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key drivers of various facets of physiological aging. 
The present review integrates the current knowledge 
related to immunosenescence and cellular senes-
cence in immune cells per se, and aims at providing 
a cohesive overview of these two phenomena and 
their significance in immunity and aging. We pre-
sent evidence and rationalize that understanding the 
extent and impact of cellular senescence in immune 
cells vis-à-vis immunosenescence is necessary for 
truly comprehending the notion of an ‘aged immune 
cell’. In addition, we also discuss the emerging sig-
nificance of dietary factors such as phytochemicals, 
probiotic bacteria, fatty acids, and micronutrients as 
possible modulators of immunosenescence and cel-
lular senescence. Evidence and opportunities related 
to nutritional bioactive components and immunologi-
cal aging have been deliberated to augment potential 
nutrition-oriented immunotherapy during aging.

Keywords Aging · Immunity · Inflamm-aging · 
Cellular senescence · Immunosenescence · Nutrition

Introduction

The mammalian immune system has evolved not only 
as a central instrument to protect against the invading 
pathogens, but is also essential for tissue repair and 
regeneration (Ding et al. 2019), as well as identifica-
tion and removal of damaged host cells (Rock et  al. 
2011). The diverse cells of the immune system along 

Abstract Immunological aging is strongly associ-
ated with the observable deleterious effects of human 
aging. Our understanding of the causes, effects, and 
therapeutics of aging immune cells has long been 
considered within the sole purview of immunosenes-
cence. However, it is being progressively realized that 
immunosenescence may not be the only determinant 
of immunological aging. The cellular senescence-cen-
tric theory of aging proposes a more fundamental and 
specific role of immune cells in regulating senescent 
cell (SC) burden in aging tissues that has augmented 
the notion of senescence immunotherapy. Now, in 
addition, several emerging studies are suggesting that 
cellular senescence itself may be prevalent in aging 
immune cells, and that senescent immune cells exhib-
iting characteristic markers of cellular senescence, 
similar to non-leucocyte cells, could be among the 
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with its allied components such as the complement 
proteins, are present throughout the body and are crit-
ical to preserving the parenchymal tissue homeostasis. 
The immune system is also one of the major regula-
tory systems to be affected by the deleterious process 
of aging, and age-related immune dysfunctions are 
often associated with increased risk of diseases and 
weakened vaccine response in the elderly (Allen et al. 
2020; Pereira et al. 2019). Understanding the develop-
ment and progression of immunological aging is thus 
central to our mitigatory strategies against a variety 
of age-dependent disorders and infectious diseases 
as also aptly highlighted by the ongoing COVID-19 
pandemic (Bartleson et  al. 2021). Immunosenes-
cence is an umbrella term that refers to a myriad of 
age-dependent qualitative and quantitative changes in 
the immune system such as shrinkage in the thymus 
gland output, decreased cell-mediated and humoral 
immune responses, development of chronic systemic 
inflammation (inflamm-aging), changes in T cell sub-
set population, and loss of T cell differentiation which 
are together accounted for increased risk of morbid-
ity and mortality in the elderly (Barnes 2015; Fulop 
et al. 2018; Goronzy and Weyand 2017; Sadighi Akha 
2018; Xu et  al. 2020). Considering these multifac-
eted deleterious effects, an immune system-oriented 
theory of aging was initially formulated which postu-
lated that aging in organisms is pathologically linked 
to the impaired immune functions (immunosenes-
cence), and that the loss of self and non-self recog-
nition in immune cells due to immunogenetic diver-
sification leads to the development of age-dependent 
auto-immune disorders and inflammation (Walford 
1964). The original immunosenescence theory was 
then further integrated with perturbed age-associated 
cellular oxidative and inflammatory homeostasis, and 
an updated oxi-inflamm-aging theory of aging was 
proposed (De la Fuente and Miquel 2009). Recent 
advances in our understanding of the molecular basis 
of aging are now revealing even novel role(s) of the 
immune system in impacting aging. This is specifi-
cally aligned with the process of ‘cellular senescence’ 
that is rapidly emerging as the central and arguably 
the fundamental process governing both aging and 
age-related diseases (Borghesan et al. 2020; Gil 2019; 
McHugh and Gil 2018). The critical significance of 
the immune system in regulating senescent cells 
(SC) survival and accumulation has gained a par-
ticular attention, and cellular senescence-associated 

immunotherapy is emerging as a desirable approach 
for targeting aging (Burton and Stolzing 2018; Kale 
et al. 2020).

The different facets of the immune system includ-
ing its development, maturation, and activation are 
tightly regulated. However, dietary nutritional com-
ponents including bioactive phytochemicals and pro-
biotic microorganisms can strongly influence multiple 
aspects of the immune system. Studies have demon-
strated that modulation of the immune functions by 
dietary factors can favorably influence the prolifera-
tion, activation, and efficacy of the immune system 
(Barrea et al. 2021; Childs et al. 2019; Tourkochristou 
et al. 2021). In particular, the role of food components 
in modulating the immune response for the mitiga-
tion of infectious agents including COVID-19 (Mri-
tyunjaya et al. 2020; Tomas et al. 2022), food-borne 
contaminants (Pan et  al. 2020), inflammatory disor-
ders (Sung et  al. 2018), and cancer immunotherapy 
(Soldati et  al. 2018; Spencer et  al. 2021) have been 
documented. Considering this and given the fact that 
immunological aging essentially involves impaired 
effector immune functions; the application of dietary 
factors in alleviating at least some of these deleterious 
aspects seems plausible. This is also reasonable since 
nutrition and exercise are currently at the forefront of 
developing anti-aging therapies and in fact, a novel 
discipline called ‘nutrigerontology’ was emphasized 
for achieving successful ageing and longevity (Aiello 
et  al. 2016; Verburgh 2015). Therefore, in the pre-
sent paper, we first discuss the emerging advances in 
our understanding of immunological aging in terms 
of immunosenescence and cellular senescence, and 
then deliberate the available evidence of nutritional 
and bioactive dietary factors-mediated modulation of 
immunity and aging. Future research directions and 
lacunae have been discussed aimed to truly under-
stand immunological aging as well as the potential of 
diet in impacting immunity, aging, and diseases.

