 in a

humidified ThermoForma incubator (Thermo Fisher

Scientific, Waltham, MA, USA).

Erastin (HY-15763), RSL3 (HY-100218A) and sora-

fenib (HY-10201) were purchased from MedChemEx-

press (Monmouth Junction, NJ, USA). GABARAPL1

(#26632) antibody (Ab) was from Cell Signaling Tech-

nology (Beverly, MA, USA), and GAPDH Ab

(AF0006) was sourced from Beyotime Biotechnology

(Nantong, China). Rabbit (A0208) and mouse (A0216)

horseradish peroxidase-conjugated secondary Ab were

from Beyotime Biotechnology. Salmon fibrinogen

(SEA-133) and thrombin (SEA-135) were purchased

from Sea Run Holdings Inc. (Freeport, ME, USA).

2.3. 3D culture of TRC

Soft 3D fibrin gel was established to select TRC. Pre-

vious study indicated that fibrin gel of 90 Pa was the

optimal gel for cancer cell spheroid formation [20].

Hence, to screen HCC TRC, cells cultured in 2D rigid

plates were trypsinized and resuspended with complete

medium, followed by mixing with an isochoric salmon

fibrinogen (2 mg�mL−1) diluted with T7 buffer (50 mM

Tris–HCl, 150 mM NaCl, pH 7.4). Then, 100 U�mL−1

thrombin was added to culture plate, and mixed with

the cell suspension (Volume, thrombin/cell suspen-

sion 1 : 50). After incubation for 30 min in 37 °C
humidified incubator, the 3D fibrin gel was finished

and then complete medium was added to each well.

Finally, the cells were cultured in humidified incubator

and used for further experiments.

2.4. Colony formation assay

Colony formation assay was performed to determine

the proliferation ability of 2D cultured HCC cells. In

short, cells (1–3 × 104 cells per well) were incubated in

a 6-well plate and cultured for 7–14 days. Colonies

were then stained with crystal violet solution (V5265,

Sigma). After recording, the crystal violet in each well

was eluted by 30% acetic acid (1 mL) and 100 μL elu-

ent was added to a 96-well plate and its absorbance

was measured at 600 nm using FlexStation3 multi-

mode (Molecular Devices Corporation, Sunnyvale,

CA, USA).
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2.5. Western blotting assay

Total proteins were obtained from HCC cells in 2D/3D

cultures applying RIPA lysis buffer (WB0101, WellBio

Technology Co., Ltd, Shanghai, China), and were sepa-

rated on 12% SDS/PAGE and then transferred to

polyvinylidene difluoride (PVDF; ISEQ00010, Merck

Millipore Ltd., Darmstadt, Germany) membranes. After

blocking by western blocking buffer (WB6014, WellBio

Technology Co., Ltd) for 30 min, the membranes were

probed using the primary Ab at 4 °C overnight and then

incubated with corresponding secondary Ab for 1 h.

Finally, the bands were detected by ChemistarTM high-

sig ECL western blotting substrate (180–5001, Tanon,
Shanghai, China) and visualized by Odyssey Imaging

System (LiCor Biosciences, Lincoln, NE, USA).

2.6. Quantitative reverse transcription

polymerase chain reaction (qRT-PCR)

Total RNA were extracted from HCC cells in 2D/3D

cultures using TRIzol reagent (15596026, Invitrogen,

Carlsbad, CA, USA). Complementary DNA was

obtained using PrimeScript RT Master Mix (RR036A,

TaKaRa, Dalian, China). Then qRT-PCR was per-

formed using SYBR Green kit (11202ES08, Yeasen,

Shanghai, China) on an ABI Prism 7500 sequence

detection system (Applied Biosystems, Foster City,

CA, USA). The conditions were set as follows: initial

denaturation at 95 °C for 5 min, 40 cycles of 95 °C for

10 s and 60 °C for 30 s. The 2�ΔΔCT method was used

to calculate the gene expression change, with GAPDH

as the internal normalization. The primes were:

GAPDH forward primer 50-GGAAGCTTGTCAT

CAATGGAAATC-30;
GAPDH reverse primer 50-TGATGACCCTTTTG

GCTCCC-30;
GABARAPL1 forward primer 50-AGGGTCCCCG

TGATTGTAGA-30;
GABARAPL1 reverse primer 50-AGAACTGGCCA

ACAGTAAGG-30.

