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Abstract

There is a great deal of prior knowledge about gene function and regulation in the form of 

annotations or prior results that, if directly integrated into individual prognostic or diagnostic 

studies, could improve predictive performance. For example, in a study to develop a predictive 

model for cancer survival based on gene expression, effect sizes from previous studies or the 

grouping of genes based on pathways constitute such prior knowledge. However, this external 

information is typically only used post-analysis to aid in the interpretation of any findings. 

We propose a new hierarchical two-level ridge regression model that can integrate external 

information in the form of “meta features” to predict an outcome. We show that the model can be 

fit efficiently using cyclic coordinate descent by recasting the problem as a single-level regression 

model. In a simulation-based evaluation we show that the proposed method outperforms standard 

ridge regression and competing methods that integrate prior information, in terms of prediction 

performance when the meta features are informative on the mean of the features, and that there is 

no loss in performance when the meta features are uninformative. We demonstrate our approach 

with applications to the prediction of chronological age based on methylation features and breast 

cancer mortality based on gene expression features.
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1 Introduction

In genomic studies, there is often a great deal of prior knowledge about the genomic features 

that are being modeled. These “meta features” (or features-of-features) may be comprised 
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of gene annotations (e.g., an indicator to denote whether a gene belongs to a particular 

pathway), natural groupings of the genomic features (e.g., methylation probes mapping to 

genes), or information from previous studies (e.g., scores or effect estimates of a SNP on 

the outcome) that the researcher considers relevant to the outcome of interest. For example, 

the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) study 

includes cDNA microarray profiling of close to two thousand breast cancer patients and 

patients’ survival information within the study follow-up (Curtis et al., 2012). In this 

example, which we later use to illustrate our approach, we are interested in predicting patient 

mortality based on their gene expression profiles. As potentially informative meta features 

we consider the attractor metagenes identified by Cheng et al. (2013). These are groups of 

genes that capture molecular events known to be associated with clinical outcomes in many 

cancers. We expect improved prediction performance when incorporating these metagenes 

into the model building process.

Genomic data are often high-dimensional i.e., has more features per observation than 

observations in the study. But classical regression methods such as linear and logistic 

regression breakdown in high-dimensional settings. High-dimensional regression methods 

require regularization, a technique that modifies the loss function by adding a penalty term 

that shrinks the regression coefficients toward zero. Among the best known examples of 

regularized/penalized regression are ridge regression (Hoerl and Kennard, 1976), LASSO 

(Tibshirani, 1996), and elastic net (Zou and Hastie, 2005), though many other approaches 

have been developed to encourage additional structure or desirable properties of the 

regression estimates (e.g., Fan and Li, 2001; Yuan and Lin, 2006; Zou, 2006; Zhang, 2010; 

Dai et al., 2018). The amount of shrinkage induced by the penalty dictates the balance 

between model complexity (bias) and model stability (variance). It is controlled by a penalty 

parameter that requires tuning, which is typically accomplished via cross-validation.

While most regularization methods penalize all regression coefficients equally, feature-

specific weighting can be performed to allow for differential shrinkage. In particular, 

several approaches have been recently proposed to improve the prediction performance 

of regularized regression models through the integration of prior information. Using the 

LASSO (Tibshirani, 1996) framework, Bergersen et al. (2011) incorporates relevant meta 

features by developing feature-specific penalties. This modification provided more stable 

model selection and improved prediction over the standard LASSO. Similarly, Van De Wiel 

et al. (2016) proposed an adaptive group-regularized version of ridge (Hoerl and Kennard, 

1976) regression which derives empirical Bayes estimates for group-specific penalties by 

utilizing meta features such as gene annotations or external p-values. Recently, Tay et al. 

(2021) proposed the feature-weighted elastic net that uses meta features to adapt the feature-

specific penalties for elastic net (Zou and Hastie, 2005) regularization and Zeng et al. (2020) 

proposed an alternative approach that models the magnitude of the subject-specific tuning 

parameters as a log-linear function of the meta features.