Immunosenescence and immunological aging

Immunosenescence refers to widespread age-
dependent changes in the immune system includ-
ing the lymphoid organs that ultimately manifest as 
impaired immune responses in the elderly. Despite its 
name, immunosenescence does not explicitly imply 
decreased or attenuated immune functions, but is 
rather best defined as immune-remodeling wherein 
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certain cellular functions may decline while others 
may be exaggerated (Xu et  al. 2020). Moreover, the 
one-dimensional detrimental consideration of immu-
nosenescence has recently been challenged, and it 
is argued that immunosenescence actually repre-
sents a continuum of adaptation and maladaptation 
to lifelong aggressions and insults which ultimately 
defines the course of organismal aging and health 
(Fulop et al. 2020). This also provides a rationale as 
to why healthy centenarians (≥ 100  years age) are 
able to preserve essential immune functions and are 
less prone to chronic age-related pathologies (Santoro 
et  al. 2021). Regardless, modulation of the different 
aspects of immunosenescence has traditionally been 
considered a viable strategy for improving the qual-
ity of life in elderly (Borgoni et  al. 2021; Stahl and 
Brown 2015; Weyand and Goronzy 2016). Although 
the exact underlying causes of immunosenescence 
are still not completely understood, the concept of 
immunosenescence has vastly contributed to our pre-
sent knowledge of aging in both innate and adaptive 
immune functions, and are briefly discussed below 
(Table 1).

Innate immune system

Neutrophils are amongst the first innate immune cells 
to respond to growing infectious agents and inflam-
mation. These short-lived cells are produced in vast 
numbers by the bone marrow, and studies have shown 
that circulatory neutrophil numbers in the blood or 
bone marrow precursors do not decline with age sug-
gesting minimal quantitative impact on hemopoiesis 

(Butcher et  al. 2000; Chatta et  al. 1993). However, 
deterioration of several functional aspects of neu-
trophils has been documented. We and others have 
reported that neutrophils exhibit impaired chemot-
axis, reduced respiratory oxidative burst, and phago-
cytic potential with age in both experimental ani-
mals and humans (Brubaker et al. 2013; Mege et al. 
1988; Perskin and Cronstein 1992; Sapey et al. 2014; 
Sharma et al. 2014b; Wenisch et al. 2000). Changes 
in neutrophil receptors and intracellular signaling 
have also been observed which may explain some 
of the apparent age-associated functional defects in 
neutrophils (Fülöp et al. 1984, 1985; Gasparoto et al. 
2021; Sapey et  al. 2014). Monocytes/macrophages 
are another critical component of the innate immune 
response. Several age-related changes have been doc-
umented in macrophages. It has been demonstrated 
that macrophages show reduced expression of toll-
like receptors (TLRs) (Boehmer et al. 2005; Renshaw 
et al. 2002; Sharma et al. 2014b), decreased phagocy-
tosis and respiratory burst (Linehan et al. 2014; Wong 
et al. 2017), altered cytokine production (Gomez et al. 
2010; Roubenoff et  al. 1998), diminished response 
to pathogen identification (Boehmer et  al. 2004; 
Ding et  al. 1994), impaired antigenic presentation 
(Vĕtvicka et  al. 1985), skewed M1/M2 macrophage 
polarization (Becker et al. 2018; Cui et al. 2019), and 
delayed resolution of inflammation and injury (Zhang 
et  al. 2020a) suggesting multifaceted deleterious 
effects of age on macrophage functions.

Similarly, studies have shown a decrease in cir-
culatory numbers of dendritic cells (DC), as well as 
functional deterioration in all DC subsets with age 

Table 1  Major immunosenescence markers in the innate and adaptive immune cells

S. no. Innate immune cells Adaptive immune cells

1 Decreased identification and stimulation in response to 
pathogens (Boehmer et al. 2005; Loyer et al. 2022)

Reduced stimulatory response and effector functions (Haynes 
and Eaton 2005; Nikolich-Žugich 2014)

2 Changes in circulatory numbers (Jing et al. 2009; Gounder 
et al. 2018)

Decreased synaptic activity with APCs (Marko et al. 2007)

3 Impaired chemotaxis (Brubaker et al. 2013) Characteristic changes in the expression of cell surface mark-
ers (Rodriguez et al. 2021; Zhang et al. 2021)

4 Attenuated antigenic presentation (Wong and Goldstein 
2013)

Increased memory T cells pool and reduced diversity (Saule 
et al. 2006)

5 Impaired effector functions (Gomez et al. 2010; Sharma et al. 
2014b; Zacca et al. 2015)

Reduced activation of B cells and conversion to plasma cells 
(Pritz et al. 2015)