2.7. Lipid peroxidation and GSH assay

According to the manufacturer’s instructions, lipid

peroxidation was detected using MDA assay kit

(S0131S, Beyotime) and BODIPY 581/591 C11

(D3861, Invitrogen), and the GSH level was measured

by applying a Glutathione Assay Kit (Beyotime,

S0053). The level of MDA and GSH was normalized

to the corresponding protein level.

2.8. RNA interference and lentivirus-mediated

transfection

To silence the expression of GABARAPL1, cells were

transfected with siRNA by applying riboFECTTM CP

(C10511-05, RIBOBIO, Guangdong, China). The

siRNA sequence targeting GABARAPL1 was 50-GGA

CCAUCCCUUUGAGUAUUU-30, and control siRNA

was 50-UAAGGCUAUGAAGAGAUACUU-30.
To overexpress GABARAPL1, lentivirus was used to

transfect the plasmid into HCC cells. Plasmid for over-

expressing GABARAPL1 was purchased from Geno-

meditech Co., Ltd. (Shanghai, China).

2.9. Statistical analysis

R software (version 4.1.0, R Core Team, R Founda-

tion for Statistical Computing, Vienna, Austria) and

GRAPHPAD PRISM 8 (San Diego, CA, USA) were

employed for plotting and statistical analysis. The RS

model was established using univariate and multivari-

ate Cox analysis. The t-test and Mann–Whitney test

were applied for normally and non-normally dis-

tributed data, respectively. The overall survival (OS)

represented the time from diagnosis to the last follow-

up or death. As for the cellular experiments, t-test was

used to compare the difference between two groups.

The data were displayed as mean � SD of three inde-

pendent experiments. P < 0.05 was considered statisti-

cally significant unless otherwise noted.

3. Results

3.1. Identification of DEG related to both

ferroptosis and stemness

According to TCGA dataset, 6496 DEG were identified

between normal and HCC tissues, consisting of 4666

upregulated and 1830 downregulated DEG (Fig. 1A).

We next obtained 248 FRG from the FerrDb database

and evaluated their correlation with tumor stemness via

OCLR algorithm and Pearson correlation analysis,

which identified 126 FRSG (Fig. 1B). The overlapped

genes (n = 40) between the two sets were considered as

the FRSG in HCC, including 19 upregulated and 21

downregulated FRSG (Fig. 1B). We also showed the

potential correlation between these genes and stemness

in a broad range of cancer types (Fig. 1C). GO analysis

indicated that the top three enriched biological processes

(BP) of upregulated FRSG were cellular response to

chemical stress, response to oxidative stress and reactive

oxygen species metabolic process (Fig. 1D). The
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downregulated FRSG were mainly concentrated on reg-

ulation of MAP kinase activity, regulation of inflamma-

tory response and response to oxidative stress (Fig. 1E).

3.2. C2 type HCC possess longer OS and higher

immune infiltration, but lower TMB

Consensus clustering was employed to classify HCC

samples into two clusters, C1 and C2 (Fig. 2A). The

heatmap displayed the expression of the FRSG in the

two clusters. K–M curve indicated that C2 type HCC

had a longer OS than C1 type HCC (mOS, 1852 vs.

1622 days, P = 0.035; Fig. 2B). More advanced

(28.5% vs. 17.0%, P < 0.05) and high grade (43.0%

vs. 25.3%, P < 0.01) tumors were observed in C1 than

in C2 type HCC (Fig. 2C). We then estimated the

immune infiltration and found that C2 type HCC had

a higher stromal score (P < 0.0001), immune score

(P < 0.0001) and ESTIMATE score (P < 0.0001), but

lower tumor purity (P < 0.0001) compared with C1

type HCC (Fig. 3A). MCPcounter and ssGSEA algo-

rithms were employed to investigate the infiltrated cells

and demonstrated that C2 type HCC had higher infil-

tration than C1 type HCC (Fig. 3B,C). Further
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Fig. 3. Microenvironment and mutation estimation of C1 and C2 type HCC. (A–C) The immune microenvironment of HCC was determined

by ESTIMATE (A), MCPcounter (B) and ssGSEA (C) algorithms. (D) The expression of immune checkpoints in HCC. The error bars indicate