Some of these approaches fix the weights in advance (e.g. Bergersen et al., 2011), which 

requires unavailable knowledge about the relative importance of the features. Others, 

adaptively (re)-estimate these weights (see e.g., Van De Wiel et al., 2016; Tay et al., 

2021; Zeng et al., 2020), but this requires tuning a potentially large number of parameters, 
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which in turn limits the number of meta features that can be integrated at any given 

time. In addition, by modifying the penalties, these methods assume that the meta features 

are explaining variations in the features. Instead of using the meta features to determine 

weights, we propose a hierarchical ℓ2-regularized (two-level ridge regression) model that 

jointly models the subject-level features and meta features, which enables the integration of 

any type and number of meta features. At the first level, the outcome is regressed on the 

subject-level features, as in standard regularization methods. Rather than assuming the meta 

features affect the variance of the subject-level features, the second level models the effect 

of the meta features on the mean of the subject-level features. L2-regularization is applied to 

the subject-level features and the meta features as both sets (features and meta features) have 

the potential to be highly correlated and high dimensional. We show that the two-level ridge 

regression model can be rewritten as a single ridge regression with a modified design matrix 

and parameter vector, which allows us to use efficient optimization techniques to estimate 

the model parameters. We also derive closed-form solutions under specific scenarios that 

sheds light on how the external information impacts estimation of the first-level regression 

coefficients.

The rest of the paper is organized as follows. The two-level ridge regression model is 

described in Section 2. In Section 3, we provide a simulation study that compares our 

proposed method to competing methods. Real data applications for predicting chronological 

age and breast cancer mortality are given in Section 4. Discussions of our findings and 

parting comments are provided in Section 5. The two-level ridge regression model is 

implemented in the R package xrnet (Weaver and Lewinger, 2019, 2021), which can be 

found at https://CRAN.R-project.org/package=xrnet.

2 Methods

2.1 Setup

Consider the linear regression model

y = Xβ + ϵ, (1)

where y ∈ ℝn is a vector of quantitative measurements collected on n subjects, 

X = x1
T , …, xnT  is an n × p matrix of genomic features (e.g., expression levels, genotypes, 

methylation probes), β = (β1, …, βp)T is the vector of regression coefficients, and ϵ ~ p(0, 

σ2Ip) for some σ2 > 0. We assume, for notational convenience, that the observations are 

standardized with sample mean 0 (which removes the intercept term) and sample variance 

1. The genomic features are assumed to be high-dimensional, i.e., the number of features p 
exceeds the sample size n.

We also assume that there is a set of q meta features (e.g., gene annotations, natural 

groupings, information from previous studies) collected for each of the p features that can be 

represented as a p × q matrix Z. The number of meta-features can be larger than p and/or n. 

Our goal is to improve the prediction performance by integrating the meta features into the 

following modeling framework.
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2.2 The Model

In a high-dimensional setting, unique ordinary least squares estimates for model 1 do not 

exist. Essentially, the linear regression model with more features than observations is too 

complex for the amount of data available. As mentioned in the introduction, regularization 

methods (see e.g., Hoerl and Kennard, 1976; Tibshirani, 1996; Fan and Li, 2001; Zou 

and Hastie, 2005; Zou, 2006; Zhang, 2010; Dai et al., 2018) address this issue by 

balancing model complexity/parsimony and goodness of fit. Initially developed for handling 

multicollineairity, ridge regression (Hoerl and Kennard, 1976) is an effective approach 

for analyzing high-dimensional data. Ridge regression is the solution to an optimization 

problem with a modified objective function that adds an ℓ2-penalty to the standard squared 

loss function:

βridge = arg min
β

1
2 y − Xβ

2

2
+ λ

2 β
2

2
, (2)

where β 2
2 = ∑j = 1

p βj
2 and λ ⩾ 0. The ℓ2 penalty encourages shrinkage of the coefficient 

estimates toward zero and the degree of shrinkage is controlled by the choice of the tuning 

parameter λ (see Section 2.4). A common approach to tune λ is to select the value that 

minimizes some criterion (e.g., mean squared error) from a grid of possible values of λ 
using k-fold cross validation.