6 Impaired resolution of inflammation (Zhang et al. 2020a) Decreased antigen-specific antibodies production output 
(Maue and Haynes 2009)
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(Della Bella et  al. 2007; Gardner et  al. 2017; Jing 
et  al. 2009). There is strong evidence that DC lose 
their potency to accurately process and present anti-
gens which may result in failure of the activation 
of immune cells and inadequate effector functions 
(Grolleau-Julius et  al. 2008; Guo et  al. 2014; Wong 
and Goldstein 2013; Zacca et al. 2015). Further, DCs 
have been shown to exhibit impaired cytokine pro-
duction (Della Bella et al. 2007; Grolleau-Julius et al. 
2006), decreased expression of co-stimulatory mol-
ecules such as CD86 and CD40 (Varas et  al. 2003), 
and altered intracellular signaling in response to acti-
vation signals (Agrawal et al. 2007) which ultimately 
results in poor response to infections and vaccines 
in elderly. Contrary to other immune cells, studies 
have consistently demonstrated that peripheral NK 
cell numbers increase with age (Gounder et al. 2018; 
Le Garff-Tavernier et  al. 2010). However, a parallel 
decline in the proliferative and cytolytic capacity of 
NK cells as well as a decrease in cytokine production 
and NK cell migration has also been reported which 
is often associated with increased incidences of viral 
infection in the elderly (Almeida-Oliveira et al. 2011; 
Fang et al. 2010; Gounder et al. 2018; Hazeldine et al. 
2012; Mariani et al. 2002).

Unlike neutrophils, the role of remaining granulo-
cytes, i.e., eosinophils and basophils during aging is 
less understood. It has been reported that eosinophil 
deregulation response to IL5 stimulation and superox-
ide production decreases with age in human subjects 
(Mathur et al. 2008). A recent study has shown that 
eosinophils are critical for maintaining the adipose 
tissue functions and inflammatory homeostasis dur-
ing aging (Brigger et al. 2020). Regarding basophils, 
some studies have demonstrated that absolute baso-
phil numbers decrease with age (Song et  al. 1999; 
Valiathan et al. 2016), and there is also evidence that 
basophils accumulate with age in tissues (van Beek 
et  al. 2018). Age-associated impaired Th2 response 
of basophils has also been reported which can predis-
pose elderly to parasitic infections (Nel et  al. 2011; 
Smith et  al. 2001). It is interesting to note that in 
addition to adaptive immunity, innate immune cells 
are now also emerging to be associated with immu-
nological memory (Bulut et al. 2021). This phenome-
non has been dubbed as ‘trained immunity’ or ‘innate 
immune memory’ that can augment host innate 
immune response to secondary microbial infections 
mediated by the activation of pathogen recognition 

receptors and epigenetic changes in the cells of the 
innate immune system (Netea et al. 2016; Sherwood 
et al. 2022). However, the impact of aging on innate 
immune memory as well as the role of innate immune 
memory in influencing recurring infections and vac-
cine response in the elderly is yet to be explored. 
Nonetheless, a recent clinical trial has reported that 
trained immunity can be effectively induced in the 
elderly on account of BCG vaccination which sug-
gests novel methods and mechanisms of vaccine 
effects (Giamarellos-Bourboulis et al. 2020).

Adaptive immune system

Most of our knowledge regarding immunosenes-
cence and aging is attributed to studies in the adap-
tive immune cells such as T and B cells and is cov-
ered in detail elsewhere (Goronzy and Weyand 2005; 
Minato et al. 2020; Zhang et al. 2021). Although the 
numbers of T cells generally remain constant over the 
lifespan, several characteristic compositional changes 
in T cell subsets with age have been documented. 
Typically, the proportion, activation, and differen-
tiation of naïve T cells decline with age presumably 
due to thymus involution and loss of thymic output 
that strongly affects the peripheral T cell homeosta-
sis. (Appay and Sauce 2014; Čičin-Šain et  al. 2007; 
Goronzy and Weyand 2005; Lazuardi et  al. 2005). 
However, it important to consider that the effects of 
thymic involution are species-specific and are much 
more pronounced in experimental animals as com-
pared to humans. This is likely attributed to homeo-
static proliferation potential of peripheral T cells 
in humans that results in their self-renewal thereby 
compensating for loss of naïve T cells population due 
to gradual thymic involution (Goronzy and Weyand 
2019; Thome et  al. 2016). Memory T cells subsets 
remain constant through the adulthood but show a 
decline in numbers as well as functions with advanc-
ing age (Salam et  al. 2013; Zhou and McElhaney 
2011). Further, an age-dependent shift of naïve T cell 
subsets towards central memory T cells and effector 
memory T cells has also been observed (Saule et al. 
2006). The cytolytic CD8 T cells show a clear age-
associated numerical decline as well as compromised 
effector functions with age (Čičin-Šain et  al. 2007; 
Nikolich-Žugich 2014), while the CD4 helper T cells 
also develop progressive changes in functions such 
as reduced stimulatory response (Haynes and Eaton 
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2005), impaired immunological synaptic activity 
with APCs (Marko et al. 2007), and attenuated B cell 
antibody response which decreases downstream anti-
gen specific responses (Maue and Haynes 2009). In 
addition, aged T cells exhibit a distinct phenotype of 
cell surface markers often characterized by decreased 
expression of genes such as CD28 and CD154 while 
an increase in the expression of certain receptors such 
as CD57 and CD95 are also reported which are often 
considered hallmarks of immunosenescence in T cells 
(Rodriguez et al. 2021; Zhang et al. 2021). It is perti-
nent to note here that age-dependent changes in CD8 
T cells effector functions can be compensated by the 
acquisition of innate like immune phenotype in these 
cells that express markers of both TCR and NK cell 
lineage (Pereira and Akbar 2016). These innate-like 
αβCD8 + T cells likely represent a beneficial adap-
tation to gradual age-dependent loss of CD8 T cell 
numbers and activity, and therefore are significantly 
considered for understanding the ‘restructuring’ 
nature of immunosenescence.