SD. (E) TIDE algorithm showed differential ICI sensitivity in the two clusters (Chi-square test). (F) Waterfall plot shows the mutation fre-

quency in C1 and C2 type HCC. (G) TMB analysis. (H) The frequency of TP53 mutation in HCC (Chi-square test). All of these analyses were

conducted in TCGA-LIHC cohort (n = 345). When comparing two groups, the t-test and Mann–Whitney test were applied for normally and

non-normally distributed data, respectively. HCC, hepatocellular carcinoma; ICI, immune checkpoint inhibitors; TIDE, tumor immune dysfunc-

tion and exclusion. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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analysis revealed that the majority of immune check-

points had a higher expression in C2 than in C1 type

HCC, including CD274, PDCD1LG2 and CD40LG

(Fig. 3D). TIDE algorithm was next applied to predict

patients’ responses to ICI. The data showed that C2

type HCC was more reactive to ICI than was C1 type

HCC (59.7% vs. 31.9%, P < 0.0001; Fig. 3E). We also

evaluated the somatic mutations between the two clus-

ters. According to the waterfall plot, more mutations

occurred in C1 than in C2 type HCC (Fig. 3F). The

TMB was calculated and revealed that C1 type HCC

had higher TMB than C2 type HCC (P = 0.0159;

Fig. 3G). The mutation rate of TP53, the most fre-

quent mutation in HCC, was also higher in C1 than in

C2 type HCC (35.1% vs. 14.9%, P < 0.001; Fig. 3H).

Taken together, C2 type HCC had better prognosis,

higher immune infiltration ad a higher response to

ICI, but a lower TMB compared with C1 type HCC.

3.3. Construction and validation of an RS model

with prognostic signature

To construct a model for predicting HCC OS, univariate

Cox analysis was used to identify the candidate genes

with prognostic signature in the discovery cohort TCGA

dataset. Taking P < 0.05 as threshold, 20 candidate genes

were screened and further analyzed using multivariate

Cox analysis (Table 2). A risk model was established as

follows: RS = 1.14 × Exp CDKN2A + 1.19 × Exp

GABARAPL1 + 0.76 × Exp HRAS + 1.48 × Exp

RPL8. HCC patients were divided into two groups, a low

RS group and a high RS group, based on the median

value. The K–M curve indicated that the high RS group

possessed significantly shorter OS than the low RS group

(1397 vs. 2456 days, P < 0.0061; Fig. 4A). Increasing

tumor-related death and decreasing patient survival

occurred with increasing RS, and the expression of

related FRSG was displayed in a heatmap (Fig. 4B,C).

The area under the curve (AUC) values of RS were 0.666

and 0.602 for 1-year survival and 3-year survival, respec-

tively (Fig. 4D). The predictive efficiency of RS was also

verified in the ICGC dataset (Fig. 4A–D).

Next, univariate and multivariate Cox analysis indi-

cated that RS and sex were independent prognostic fac-

tors for HCC OS (Table 3, Fig. 4E). Given the

importance of tumor stage, they were employed together

to construct a nomogram (Fig. 4F). Compared with the

ideal model in TCGA dataset, calibration plots sug-

gested that 1-year and 3-year OS rates were well pre-

dicted in HCC patients by this nomogram (Fig. 4G).

3.4. Low GABARAPL1 is associated with poor

prognosis of HCC

Ferroptosis resistance was considered characteristic of

CSLC [6]. In line with this, we selected GABARAPL1

Table 2. Univariable and multivariable Cox analysis of the candidate genes.