To incorporate meta features into high-dimensional linear regression, we propose a two-level 

ℓ2-regularization approach based on minimizing the following objective function

arg min
β, γ

1
2 y − Xβ 2

2
+ λ1

2 β − Zγ 2

2
+ λ2

2 γ 2

2
, (3)

where λ1 > 0 and λ2 > 0 are two tuning parameters. The first term in (3) is the standard 

least squares loss, the second term is a ridge penalty that shrinks the estimates of β toward 

some feature-specific mean μ = Zγ (rather than 0), and the third term is a standard ridge 

penalty that shrinks the estimates of γ. Note that unlike standard ridge regression, the value 

of μ toward which the β are shrunk is not fixed but modeled as a linear function of the meta 

features Z. This second-level penalty encourages genomic features with similar meta-feature 

profiles to have more similar coefficient estimates compared to genomic features with 

dissimilar profiles, effectively “borrowing information” across features. We provide specific 

examples in Section 2.4. Note also that when γ = 0, (3) reduces to (2), and thus the standard 

ridge regression is a particular submodel of our hierarchical formulation. Furthermore, the 

second term can be viewed as a least squares regression of β on Z. In this case, β takes 

the role of the “outcome”. A Bayesian motivation behind this hierarchical formulation is 

provided in the Online Supplementary Materials. Under the Bayesian framework, it is clear 

that (3) assumes the meta features affect the mean of the subject-level features. This is 

in contrast to other approaches that integrate meta features by creating feature-specific 

penalties which, consequently, assumes that the meta features impact the variance of the 

subject-level features. Shrinkage of both the subject-level features (to the feature-specific 

mean μ) and meta features (to 0) is controlled by λ1 and λ2, respectively. Similar to the 
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standard ridge regression, one can use k-fold cross validation to select the optimal pair of 

values for λ1 and λ2 over a two-dimensional grid.

While equation (3) posits a natural hierarchical structure to the model, the objective 

function can be simplified to a single linear regression model using the following variable 

substitution, ϕ = β − Zγ. By jointly minimizing over (ϕ, γ), (3) can be rewritten as

arg min
ϕ, γ

1
2 y − X(ϕ + Zγ) 2

2
+ λ1

2 ϕ 2

2
+ λ2

2 γ 2

2
. (4)

The formulation in (4) can be extended to include penalties other than ridge. In fact, 

commonly-used penalties such as the LASSO or elastic-net could be used for regularization 

on either (or both) the subject-level or meta feature coefficients. We focus on ℓ2 

regularization on both levels due to its ability to handle highly-correlated features (Zou 

and Hastie, 2005) and its generally good performance in prediction problems.

2.3 Model Fitting

Since (4) is jointly convex in (ϕ, γ) it can be minimized using standard convex optimization 

methods. In particular, being also separable, cyclic coordinate descent can be used to 

efficiently optimize it with guaranteed convergence to a global minimum (Tseng, 2001). 

Before outlining the algorithm, we further simplify the notation by letting X = [X, XZ] and 

θ = (ϕ, γ)T. We can then re-express (4) as

1
2 y − X(ϕ + Zγ) 2

2
+ λ1

2 ϕ 2

2
+ λ2

2 γ 2

2

= 1
2 y − Xθ 2

2
+ 1

2θTΛθ,
(5)

where Λ = diag(Λ1, Λ2), Λ1 = diag(λ1, …, λ1) and Λ2 = diag(λ2, …, λ2).

In summary, our two-level ridge regression model can be reformulated as a single-level ridge 

regression, where the first p variables, X, have a specific penalty parameter, λ1, and the 

last q variables, XZ, have a specific penalty parameter λ2. It may seem that (5) provides a 

framework for differential ℓ2 regularization of multi-omic data (e.g., Gross and Tibshirani, 

2015; Chai et al., 2017; Liu et al., 2018). While multi-omic data refers to a collection of 

multiple subject-level measurements, our hierarchical formulation assumes that we have one 

set of measurements at the subject level (X) and one set of meta features at the feature level 

(Z). Since the rows of the XZ matrix are linear combinations of the original features given 

by the columns of Z, it is never full rank even when p + q < n. Shrinkage is necessary to 

produce unique estimates, even in the low dimensional case. Furthermore, (5) admits the 

following closed-form solution,

θ = XTX + Λ
−1

XTy .
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which can be computed using numerical linear algebra. In practice, however, we propose 

to employ cyclic coordinate descent due to its efficiency in generating entire solution paths 

across a grid of tuning parameters through the use of warm starts (Friedman et al., 2010) 

and for its generalizability to other outcome types (see Section 2.5). We outline the cyclic 

coordinate descent algorithm in the Online Supplementary Materials.