Naturally occurring Tregs (CD4 + CD25 + Tregs+) 
appear to increase with age in humans (Bryl and 
Witkowski 2004; Gregg et  al. 2005), and studies in 
mice revealed increased suppressive functions of 
Tregs during aging (Garg et  al. 2014) with possible 
implications in age-dependent diseases (Deng et  al. 
2021). Similar to T cells, naïve B cells output has 
been shown to decline presumably due to age-related 
changes in the bone marrow (Colonna-Romano et al. 
2009; Lin et  al. 2016), and B cell diversity is also 
reported to decrease with age with a direct impact 
on health status (Gibson et  al. 2009). Aged B cells 
exhibit compromised immune functions such as dif-
ferentiation to plasma cells on antigenic challenge as 
well as a general decline in antigen-specific antibody 
production with age (Howard et al. 2006; Pritz et al. 
2015). Collectively, these changes in B cells popula-
tions and their functional capacity result in dimin-
ished antibody production and poor vaccine response 
in the elderly which is also implicated in the COVID-
19 pandemic (Collier et al. 2021).

Inflamm‑aging

Although the acute inflammatory response against 
pathogens decreases with age, surprisingly, elderly 
also report higher levels of circulatory pro-inflamma-
tory cytokines such as TNF-α and IL-6 (Myśliwska 

et  al. 1998, 1997), indicating the presence of a 
chronic, sterile, and low-grade systemic inflammation 
referred to as inflamm-aging (Ferrucci et  al. 2005; 
Franceschi et al. 2000; Franceschi and Campisi 2014; 
Fulop et al. 2021). The increased levels of cytokines 
and chemotactic proteins during inflamm-aging are 
often associated with predisposition of the elderly 
to increased risk of inflammatory disorders such 
as arthritis and diabetes (Franceschi and Campisi 
2014). In addition, inflamm-aging can have adverse 
effects on the immune response itself. For instance, 
increased serum TNF-α levels with age are negatively 
correlated with T cell functions (Parish et al. 2009), 
while age-related increase in IL-6 levels can suppress 
macrophage functions (Gomez et  al. 2010). Thus, 
inflamm-aging impairs the acute phase response to 
pathogens while the chronic presence of inflamma-
tory proteins augments systemic damage. The precise 
factors augmenting inflamm-aging are yet unclear, 
but are likely to be multifactorial and could be attrib-
uted to lifelong exposure to antigens (including latent 
viruses such as CMV), accumulation of SC and their 
inflammatory secretome, increased macromolecular 
damage and release of damage-associated molecular 
patterns (DAMPs) that chronically activate the innate 
immune cells (Garb-aging), pro-inflammatory micro-
RNAs, age-related gut dysbiosis and leaky gut, as 
well as certain disorders such as adiposity (Santoro 
et  al. 2021). Specifically, the double-stranded DNA 
(ds DNA) sensor cyclic-GMP-AMP synthase (cGAS) 
and the downstream stimulator of interferon genes 
(STING) pathways (cGAS/STING) is emerging as 
an important regulator and therapeutic target of ster-
ile inflammation and its unwarranted effects (Decout 
et al. 2021; Huang et al. 2020). Cytosolic dsDNA is 
recognized as a universal DAMP that acts as a ligand 
to activate cGAS/STING pathway, and the stress-
induced cytosolic leakage of mitochondrial DNA 
(mt DNA), including in immune cells such as mac-
rophages, has been implicated in augmented inflamm-
aging that contributes to immunosenescence (Atayik 
and Çakatay 2022b; Conte et al. 2020; Lv et al. 2022; 
Zhong et al. 2022). Accumulating evidence suggests 
that inflamm-aging is essentially an age-dependent 
remodeling of the immune response due to an imbal-
ance between anti-inflammatory and pro-inflamma-
tory networks. This adaptation of the immune system 
to proinflammatory environment due to a weakening 
of anti-inflammatory state is considered a driving 
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force of age-dependent morbidity (Fulop et al. 2016, 
2017; Santoro et  al. 2021). Thus, strategies decreas-
ing the proinflammatory stimulus as well as those 
enhancing the anti-inflammatory cellular attributes 
are desirable for negating inflamm-aging and thus 
promoting healthy aging. As a result, characteriza-
tion of inflamm-aging is an important parameter of 
potential anti-aging therapies and understanding dis-
ease pathology during aging. It is prudent to consider 
here that the significance of compromised functions 
of the immune system during aging in augmenting 
organismal risk of infections and delayed immune 
response appears contentious. On one hand, there is 
mounting evidence that age-dependent functional and 
phenotypic changes in immune cells can contribute 
to reduced vaccine response and increased risk of 
infections during aging (He et  al. 2021; Loyer et  al. 
2022; Sabbatinelli et al. 2022; Simmons et al. 2022); 
on the other hand, there are also reports indicating 
that aspects of immunosenescence, such as inflamm-
aging, could be positively corelated with increased 
vaccine immunogenicity in older adults (Picard et al. 
2022). These conflicting observations corroborate the 
recent efforts of Pawelec et  al. that highlighted the 
limitations and lacunae of the prevailing one-dimen-
sional view of immunosenescence (Pawelec et  al. 
2020).

