TABLE 3.
Training performance outcome for LP-RF classifier (Note that the best performing feature set is shown in bold).
| Feature set | HL | Micro average | Macro average | ||||
| P | R | F1 | P | R | F1 | ||
| AAC | 0.1482 | 0.7744 | 0.6997 | 0.7352 | 0.7044 | 0.4699 | 0.5360 |
| DC | 0.1373 | 0.7915 | 0.7237 | 0.7561 | 0.7528 | 0.5007 | 0.5731 |
| PseAAC1 | 0.1571 | 0.7599 | 0.6805 | 0.7180 | 0.6811 | 0.4384 | 0.5005 |
| PseAAC2 | 0.1631 | 0.7502 | 0.6672 | 0.7062 | 0.6627 | 0.4156 | 0.4740 |
| Combined feature set | 0.1530 | 0.7688 | 0.6871 | 0.7248 | 0.7068 | 0.4385 | 0.5040 |