The formulation of (5) allows it to be solved using currently-available software (e.g., 

glmnet) for fixed values of (λ1, λ2). However, an important distinction is that we allow 

ϕ to be penalized differently than γ. We demonstrate this in our simulation study. The 

cyclic coordinate descent algorithm simultaneously estimates ϕ and γ. Estimates of β can 

be obtained by the back transformation β = ϕ + Zγ. Our implementation estimates the model 

parameters for a two-dimensional grid of penalty tuning parameters (λ1, λ2) and performs 

joint parameter tuning of λ1 and λ2 using cross validation.

2.4 Behavior of the Two-Level Ridge Regression Model

When the matrix X is of full column rank (i.e. well-conditioned low-dimensional case), we 

can investigate the relationship between both the ridge and ordinary least squares solutions. 

Under an orthonormal design matrix (i.e. XT X = Ip) the ridge estimator has the explicit 

solution:

βridge = 1
1 + λβols, (6)

where βols
 are the least squares estimates. Therefore, one can see that for λ → 0, 

βridge βols
 and for λ → ∞, β ridge 0.

Similar to the closed form solution in (6), under the single-level formulation (5) we can 

derive closed-form solutions for the parameters estimates, under certain assumptions, that 

reveals how the external information in Z impacts estimation of the coefficients β. While we 

let X denote generic genomic features, for concreteness, we present the following examples 

in terms of gene expression levels.

2.4.1 Case 1: Disjoint Groups (E.g., Gene Expression for Genes in Non-
Overlapping Pathways)—Let X be an n × 4 orthogonal design matrix (i.e., XT X = I4) 

of gene expression levels. Suppose that the first two genes belong to one specific pathway 

and the last two genes belong to another pathway, disjoint from the first. Then Z can be 

expressed as a 4 × 2 matrix of binary indicators:

Z =

1 0
1 0
0 1
0 1

By solving (5), one can show that the estimates for β are
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β1
β2
β3
β4

=

β1
ridge + λ* β1

ridge + β2
ridge

β2
ridge + λ* β1

ridge + β2
ridge

β3
ridge + λ* β3

ridge + β4
ridge

β4
ridge + λ* β3

ridge + β4
ridge

,

where λ* =
λ1

2

2λ1 + λ1λ2 + λ2
. Thus we see that the subject-level estimates are equal to their 

standard ridge estimator plus a weighted sum of the estimates in the same pathway.

2.4.2 Case 2: Genes in Overlapping Pathways—Our previous example assumed 

that genes belong to two disjoint pathways, which lends itself to a simple interpretation 

of the estimators. We assume now that X is a n × 3 orthogonal design matrix of gene 

expression levels and let

Z =
1 0
1 1
0 1

.

Unlike the previous example, the second gene belongs now to both pathways. The two-level 

ridge estimates for this particular scenario are

β1
β2
β3

=

β1
ridge + λ* 2β1

ridge + β2
ridge − β3

ridge

β2
ridge + λ* β1

ridge + 2β2
ridge + β3

ridge

β3
ridge + λ* −β1

ridge + β2
ridge + 2β3

ridge

,

where λ* =
λ1

2

3λ1 + λ1λ2 + λ2
. Each β j is now a linear combination (i.e., a weighted sum) of all 

three ridge estimates.

2.4.3 Case 3: Orthogonal X and Z—While meta features that define feature groupings 

are common, meta features of interest can also be quantitative (e.g., test statistics or p-values 

from previous studies). We now only assume that Z is orthogonal to X, but can contain 

quantitative meta features. A general solution in this case is given by:

β = Ip +
λ1

2

λ1λ2 + λ1 + λ2
ZZT βridge

The derivation is provided in the Online Supplementary Materials. The first-level coefficient 

estimates, β , equal their original ridge estimates plus a linear combination of all of the ridge 

Kawaguchi et al. Page 7

J Data Sci. Author manuscript; available in PMC 2023 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estimates via ZZT. The matrix ZZT can be thought of as a matrix of pairwise similarities 

between the features, where similarity is measured by the inner product of the pairwise 

meta-feature profiles. Thus, information is borrowed across all features proportionally to 

their similarity.