Cellular senescence and immunological aging

Unlike other aspects of organismal growth and devel-
opment, aging is not considered to be programmed 
but is rather argued as a quasi-programmed phenom-
enon (Blagosklonny 2013) that also appears to be a 
classic case of antagonistic pleiotropy (Austad and 
Hoffman 2018). Organismal aging begins in cells 
themselves (biological aging) and represents a culmi-
nation of progressive increase in cellular and molec-
ular damage owing to several intrinsic and extrinsic 
cellular stressors (DiLoreto and Murphy 2015; Gil del 
Valle 2011; Liguori et al. 2018). Hayflick and Moor-
head reported the phenomenon of ‘cellular senes-
cence’ which indicated that primary human cells are 
not immortal as previously thought, but rather have 
a finite replicative lifespan in  vitro (Hayflick and 
Moorhead 1961). Identification of replicative senes-
cence was a seminal discovery as it provided a hint 
of a direct correlation between cells and organis-
mal aging. The recent decade has seen tremendous 

improvements in our understanding of cellular senes-
cence and its relevance to the causes and effects of 
aging (Di Micco et  al. 2021). SC are characterized 
by increased expression of cell cycle inhibitors (p53/
p16Ink4a/p21WAF1), activation of senescence-associ-
ated β-galactosidase activity (SA-β-gal), enlarged and 
heterogenous morphology, persistent stress, DNA 
damage, telomere attrition, chromatin remodeling, 
apoptotic resistance, and altered metabolic and ener-
getic homeostasis (Ovadya and Krizhanovsky 2018; 
van Deursen 2014). Although SC develop naturally 
and their presence is considered essential for certain 
processes such as wound healing and even embry-
onic development; the role of accumulating tissue 
SC in augmenting the aging phenotype across verte-
brate species is also becoming evident (Childs et al. 
2015; Mylonas and O’Loghlen 2022). An increased 
SC burden in several aging tissues has been reported 
(Idda et  al. 2020; Yousefzadeh et  al. 2020) and fur-
ther landmark studies also identified their causative 
role in promoting age and age-related pathologies 
(Aguayo-Mazzucato et  al. 2019; Baker et  al. 2016). 
SC accumulation in tissues is particularly deleteri-
ous due to the chronic presence of the senescence-
associated secretory phenotype (SASP) which is a 
milieu of characteristic cytokines and growth factors 
that augments proinflammatory and pro-tumorigenic 
environment in healthy cells surrounding SC through 
paracrine effects (Birch and Gil 2020). As a result, 
cellular senescence appears to be a common denomi-
nator for a variety of human inflammatory diseases 
and it is argued that pathophysiologically distinct but 
age-dependent disorders should be considered within 
the purview of cellular senescence itself (Prašnikar 
et al. 2021). As the cellular senescence-centric view 
of aging is being rapidly acknowledged; novel thera-
pies aimed at mitigating or selectively removing SC 
(through senolytics) are of considerable interest for 
lifespan extension despite their potential pitfalls and 
apprehensions (Dolgin 2020; Owens et al. 2021; Pils 
et al. 2021; Sharma 2021a; Thirumurugan 2022).

Although most of our understanding regarding 
immunity and aging is often associated with immu-
nosenescence, yet, immunosenescence has often 
been criticized for the lack of universal biomark-
ers, its causal relationship with organismal aging, 
and its association with inflamm-aging (Pawelec 
et  al. 2020; Xu et  al. 2020). The past decade has 
seen rapid transformation in our understanding of 
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immunological aging, and as a result, previously 
unknown or less emphasized functions and phenom-
enon of the immune system that may impact aging 
have been discovered. In this regard, the role of 
immune system in the development and progression 
of cellular senescence in non-leucocyte cells as well 
as its impact on immune cells themselves is being 
greatly recognized (Budamagunta et al. 2021; Burton 
and Stolzing 2018; Sharma 2021b). It is becoming 
evident that immunosenescence may not be the only 
player in regulating immunological aging, and that 
cellular senescence in immune cells per se could be 
sufficient to drive organismal aging including immu-
nosenescence (Yousefzadeh et al. 2021). Therefore, a 
mutual interrelationship between immunosenescence 
and cellular senescence can be envisaged and eluci-
dating this association is critical for understanding 
immunological as well as organismal aging. At this 
point, it is also prudent to consider that although 
certain effects of cellular senescence and immunose-
nescence in immune cells may appear to overlap, yet 
the etiology of both these processes is fundamentally 
distinct (Burton and Stolzing 2018). Subsequent to 
the initial identification of cellular senescence in 
fibroblasts by Hayflick and Moorhead (Hayflick and 
Moorhead 1961), several other cell types were also 
reported to undergo cellular senescence in  vitro. 
However, scientific interest in identifying cellular 
senescence in immune cells remained subdued until 
rather recently primarily due to the fact that T cells 
were initially observed to propagate indefinitely fol-
lowing an exposure to T cell growth factor (Gillis and 
Smith 1977). It was later discovered that similar to 
other cell types, replicative senescence in T cells can 
be induced by multiple rounds of antigenic stimula-
tion which can also impair T cell effector functions 

(Callender et al. 2018; Dunne et al. 2005; Spaulding 
et al. 1999). However, the extent and significance of 
cellular senescence in different immune cells as well 
as the role of senescent immune cells in promoting 
cellular senescence and accumulation of non-leuco-
cyte SC is only beginning to be understood. Emerging 
studies are suggesting a more intricate, bidirectional, 
and dynamic role of cellular senescence in govern-
ing aging in both immune as well as in non-leucocyte 
cells. As a result, an emphasis on understanding the 
relationship between immunosenescence and cel-
lular senescence, and its impact and relevance in the 
context of organismal aging, has been recently advo-
cated (Budamagunta et al. 2021; Burton and Stolzing 
2018).