Genes

Univariable Cox Multivariable Cox

HR [95% CI] P-value HR [95% CI] P-value

AIFM2 1.40 [1.12–1.73] 0.002473 1.01 [0.82–1.25] 0.923

AKR1C3 1.33 [1.13–1.57] 0.000685 0.96 [0.79–1.17] 0.712

AURKA 1.29 [1.13–1.48] 0.000264 1.08 [0.91–1.28] 0.382

BLOC1S5-TXNDC5 1.14 [1.02–1.27] 0.022668 0.90 [0.79–1.02] 0.104

CDKN2A 1.18 [1.07–1.30] 0.001195 1.14 [1.04–1.26] 0.007

FANCD2 1.31 [1.15–1.50] 4.72E-05 1.13 [0.87–1.46] 0.355

FLT3 0.90 [0.81–1.00] 0.046235 1.00 [0.91–1.09] 0.939

G6PD 1.41 [1.27–1.57] 1.22E-10 0.99 [0.84–1.16] 0.87

GABARAPL1 0.83 [0.72–0.96] 0.012061 1.19 [1.02–1.39] 0.027

HELLS 1.22 [1.09–1.36] 0.000636 1.07 [0.89–1.29] 0.456

HRAS 1.48 [1.22–1.78] 5.35E-05 0.76 [0.58–0.98] 0.035

HSF1 1.47 [1.19–1.82] 0.000321 0.75 [0.52–1.08] 0.126

HSPB1 1.23 [1.05–1.43] 0.009336 1.09 [0.90–1.31] 0.374

MT3 1.23 [1.05–1.20] 0.000715 1.04 [0.97–1.11] 0.268

MYB 1.25 [1.12–1.39] 7.60E-05 1.02 [0.91–1.15] 0.735

RPL8 1.27 [1.08–1.49] 0.002956 1.48 [1.13–1.94] 0.004

RRM2 1.32 [1.17–1.50] 1.17E-05 0.88 [0.72–1.09] 0.246

SQSTM1 1.41 [1.20–1.65] 2.14E-05 1.03 [0.87–1.22] 0.735

STMN1 1.46 [1.26–1.68] 3.05E-07 0.85 [0.68–1.07] 0.162

TAZ 1.47 [1.12–1.93] 0.005725458 1.00 [0.75–1.32] 0.978

The bold values indicate the significant factors calculated by both univariable and multivariable cox analysis.
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as the focus of our further study, due to three features:

driver factor of ferroptosis; downregulation in HCC;

negative correlation with stemness (Fig. 5A). In detail,

GABARAPL1 was downregulated in HCC in both

mRNA and protein level (Fig. 5B–D). Data from the

Kaplan–Meier Plotter online tool showed that patients

with high GABARAPL1 expression had longer OS

(71.0 vs. 38.3 months, P = 0.00029), recurrence-free

survival (RFS, 30.4 vs. 21.2 months, P = 0.039), pro-

gression free survival (PFS, 30.4 vs. 14.3 months,
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Fig. 4. Construction of an RS model and nomogram. (A) K–M curve of RS in TCGA (n = 345) and ICGC (n = 231) datasets (log rank test).

(B) RS for each sample in TCGA (n = 345) and ICGC (n = 231) datasets were displayed in scatter diagram. (C) The expression of the hub

genes in TCGA (n = 345) and ICGC (n = 231) datasets. (D) ROC curve of RS in TCGA (n = 345) and ICGC (n = 231) datasets. (E) Forest

diagram showed the multivariable Cox analysis of clinical features and RS in TCGA (n = 345) dataset. The error bars indicate 95%

confidence interval (CI). (F, G) A nomogram was established in TCGA (n = 345) dataset based on RS, sex and stage (F). The efficacy of

nomogram was estimated by calibration curves in TCGA (n = 345) dataset (G). ICGC, International Cancer Genome Consortium; AUC, under

the curve; K–M, Kaplan–Meier; OS, overall survival; ROC, receiver operating characteristic; RS, risk score; TCGA, The Cancer Genome Atlas.

Table 3. Univariable and multivariable Cox analysis of the clinical features and risk score.

Clinical features

Univariable Cox Multivariable Cox

HR [95% CI] P-value HR [95% CI] P-value

Age 1.01 [0.99–1.02] 0.248759

Body mass index 0.97 [0.93–1.00] 0.065496 1.00 [0.97–1.02] 0.738

Grade 1.09 [0.86–1.39] 0.488169

Fibrosis Ishak score 0.90 [0.77–1.06] 0.205068

Risk score 1.11 [1.05–1.17] 0.000463 1.06 [1.01–1.11] 0.026

Sex 0.78 [0.54–1.12] 0.171482 1.41 [1.03–1.93] 0.033

Stage 1.8 [1.46–2.23] 4.25E-08 0.88 [0.73–1.06] 0.176

The bold values indicate the significant factors calculated by both univariable and multivariable cox analysis.
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P < 0.0001) and disease-free survival (DSS, 59.7 vs.

22.0 months, P = 0.00013) than those with low

GABARAPL1 expression (Fig. 5E). Setting tumor

stage as a stratified factor, the expression of GABAR-

APL1 was also significant correlated with HCC OS,

RFS, PFS, and DSS (Suporting Information Fig. S1A,

B). Hepatitis B virus (HBV) infection and alcohol

abuse are the major causes of HCC. The expression of

GABARAPL1 also had a clinically and statistically sig-

nificant prognostic value in all subgroups when taking

alcohol consumption as a stratified factor (Fig. S1C).