2.5 Extension to GLM outcomes

The two-level ridge regression model can be easily extended to models with non-normal 

outcomes (e.g., binary, categorical, count). Under the generalized linear model framework, 

we assume that the observations vi = xiT , yi
T , i = 1, …, n, are mutually independent and 

that, conditional on xi, yi belongs to the exponential family with the following density

fY (y; x, ν) = exp yξ − a(ξ)
b(v) − c(y, v) , (7)

where ξ is defined as the canonical parameter, ν > 0 is the scale (dispersion) parameter 

and a(ν), b(ξ), and c(y, ν) are known functions whose values depend on the distribution 

(Dobson and Barnett, 2018; McCullagh, 2019). Furthermore, under the assumption that a(·) 

is twice differentiable, (7) indicates that E(yi|xi) = μi = a′(ξi) and var(yi|xi) = a″(ξi)b(νi). In 

addition, the canonical parameter ξ is connected to xi through a prespecified link function 

ℎ μi = xiTβ for some β = (β1, …, βp)T. The likelihood function for β is defined as

L β; vi ∝ ∏
i = 1

n
exp yiθi − a ξi (8)

and the log-likelihood is defined as l(β) = log L(β; vi). We estimate the regression 

coefficients β by minimizing the negative log-likelihood function. The two-level ridge GLM 

can now be defined as

arg min
θ

− l(θ) + θTΛθ . (9)

Since l(θ) is convex and the ridge penalty is separable, cyclic coordinate descent can again 

be used to estimate the parameters in the model (see Online Supplementary Materials). We 

provide an example of the two-level ridge logistic regression in our numerical studies and a 

real data application on breast cancer mortality is provided.

3 Simulation Study

We assess the prediction performance of our proposed two-level ridge estimator to several 

competing methods: 1) standard ridge regression; 2) “augmented” ridge regression; 3) 

feature-weighted elastic net (fwelnet); 4) the random forest algorithm. The augmented 

ridge regression can be viewed as a standard ridge regression (2) with the design matrix 

X = [X, XZ]. While the augmented ridge regression is similar in form to two-level ridge 

regression (5), the main distinction is that only one tuning parameter is used to shrink 

both the subject-level and meta-feature effects (ϕ, γ). For the random forest algorithm we 
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input the augmented design matrix X. For comparison purposes, we fix the elastic net 

tuning parameter to 0 so that fwelnet will coincide with ridge regularization. Ten-fold cross 

validation was used to estimate the tuning parameter(s) for the regularization methods. 

Results are averaged over 500 Monte Carlo replications.

3.1 Discrete Z

We simulated data loosely based on the breast cancer real data application in Section 4, 

with gene expression levels as the features and a quantitative outcome. We first consider the 

case where meta feature matrix Z consists of indicator columns corresponding to grouping 

of genes into (not necessarily disjoint) pathways. Specifically, we generate a binary matrix 

Zp×6 such that each column has on average 20% nonzero entries where we vary p = 400, 

1,000, and 2,000. We then set γ = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1) Conditional on Z and γ, 

we generate the subject-level features by sampling from a multivariate normal distribution 

β Np Zγ, σβ
2Ip . We determined how informative the meta features are for the effect sizes of 

β by defining the signal-to-noise ratio (SNRγ) as

SNRγ =
γTΣZγ

σβ
2

where ΣZ is the empirical covariance matrix of Z and solving for σβ
2. Finally, we generated 

the continuous outcome y|X, β Nn Xβ, σy2In , where X Nn 0, ΣX , with an autoregressive 

correlation structure ΣX = ρX
i − j

ij, with μ0 = 0.2, ρX = 0.5, and σy = 1. To measure and 

compare predictive performance, we compute the test R2 based on a test set of n = 1,000.

In general, we see that two-level ridge regression has better prediction performance when 

compared to its competitors (Figure 1). As expected, all methods suffer in performance as 

the number of features increases (Panel A) and improve when the sample size increases 

(Panel B). In the “small data” scenario (n = 1000, p = 400, q = 6), we observe that fwelnet 

performs fairly well. However, its performance is comparable to the standard LASSO across 

several scenarios. This is unsurprising since the outcome is generated assuming that the 

meta features affect the mean of the subject-level features, not the variance. In both Panels 

A and B, we set the meta features to be moderately informative (SNRγ = 1). We evaluate 

the impact of the informativeness of the meta features by comparing the three methods 

across a range of SNRγ (Panel C). With the exception of the random forest algorithm, 

we see that two-level ridge regression performs similarly to the standard and augmented 

ridge regression and to fwelnet when the meta features are virtually uninformative (SNRγ 
= 0.001) and drastically outperforms them as informativeness increases. We also notice a 

substantial improvement in the prediction performance of the random forest algorithm as 

informativeness increases.