Cellular senescence in immune cells: characteristics 
and impact

Although often overlooked, but similar to other cells, 
immune cells are also liable to undergo cellular 
senescence. This is especially relevant since we now 
understand that cellular senescence is not simply a 
feature of proliferative cells, but even post-mitotic tis-
sues have prevalent senescence program (von Zglin-
icki et al. 2021). Although replicative senescence was 
earlier established in T cells, characterization of cel-
lular senescence in various immune cells has largely 
remained in obscurity and incompletely understood. 
However, given the emerging significance of cellu-
lar senescence, recent studies have demonstrated that 
cellular senescence could indeed be more prevalent 
and significant in immune cells, especially in T cells 
(Fig. 1). For instance, it was reported that similar to 
other somatic cells, peripheral blood mononuclear 
cells (PBMCs) in humans strongly display classical 

Fig. 1  Identified markers 
of replicative senescence in 
T cells
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markers of cellular senescence such as high SA-β-gal 
activity,  p16Ink4a overexpression, telomere dysfunc-
tion, and impaired proliferative response (Martínez-
Zamudio et al. 2021). Interestingly, the authors noted 
that the senescent CD8 + T cells population (includ-
ing TEM and TEMRA subsets) developed unique 
SASP-associated gene expression profile as compared 
to senescent fibroblasts, and such T cells reached 
average levels of 64% in aging subjects thereby sug-
gesting that T cell senescence substantially overlaps 
with replicative senescence in non-leucocyte cells 
and that such senescent T cells could be far more 
abundant in circulation than previously thought 
(Martínez-Zamudio et  al. 2021). Another recent 
work demonstrated that the development of  p16Inka4a 
mediated cellular senescence and suppressed prolif-
erative response is a characteristic of aging human 
T cells which could be a potential therapeutic tar-
get (Janelle et  al. 2021). Similarly, a high percent-
age of CD4 + and CD8 + T cells expressing SA-β-gal 
activity, increased transcripts of p21,  p16INK4a, and 
inflammatory cytokines, as well as DNA damage 
were observed in aged human PBMCs as compared 
to the cells isolated from younger subjects (Dewald 
et  al. 2020). Using a murine model of spontaneous 
genotoxic damage as well as natural aging, senes-
cent peripheral blood lymphocytes were identified 
that were characterized by over 15 folds increase in 
 p16Ink4a and  p21Cip1 mRNA expression suggesting 
prevalent cellular senescence (Yousefzadeh et  al. 
2020). Further, senescent CD8 + T cells exhibited 
p38MAPK-dependent SASP-like features charac-
terized by the secretion of proteases and cytokines 
similar to non-leucocyte senescent cells (Callender 
et  al. 2018; Henson et  al. 2014). Similarly,  p16Ink4a 
expression increased exponentially with chronologi-
cal age in human peripheral blood T-lymphocytes 
suggesting the systemic presence of senescent T cells 
(Liu et  al. 2009; Shen et  al. 2020). Similar to other 
senescent cells, expression of telomerase reverse tran-
scriptase gene declines in aging T cells which directly 
contributes to shortened telomeres and development 
of senescence features (Matthe et  al. 2022; Röth 
et al. 2003). Flow cytometry analyses of T cell sub-
sets in elderly population have revealed that among 
CD8 + T-lymphocytes, CD28 + CD57 + T cells repre-
sented a subset with strong senescent features such as 
increased expression of  p16Ink4a, p21, Bcl-2, CD95, 
CD45RO, CCR5 and PD-1 (Onyema et  al. 2015). 

A positive relationship between increased circula-
tory senescent CD8 + T cells and the development of 
Behçet’s disease was also reported (Yang et al. 2018). 
Moreover, induction of T cell senescence has been 
observed to be a key mechanism governing the patho-
physiology of human infectious agents including 
COVID-19 (Covre et al. 2018; De Biasi et al. 2020; 
Witkowski et al. 2022).