Of note, setting HBV infection as a stratified factor,

GABARAPL1 only achieved a significantly prognostic

value in patients without HBV infection, but not in

patients with HBV infection (Fig. S1D). We also ana-

lyzed the correlation between GABARAPL1 expression

and immune infiltration in HCC. Results showed that

the expression of GABARAPL1 had a negative corre-

lation with most immune cells (e.g. B cells, T cells and

macrophages) but a positive correlation with stromal

cells (e.g. fibroblasts and endothelial cells, Supporting

Information Fig. S2A,B). Consequently, low GABAR-

APL1 expression was considered an indicator of poor

prognosis in HCC.
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3.5. HCC cells with high GABARAPL1 expression

was more vulnerable to ferroptosis

To explore its function further, the expression of

GABARAPL1 was determined in HCC cell lines.

GABARAPL1 mRNA was significantly downregulated

in SNU449, MHCC97H and SK-Hep1 cell lines, and

significantly upregulated in LM3, PLC/PRF/5 and

Huh7 cell lines, but was not significantly changed in

SMMC7721 and Hep3B when compared with normal

human liver cell line L02 (Fig. 6A). Western blot

showed similar alterations of GABARAPL1 proteins in

HCC cell lines (Fig. 6B). Colony formation assay

demonstrated that erastin effected a moderate growth

suppression of HCC cell lines with low GABARAPL1,

and strong inhibited HCC cell lines with high GABAR-

APL1 (Fig. 6C). MHCC97H (low GABARAPL1) and

Huh7 (high GABARAPL1) were selected to determine

the correlation between GABARAPL1 expression and

lipid peroxidation. Data from MDA assay and flow

cytometry showed that GABARAPL1 may enhance

erastin-induced lipid peroxidation (Fig. 6D,E). In addi-

tion, erastin triggered a more obvious decrease of

GSH level in Huh7 cells than in MHCC97H cells

(Fig. 6F). We next overexpressed GABARAPL1 in

MHCC97H cells, and silenced GABARAPL1 in Huh7

cells (Fig. S3A,B). As shown, erastin did not have a

significant influence on lipid peroxidation in

GABARAPL1-silenced Huh7 cells, but did trigger a

significant alternation in GABARAPL1-overexpressed

MHCC97H cells (Fig. S3C–F). Collectively, GABAR-

APL1 may sensitize HCC cells to erastin.

3.6. TRC-acquired ferroptosis resistance due to

downregulated GABARAPL1

We investigated the correlation between GABARAPL1

and stemness in HCC. We found that, with the excep-

tion of SNU449 cells, the remaining seven HCC cells

emerged a typical spheroidizing growth in 3D soft fib-

rin gels (Fig. 7A). Consistently, compared with 2D cul-

tured cells, the lower expression of GABARAPL1

mRNA and proteins in TRC was observed in seven

HCC cell lines, but not in SNU449 cells (Fig. 7B).

Considering the sensitivity to erastin, Huh7 and PLC/

PRF/5 cells were selected for further estimations. As

anticipated, erastin barely suppressed the colony spher-

oids of Huh7-TRC and PLC/PRF/5-TRC (Fig. 7C).

To confirm the underlying function of GABARAPL1,

lentivirus-mediated transfection was applied to transfer

GABARAPL1 plasmid into TRC, which was demon-

strated by western blot and qRT-PCR (Fig. S4). We

found that overregulation of GABARAPL1 promoted

sensitivity of Huh7-TRC and PLC/PRF/5-TRC to era-

stin treatment (Fig. 7D). Under erastin treatment,

more lipid peroxidation occurred in GABARAPL1-

overexpressed Huh7-TRC and PLC/PRF/5-TRC

(Fig. 7E,F) than in the empty vector group. These

results indicated that downregulating GABARAPL1

confers ferroptosis resistance to HCC-TRC, and

upregulating it will recover sensitivity.

3.7. GABARAPL1 expression was concerned with

sorafenib sensitivity

The above results indicated the correlation between

GABARAPL1 and ferroptosis sensitivity. Of note,

the expression of GABARAPL1 only predicted HCC

sensitivity to erastin-induced ferroptosis, not to RSL3-

induced ferroptosis (Fig. 6C). Sorafenib shared a similar

action mode to erastin, i.e. inhibition of system xc
− [21].