3.2 Continuous Z

Next we simulated data where the meta features are continuous, by drawing Z from a 

multivariate normal density. We let γ = 0.01 * (150, 025, 325, 125, 0q−150) and generate Zp×q 
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~ q(0, ΣZ), where ΣZ = ρZ
i − j

ij. Similar to Section 3.1, we then simulate β Np Zγ, σβ
2Ip

and y|X, β Nn μ0 + Xβ, σy2In , where X ~ p(0, ΣX). We fix μ0 = 0.5, ρX = 0.5, ρZ = 0, and 

σy = 1. We compare the performance of all five methods across different values of n, p, q 
and SNRγ.

Similar to Section 3.1, we consistently see a gain in prediction performance with the 

two-level ridge regression when compared to its competitors (Figure 2). When the feature 

dimension p increases, there is a degradation in prediction performance across all methods; 

however, incorporating the meta features in a hierarchical framework outperforms both the 

standard and augmented ridge methods. The trend was also consistent across varied σy, ρX 

and ρZ (see Figure S1 in the Online Supplementary Materials).

In addition, we also vary the number of meta features in the model (Figure 2 Panel B). Note 

that as the number of meta features increases, the predictive performance of two-level ridge 

regression decreases while the performance of standard and augmented ridge regression 

remain unchanged. The degradation in prediction performance for the two-level ridge 

regression is expected since we are only increasing the number of noise variables in Z. 

Surprisingly, the random forest algorithm performs poorly in all scenarios.

3.3 Binary Outcomes

To illustrate two-level ridge regression in a GLM framework, we also compared the 

performance of all methods under a binary outcome by extending the hierarchical model 

to logistic regression. The data generating process is similar to Section 3.2 however y|X, β 
~ Bernoulli{π(μ0 + Xβ)}, where π(·) = exp(·)/{1 + exp(·)}. Again, we fixed μ0 = 0.5, ρX = 

0.5, and ρZ = 0. The true predictive performance was determined as the area under the curve 

(AUC) for the test set of 1,000 observations. The results are similar to those observed in the 

continuous case (Figure 3).

4 Real Data Applications

4.1 Epigenetic Clock

Several studies have demonstrated that DNA methylation levels have strong effects on aging 

(see e.g., Berdyshev et al., 1967; Rakyan et al., 2010; Teschendorff et al., 2010; Koch 

and Wagner, 2011; Horvath et al., 2012; Bell et al., 2012). Using DNA methylation levels, 

epigenetic clocks (see e.g., Hannum et al., 2013; Horvath, 2013) attempt to accurately 

predict chronological age, with the goal of identifying molecular biomarkers of aging that 

can be used to study age acceleration and the relationship of methylation and disease (see 

e.g., Horvath, 2013; Horvath et al., 2015; Levine et al., 2015; Horvath et al., 2016; Quach 

et al., 2017). High-dimensional regularization techniques have been used to develop these 

tools. We evaluate the prediction performance of all three ridge regression models (standard, 

augmented, and two level) on a publicly-available dataset consisting of n = 656 individuals 

with methylation measured on the Infinium 450K platform. The size and structure of 

the data made competing methods inoperable. Both xrnet and glmnet permit sparse data 

structures which allowed us to analyze the data and compared to performance of two-level 

ridge regression to standard and augmented ridge regression.
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While the total number of CpG sites available was 473,034; we reduced the dimensionality 

of the methylation data by only including the top 250,000 most variable probes. Further, we 

mapped the methylation probes to the closest gene in terms of physical distance. As meta 

features of interest we generated the indicators for whether a probe maps to a gene. Thus Z, 

our matrix of external information, consists of q columns that represent the q unique genes 

(the jth column of Z codes all probes that map to gene j as one and zero otherwise). After 

reducing the number of genes in the external data, by only considering genes that have at 

least 10 probes mapped to them, the resulting Z consists of 6,766 unique genes with an 

average of 33 probes per gene. In our analysis, we normalize Z by dividing each column by 

its sum (i.e. number of probes mapping to the corresponding gene). With this standardization 

the meta-feature estimate, γ j represents the average effect of all probes that map to gene j (j 

= 1, …, q) on chronological age. Of note is that both the features (methylation probes) and 

meta features (gene indicators) are high-dimensional.