On the other hand, studies identifying senescent 
innate immune cells in vivo are limited. Few reports 
have assessed tissue-associated macrophages for the 
presence of cellular senescence but with controversial 
findings. It was observed that characteristic mark-
ers of cellular senescence such as increased  p16Ink4a 
expression, SA-β-gal activity, and activation of SASP 
are prevalent in aging macrophages (Hall et al. 2016; 
Kumar et  al. 2020b; Liu et  al. 2019; Prattichizzo 
et  al. 2018; Wang et  al. 2021). A recent study fur-
ther reported that irradiated macrophages exhibited 
several features of senescence, including increased 
expression of  p16Ink4A and p21, SA-β-gal activity, 
SASP, and impaired efferocytosis in vitro, and when 
transferred to mice, they exacerbated inflammation 
in  vivo (Sadhu et  al. 2021). However, curiously, it 
was also revealed that the apparent senescent pheno-
type in macrophages might be a reversible phenom-
enon in response to physiological stimuli (Hall et al. 
2017), while another study observed distinct differ-
ences between in  vitro and in  vivo aged microglia 
cells (Stojiljkovic et  al. 2019). In addition to mac-
rophages, NK cells have also been reported to show 
increased markers of age-dependent cellular senes-
cence although such studies are limited (Dewald et al. 
2020). It is also interesting to note that in addition to 
endogenous factors, immune cells, especially tissue 
resident cells such as macrophages and memory T 
cells, which persist in the microenvironment of non-
leucocyte tissue cells, can be chronically exposed 
to the SASP of tissue SC that may undermine their 
functional activities and potentially contribute to pre-
mature immunosenescence and increased accumula-
tion of SC (Fig. 2). For instance, it was observed that 
acute exposure to the SASP of senescent fibroblasts 
impaired the phagocytic ability of macrophages and 
ultimately accelerated the accumulation of SC in 
the dermis (Ogata et  al. 2021). Similarly, peritoneal 
macrophages isolated from old mice exhibited sig-
nificant characteristics of cellular senescence which 
were aggravated by ex vivo exposure to the SASP of 
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senescent preadipocyte cells (Kumar et  al. 2020b). 
In vitro exposure to the SASP of hepatocytes induced 
migration of inflammatory macrophages (but not of 
non-inflammatory macrophages) that could contrib-
ute to a proinflammatory microenvironment (Irvine 
et al. 2014).

The immune system and tissue senescent cell burden

The relationship between immunity and cellular 
senescence appears to be bidirectional. While aging 
may augment levels of senescent immune cells, accu-
mulation of various non-leucocyte SC in the body 
seems to be strongly regulated by immune cell func-
tions. Several independent studies have demonstrated 
that SC secrete certain chemokines and cytokines 
that attract immune cells such as macrophages, NK 
cells, and CD8 + T cells which then identify SC 
through upregulated SC-specific ligands such as 
MICA/B, ULBP1-6, and lysophosphatidylcholines 
(Antonangeli et al. 2016; Narzt et al. 2021) resulting 
in their targeted cytolysis. Thus, it is perceived that 
immune cells can identify and remove SC from the 
body thereby indicating their pivotal role in regulat-
ing tissue SC turnover with age. The exact causes 
for the apparent increase in SC numbers in the aging 
tissues is yet incompletely understood but it could 

be attributed to either the increased development of 
SC in  vivo or due to their decreased removal prob-
ably due to impaired immune functions with age. 
In a breakthrough study, it was demonstrated that if 
immune cells have defective cytolytic properties, it 
results in higher SC burden in tissues, chronic inflam-
mation, multiple age-related disorders, and ultimately 
decreased lifespan in experimental mice (Ovadya 
et  al. 2018). This clearly indicated that defective 
immunosurveillance and effector immune functions 
(as observed during immunological aging) could be 
key mechanisms governing increased SC burden 
with age. In another significant study, it was dem-
onstrated that mouse hematopoietic cells defective 
in DNA damage repair response resulted in induc-
tion of premature immunosenescence and cellu-
lar senescence in not only immune cells, but also in 
non-lymphoid cells thereby strongly indicating that 
senescence in immune cells is sufficient to drive sys-
temic senescence (Yousefzadeh et al. 2021). Interest-
ingly, transplantation of young immune cells signifi-
cantly reduced systemic senescence suggesting that 
an aging immune system can be critical augmenter 
of SC development and accumulation (Yousefzadeh 
et al. 2021). Similarly, dysfunctional mitochondria in 
T cells were causatively related to premature systemic 
senescence and multimorbidity characterized by neu-
rological, metabolic, muscular, and cardiovascular 
impairments, as well as inflamm-aging in mice (Des-
dín-Micó et  al. 2020). Another emerging and inter-
esting aspect of SC accumulation and immune cells 
is related to their immune evasive attributes. It was 
observed that senescent dermal fibroblasts exhibit 
heightened expression of non-classical MHC mol-
ecule HLA-E which inhibit immune responses against 
SC (Pereira et al. 2019). This study thus showed that 
similar to tumor cells, SC may develop strategies 
to circumvent the immune system thereby indicat-
ing that the relationship between immune cells and 
SC could be even more intricate. Further, whether 
and how the immune evasive attributes of SC could 
be facilitated by the presence of immunosenescence 
or cellular senescence in immune cells remains to 
be deciphered. Taken, together, these observations 
suggest that cellular senescence may be prevalent in 
immune cells (especially in adaptive immune cells), 
and although its significance is yet to be completely 
delineated, however, when coupled with immunose-
nescence, it can be envisaged that age-dependent 

Fig. 2  Overview of interactions between tissue resident 
immune cells and senescent non-leucocyte cells with implica-
tions in immunological and systemic aging. (1) Chronic expo-
sure to the SASP of nearby senescent cells can induce immu-
nological dysfunctions in resident immune cells and (2) these 
changes can impair immune cells’ ability of immunosurveil-
lance and efferocytosis that may ultimately result in inefficient 
removal of senescent cells and thus augmentation of senescent 
cell burden
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deregulation of the immune system could be a signifi-
cant contributor to the systemic increase in tissue SC 
population (Fig. 3).