Hence, we hypothesized that GABARAPL1 also regu-

lates the sensitivity of HCC cells to sorafenib. To this

end, we investigated the efficacy of sorafenib on 2D cul-

tured HCC cells and found that low GABARAPL1 cells

were resistant to sorafenib, whereas high GABARAPL1

cells were sensitive to sorafenib, consistent with erastin

treatment (Fig. 8A). MDA assay and flow cytometry

revealed that sorafenib induced more lipid peroxidation

in Huh7 cells than in MHCC97H cells, indicating more

ferroptosis occurred in high-expressing HCC cells

(Fig. 6D,E). Sorafenib also resulted in more reduction

of GSH in high-expressing HCC cells (Fig. 6F). More-

over, overexpressing GABARAPL1 improved the sensi-

tivity of MHCC97H to sorafenib, whereas silencing

GABARAPL1 decreased the sensitivity of Huh7 to sora-

fenib (Fig. S2C–F). Accordingly, sorafenib-induced fer-

roptosis was associated with the expression of

GABARAPL1.

We and others suggested that CSLC made a large

contribution to sorafenib resistance in HCC (Fig. 8B)

[22]. Of importance, enforced overexpression of

GABARAPL1 restored the sensitivity of Huh7-TRC

and PLC/PRF/5-TRC to sorafenib treatment (Fig. 8

C). More specifically, sorafenib treatment elicited more

lipid peroxidation in GABARAPL1-overexpressed

Huh7-TRC, as well as PLC/PRF/5-TRC (Fig. 7E,F).

4. Discussion

We investigated a series of FRSG and divided HCC

samples in two clusters based on these FRSG. C1 type

HCC possessed low immune infiltration and ICI

response rate but high TMB, and led to a poorer prog-

nosis compared with C2 type HCC. We further

constructed a four-gene RS model (CDKN2A,
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GABARAPL1, HRAS, RPL8) which gave a good pre-

diction of HCC patient outcome. Among these genes,

we found that GABARAPL1 was correlated with HCC

cells sensitivity to ferroptosis inducers. Most impor-

tantly, GABARAPL1 was downregulated in HCC

TRC that were resistant to ferroptosis inducers, and

overexpression of the gene recovered ferroptosis sensi-

tivity in these cells. These data suggest that loss of

GABARAPL1 may contribute to ferroptosis resistance

in HCC CSLC.

In the past year, dozens of bioinformatics articles

investigated the correlation of FRG in cancers [23–25]
For instance, Liang et al. constructed a 10-FRG RS

model that effectively predicted HCC patient prognosis

in both discovery and validation cohorts, and showed

that high-risk patients had attenuated antitumor immu-

nity [23]. In this article, the difference was that we

focused on FRSG, a set of genes related to ferroptosis

as well as stemness. According to these FRSG, HCC

samples were classified into two clusters, C1 and C2.

2D culture 3D culture

SNU449

MHCC97H

SK-HEP1

SMMC7721

Hep3B

LM3

PLC/PRF/5

Huh7

(A) (B)

m
R

N
A

 e
xp

re
ss

io
n

0.0
0.5
1.0
1.5 ns

0.0
0.5
1.0
1.5 ***

0.0
0.5
1.0
1.5 *

0.0
0.5
1.0
1.5 ***

0.0
0.5
1.0
1.5 **

0.0
0.5
1.0
1.5 *

0.0
0.5
1.0
1.5 ***

0.0
0.5
1.0
1.5 ***

2D 3D

(C)

2D 3D
GABARAPL1

GAPDH

kDa
15

35

2D 3D
GABARAPL1

GAPDH

kDa
15

35

2D 3D
GABARAPL1

GAPDH

kDa
15

35

2D 3D
GABARAPL1

GAPDH

kDa
15

35

2D 3D
GABARAPL1

GAPDH

kDa
15

35

2D 3D
GABARAPL1

GAPDH

kDa
15

35

2D 3D
GABARAPL1

GAPDH

kDa
15

35

2D 3D
GABARAPL1

GAPDH

kDa
15

35

Erastin (10 μM)DMSO

Erastin (10 μM)
DMSO

0 51 2 3 6 74
days

0

60

20

40

C
ol

on
y 

vo
lu

m
e

 (×
10

3  μ
m

³)