We generated 50 training (80%) – test (20%) pairs by randomly splitting the 656 

observations. For all three models, 10-fold cross validation is used to tune the penalty 

parameter(s) in each training data set. Similar to the simulation study, we assessed prediction 

performance using the test R2 (averaged across all 50 test sets).

The two-level ridge regression significantly improved prediction performance over standard 

and augmented ridge (Figure 4). The mean test R2 for standard, augmented, and two-level 

ridge regression were 0.71, 0.71 and 0.75, respectively, representing a 5.6% improvement 

in prediction performance when modeling both the methylation probes and their gene 

groupings hierarchically. By contrast, augmenting the original design matrix by XZ, i.e. by 

the linear combinations of the meta features according to Z, did not improve prediction. 

Our analysis shows that hierarchical regularization, by adequately leveraging external 

information (i.e., groupings based on genes), can lead to improved performance in predicting 

chronological age compared to standard approaches for regularization.

4.2 Breast Cancer Mortality

We applied the proposed method on a data set of breast cancer tumors from the 

Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) study 

available from the European Genome-Phenome Archive (https://ega-archive.org/studies/

EGAS00000000083) (Curtis et al., 2012). The data includes cDNA microarray profiling 

of close to two thousand breast cancer tumor specimens processed on the Illumina HT-12 

v3 platform. The METABRIC study was used in an open-source competition (DREAM 

Breast Cancer Prognosis Challenge) to improve prediction of survival based on clinical 

characteristics, gene expression levels, and copy number variation. The primary tumors were 

originally divided into a discovery set of 997 samples and a validation set of 995 samples. In 

our analysis, we used the discovery set as the training set to fit the model and the validation 

set as the test set to evaluate the model performance in prediction. The METABRIC dataset 

also contains the patients’ long-term clinical outcomes and pathological variables (e.g., 

age at diagnosis, number of positive lymph nodes). Due to significant heterogeneity in 

expression between ER+/HER2−, ER−, and HER2+ tumors, we restrict our analysis to the 

subset of patients who were ER+ and HER2−. Furthermore, we dichotomized the patients’ 
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survival time at 5 years and used this binary variable which indicates the 5-year survival of 

breast cancer as the outcome to predict. The sample sizes, after subsetting to ER+/HER2− 

patients not censored within 5 years, for the training and test datasets were 594 and 563, 

respectively and had a mortality (event) rate of 27% and 24%, respectively.

We use the gene expression data, consisting of 29, 477 probes (after pre-filtering), as our 

primary features in the analysis. A previous study by Cheng et al. (2013), developed a 

model made of four gene signatures (CIN, MES, LYM, and FGD3-SUSD3), referred to as 

“attractor metagenes”, that captured molecular events known to be associated with clinical 

outcomes in many cancers. We generated four meta features by grouping probes that are 

in the same metagene. In the resulting 29, 477 × 4 matrix, the jth column codes all probes 

that are part of the jth metagene as one and zero otherwise. The CIN, MES, LYM, and FGD-

SUSD3 metagenes each consist of 61, 70, 69, and 2 genes, respectively. We normalized each 

column of the meta feature matrix by the number of probes so that each column summed to 

one.

In addition to comparing two-level ridge regression to both standard and augmented ridge 

regression, we also implemented the following competing methods: xtune (Zeng et al., 

2020), feature-weighted elastic net (fwelnet, Tay et al., 2021) and random forest (Breiman, 

2001). The tuning parameter(s) for the five regularized models (two-level ridge, standard 

ridge, augmented ridge, xtune, fwelnet) were tuned using 10-fold cross validation. For 

comparison purposes we set the elastic net tuning parameter to 0 for fwelnet, which 

corresponds to a ridge penalty. A stratification scheme was used to generate the folds due to 

the class imbalance of cases and controls. Similar to our methylation example, the two-level 

ridge regression improves class prediction over its competitors (Table 1).

5 Discussion

In this paper, we proposed a two-level hierarchical ridge regression model that can directly 

incorporate meta features into the estimation. We show that the two-level ridge regression 

can be reformulated into a single-level ridge regression with two tuning parameters, enabling 

an efficient model coordinate descent fitting algorithm that can handle large numbers of 

features and meta-features. We provide closed-form solutions under simple scenarios to gain 

intuition on how the incorporation of meta features impact the estimation of the regression 

coefficients by borrowing information.