Huh7-TRC

ns

Erastin (10 μM)DMSO

Huh7-TRC

PLC/PRF/5-TRC

Vector + ErastinVector OE OE + Erastin

Huh7-TRC PLC/PRF/5-TRC

VectorOE
FITC-A

C
ou

nt

Sorafenib (5 μM)Erastin (10 μM)DMSO

m
R

N
A

 e
xp

re
ss

io
n

m
R

N
A

 e
xp

re
ss

io
n

m
R

N
A

 e
xp

re
ss

io
n

m
R

N
A

 e
xp

re
ss

io
n

m
R

N
A

 e
xp

re
ss

io
n

m
R

N
A

 e
xp

re
ss

io
n

m
R

N
A

 e
xp

re
ss

io
n

GABARAPL1

(E)

M
D

A/
pr

ot
ei

n 
(n

m
ol

/m
g)

Erastin (10 μM)
Sorafenib (5 μM)

0

15

10

5

-
-

+
-

-
+

Vector OE

ns
nsns

*
*

Huh7-TRC

-
-

+
-

-
+

M
D

A/
pr

ot
ei

n 
(n

m
ol

/m
g)

0

4

3

2

-
-

+
-

-
+

Vector OE

ns
ns

ns

*
*

PLC/PRF/5-TRC

-
-

+
-

-
+

1

(F)

Bo
di

py
 M

FI

Erastin (10 μM)
Sorafenib (5 μM)

0

2000

1500

1000

-
-

+
-

-
+

Vector OE

ns
nsns

*
*

Huh7-TRC

-
-

+
-

-
+

Bo
di

py
 M

FI
0

4000

3000

2000

-
-

+
-

-
+

Vector OE

ns
ns

ns

*
*

PLC/PRF/5-TRC

-
-

+
-

-
+

1000500

VectorOE

Erastin (10 μM)
DMSO

0 51 2 3 6 74
days

0

100

20
40

PLC/PRF/5-TRC

ns
80
60

Vector + Erastin (10 μM)
Vector
OE
OE + Erastin (10 μM) ns

***

0 51 2 3 6 74
days

0

100

20

80

C
ol

on
y 

vo
lu

m
e

 (×
10

3  μ
m

³)

Huh7-TRC

ns60
40

Vector + Erastin (10 μM)
Vector
OE
OE + Erastin (10 μM) ns

*

0 51 2 3 6 74
days

0

150

50

PLC/PRF/5-TRC

ns100

(D)

50 μm 50 μm

50 μm

50 μm

50 μm

Fig. 7. Downregulation of GABARAPL1 in HCC-TRC involved in ferroptosis resistance. (A) Cell morphology of 2D and 3D cultured HCC cells.

(B) The mRNA and protein level of GABARAPL1 in 2D cultured HCC cell and HCC TRC. (C) 2D cultured HCC cells were seeded in soft 3D

fibrin gels to obtain TRC. On day 3, TRC were treated with erastin and then the colony spheroid was recorded on the next 4 days (days 3–
7). The representative images of HCC-TRC colony spheroids are from day 7. (D) Overexpression of GABARAPL1-enhanced TRC sensitivity

to erastin. (E, F) 2D cells were seeded in soft 3D fibrin gels and received lentivirus-mediated transfection simultaneously. After 3 days, TRC

were treated with erastin or sorafenib for 24 h. and the MDA (E) and lipid ROS (F) levels detected. Except western blot (n = 1), other exper-

iments were independently repeated three times. Data were shown as mean � SD. Statistics were performed by t-test. Scale bar: 50 μm.

HCC, hepatocellular carcinoma; ROS, reactive oxygen species; TRC, tumor-repopulating cells. *P < 0.05, **P < 0.01, ***P < 0.001.

3715Molecular Oncology 16 (2022) 3703–3719 � 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

X. Du et al. GABARAPL1 in hepatocellular carcinoma



Tumor microenvironment analysis indicated that a

higher immune infiltration was observed in C2 than in

C1 type HCC. C2 type HCC had a higher level of most

immune checkpoints, which may explain its high

response to ICI predicted by TIDE. In addition, C2 type

had longer OS and lower TMB, consistent with a previ-

ous study showing a negative correlation of TMB with

HCC prognosis [26]. These data demonstrated that

FRSG also provided a well typing scheme in HCC.

We also established a four-FRSG RS model. This

model displayed an excellent prediction of HCC

patient prognosis in discovery and external validation

cohorts. According to the FerrDb dataset, the four

FRSG may have a role as a ferroptosis driver in can-

cer [9]. Differential gene analysis and OCLR algorithm

revealed that CDKN2A, HRAS and RPL8 were upreg-

ulated in HCC and that there was a positive associa-

tion with stemness. However, GABARAPL1 was

downregulated in HCC and had a negative association

with stemness. As noted, CSLC may confer resistant

features to ferroptosis [6]. In addition, we and others

have found that GABARAPL1 was negatively related

to HCC patient prognosis [27]. For these reasons, we

selected GABARAPL1 as the focus of our further

experiments. GABARAPL1 was a member of ATG8

(autophagy-related 8)-family that was described to be

involved in autophagosome assembly, elongation,

membrane curvature, autophagosome closure, the

fusion between autophagosome and lysosome, and for

selective autophagy [28]. Previous study indicated that

GABARAPL1 acts as a tumor suppressor protein, and

showed that it inhibited cell proliferation, invasion and

tumor growth in breast cancer and prostate cancer

[28–30]. However, its function in HCC remains

unclear. Here, we found that the expression of

GABARAPL1 affected the sensitivity of HCC cells to

the ferroptosis-inducer erastin. More importantly,

HCC TRC had a lower GABARAPL1 expression than

its parent 2D cultured cells, and displayed ferroptosis

resistance under erastin treatment. Recovering its

expression enhanced TRC sensitivity to erastin-

induced ferroptosis. These data indicated that loss of

GABARAPL1 may confer ferroptosis resistance to

CSLC in HCC. Convincing evidence revealed that

autophagy, especially a selective type of autophagy

(e.g. ferritinophagy, lipophagy, clockophagy and
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chaperone-mediated autophagy), drives cells towards

ferroptosis by promoting iron accumulation or/and

lipid peroxidation [31–33]. For instance, RAB7A-

dependent lipophagy boosts lipid droplet degradation

and thus induces lipid peroxidation-mediated ferropto-

sis [34]. Song et al. revealed that autophagy-related

protein BECN1 formed a complex with SCL7A11 and

thereby inhibited system xc
− activity, contributing to

cell death in response to erastin but not RSL3 [33].

Our data showed that the expression of GABARAPL1

also cannot predict cell sensitivity to RSL3. In view of

the known function of GABARAPL1, it may work by

regulating system xc
− activity or/and autophagy (data

not shown).

Sorafenib, a crucial clinical drug for HCC, was con-

sidered as a potential ferroptosis inducer achieved

through inhibiting system xc
− activity [21]. Resistance

to sorafenib seriously limits the benefits of HCC

patients. The mechanisms of sorafenib resistance are

various; cancer stem cells or CSLC may be one of the

important factors [22,35,36]. We demonstrated that

sorafenib only produced a slight inhibition against

spheroidizing growth in HCC TRC. Overexpression of

GABARAPL1 significantly enhanced sorafenib inhibi-

tion activity against HCC TRC due to the increased

ferroptosis. These data suggested that acquired ferrop-

tosis resistance may be the explanation for sorafenib

resistance in HCC CSLC. Further research into

GABARAPL1 may provide novel strategies for over-

coming sorafenib resistance in HCC.

Several limitations of the study should be noted. First,

GABARAPL1 is a well-known autophagy-related gene,

and autophagy can drive cell ferroptosis. It is unclear

whether autophagy plays a role in GABARAPL1-related

ferroptosis. Secondly, although in vitro data indicated

that increasing GABARAPL1 expression effectively sen-

sitized HCC CSLC to erastin or sorafenib, in vivo testing

will provide more solid evidence.

5. Conclusions

In this paper, we put forward a new classification

scheme for HCC based on FRSG and dividing HCC

samples into two clusters. The two clusters had differ-

ent responses to ICI, which may contribute to guiding

immunotherapy in HCC. In addition, a four-FRSG

RS model with a significant prognosis signature was

constructed in HCC. Finally, we mined an interesting

FRSG GABARAPL1 and found that its downregula-

tion conferred ferroptosis resistance to HCC CSLC

under erastin or sorafenib treatment. Further study of

this gene may be conducive to developing a potential

strategy to overcome sorafenib resistance in HCC.
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