Our simulation results demonstrate that, in general, two-level ridge regression outperforms 

its competitors when relevant meta features are available. Importantly, in the presence of 

non-informative meta features, two-level ridge regression has comparable to only slightly 

worse performance compared to standard ridge regression without meta features. Thus, there 

is essentially “no cost”, in terms of prediction performance, when incorporating a set of 

meta features a researcher deems relevant into the model building process. We also illustrate 

the advantage of our proposed model in two real data applications where we observe 

improved prediction performance for both continuous and binary outcomes.
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We envision several future paths to further improve two-level regularization. First, our 

current method focuses on incorporating an ℓ2 penalty for both the subject-level features and 

meta features. In general, ℓ2 regularization has been criticized for not being able to perform 

variable selection (i.e., identifying important predictor variables that are associated with 

the response of interest), since the ridge penalty shrinks the regression coefficient estimate 

toward zero, but not exactly to zero. We are currently investigating ways to allow for more 

general penalties (e.g., LASSO, elastic net, etc.) for both subject-level and meta-feature 

regularization to allow for variable selection. Second, our real data application focused 

on five-year mortality as the outcome of interest. While this was done to illustrate the 

performance of two-level ridge regression for binary outcomes, it would be preferred to 

model the survival time directly. The Cox (1972) model is a well-appreciated approach to 

model feature effects on survival (through the conditional hazard function). We are currently 

developing the two-level regression with a range of penalties, including lasso and elastic 

net in addition to ridge, as well as a two-level regularized Cox model, which involves 

replacing the log-likelihood in (9) with the Cox (1975) log-partial likelihood. We expect the 

implementations of these methods within the two-level regularization framework to provide 

a wide range of analytical options for integrating prior information into high-dimensional 

genomic studies.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Prediction performance, as measured by test R2, of standard, augmented, and two-level ridge 

regression, feature-weighted elastic net (ridge), and random forest by number of features 

(Panel A), sample size (Panel B), and signal-to-noise ratio (Panel C). In Panel A we fix n = 

400 and SNR = 1. In Panel B we fix p = 2,000 and SNR = 1. In Panel C we fix p = 2,000 and 

n = 400. Results are averaged over 500 Monte Carlo replications. (See Section 3.1 for more 

information).
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Figure 2: 
Prediction performance, as measured by test R2, of standard, augmented, and two-level ridge 

regression, feature-weighted elastic net (ridge), and random forest by number of features 

(Panel A), number of meta features (Panel B), sample size (Panel C), and signal-to-noise 

ratio (Panel D). In Panel A we fix n = 400, q = 150 and SNR = 1. In Panel B we fix p 
= 2,000, n = 400, and SNR = 1. In Panel C we fix p = 2,000, SNR = 1 and q = 150. In 

Panel D we fix p = 2,000, q = 150, and n = 400. Results are averaged over 500 Monte Carlo 

replications. (See Section 3.2 for more information).
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Figure 3: 
Prediction performance, as measured by test AUC, of standard, augmented, and two-level 

ridge regression by number of features (Panel A), number of meta features (Panel B), sample 

size (Panel C), and signal-to-noise ratio (Panel D). In Panel A we fix n = 400, q = 150 and 

SNR = 1. In Panel B we fix p = 2,000, n = 400, and SNR = 1. In Panel C we fix p = 2,000, 

SNR = 1 and q = 150. In Panel D we fix p = 2,000, q = 150, and n = 400. Results are 

averaged over 500 Monte Carlo replications. (See Section 3.3 for more information).
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Figure 4: 
Epigenetic clock: boxplot of test R2 from 50 training (80%) – test (20%) pairs by randomly 

splitting the 656 observations. Ten-fold cross validation was used to estimate the tuning 

parameter(s) for each method. (See Section 4.1 for more information).
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Table 1:

METABRIC study: comparison of the Area under the Curve from a test set (test AUC) of n = 563 between 

standard, augmented, and two-level ridge regression. Model estimation was performed on a training set of n = 

594. Ten-fold cross validation was used to estimate the tuning parameter(s) for each method. (See Section 4.2 

for more information).

Method Test AUC

Two-Level Ridge 0.69

Ridge 0.67

Aug. Ridge 0.67

fwelnet 0.67

Random Forest 0.67

xtune 0.64
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