Dietary bioactive factors and immunological aging

In addition to essential functions for growth and 
development, dietary constituents can dynamically 
influence the immune system including its maturation 
and effector immune responses (Ponton et  al. 2011; 
Saeed et al. 2016). The human immune system under-
goes characteristic changes and maturation with dif-
ferent phases of life. For example, pregnancy is char-
acterized by downregulation of cell mediated immune 
responses, while post-birth, exposure to food (includ-
ing milk antigens), benign environmental factors, as 
well as colonization of commensal bacteria in the 
gut induces tolerance in the immune system result-
ing in overall immunological maturation and man-
agement of inflammation (Calder et al. 2006; Gil and 
Rueda 2002). Thus, nutritional exposure in early life 
is considered critical for immunological competence 
in later life against pathogens and the development 

of immunological disorders. Similarly, modulation 
of the aging immune system through various dietary 
factors has also been observed that may have implica-
tions for improving the deleterious effects of immu-
nological aging (Fig. 4).

Phytochemicals

Food-based phytochemicals are a major source of 
immunomodulators including immunostimulators 
and immunosuppressants (Behl et  al. 2021). Phyto-
chemicals describe a collection of various catego-
ries of plant metabolites such as polyphenols, alka-
loids, carotenoids, carbohydrates, and lipids. These 
chemicals are abundant in fruits and vegetables, and 
in addition to immunomodulation, they have been 
recognized for various cell signaling modulatory 
and cytoprotective attributes (Pham et  al. 2020). As 
such, the modulatory effects of phytochemicals on 
different aspects of organismal healthspan and lifes-
pan have also been documented (Corrêa et al. 2018; 
Si and Liu 2014). In terms of immunological aging, 
several studies have shown that dietary polyphenols 

Fig. 3  Interrelationship between immune cells, cellular senes-
cence, and aging. (1) In young organisms, SASP mediated 
activation of immune cells such as macrophages and NK cells 
identify and clear senescent cells efficiently. (2) However, in 
old organisms, due to cumulative effects of both cellular senes-

cence and immunosenescence, immune cells lose the potency 
to manage senescent cell turnover that gradually decreases 
with age. (3) Inherent immune evasive attributes of senescent 
cells are also indicated that further highlight the complex inter-
play between immunity and senescent cells
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can influence multiple facets of immunosenescence 
although their impact on cellular senescence in 
immune cells is little understood. For instance, we 
previously observed that ex  vivo exposure to green 
tea catechin EGCG reversed SASP-induced markers 
of cellular senescence in murine macrophages includ-
ing SA-β-gal activity, expression of cell cycle inhibi-
tory genes, and oxi-inflammatory stress (Kumar et al. 
2020b). In a further study, chronic consumption of 
green tea catechin EGCG influenced multiple mark-
ers of cellular senescence and immunosenescence in 
experimental mice (Sharma et  al. 2022). Similarly, 
long term consumption of the phytochemical resvera-
trol in Sprague–Dawley rats improved neurocognitive 
performance through the downregulation of inflam-
matory and oxidative stress pathways in the innate 
immune system (Garrigue et  al. 2021). Resveratrol 
consumption also attenuated surgery-induced cogni-
tive impairment and hippocampal neuroinflamma-
tion in aged rats through the downregulation of hip-
pocampal microglial activity (Locatelli et  al. 2018). 
Dietary supplementation with polyphenol-rich plant 
extract enhanced the median lifespan of obese mice 
by improved lipid metabolism and restriction in acti-
vation and infiltration of tissue macrophages in the 
adipose tissue (Aires et  al. 2019). Consumption of 
the polyphenol syringaresinol to middle-aged mice 
delayed markers of immunosenescence by enhanc-
ing the numbers of total CD3 + T cells and naïve T 
cells, enhanced humoral immunity against influenza 
vaccination to the level of young control mice, and 
also attenuated inflamm-aging (Cho et al. 2016). An 
increase in the number of cytotoxic T-lymphocyte 

associated protein 4-positive cells and in the gene 
expression levels of CTLA-4, FoxP3, IL-10 and 
TGF-β was recorded after dietary supplementa-
tion with arachidin-1 and resveratrol in aged mice 
suggesting their role in successful aging of regula-
tory immune cells (Weng et  al. 2016). Further, age-
dependent stimulatory effects on T cell cytokine 
production were observed after in  vitro exposure to 
the polyphenol-Oenothein B (Ramstead et al. 2015). 
Administration of Brazilian green propolis induced 
positive effects on innate and adaptive immune func-
tions in aged mice characterized by enhanced phago-
cytosis and antibodies production (Gao et  al. 2014). 
Consumption of Pu-erh tea extracts by senescence 
accelerated mice reversed elements of immunose-
nescence by significantly increasing the fractions 
of naïve T lymphocytes, CD8(+)CD28(+) T lym-
phocytes and NK cells in the peripheral blood, and 
concomitant decrease in the levels of proinflam-
matory IL-6 (Zhang et  al. 2012). We also observed 
that oral administration of green tea catechin EGCG 
enhanced immune functions in aging mice by sup-
pressing inflamm-aging, enhancing CD8 + T cell 
population, and modulation of antibody response 
(Sharma et al. 2017). Resveratrol supplementation in 
aged mice significantly increased the T helper cells 
(CD4(+)) population and delayed-type hypersensi-
tivity response, and promoted the production of IgG 
without disturbing immunological homeostasis and 
therefore leading to immune rejuvenation (Yuan et al. 
2012). Consumption of polyphenols derived from 
Cassia auriculata flowers by aged rats increased T 
and B cells percentage accompanied by an elevation 

Fig. 4  An overview of 
identified anti-cellular 
senescence and anti-
immunosenescence effects 
of various dietary factors 
specific to immunological 
aging
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of CD4+, CD8+, and CD4 + CD25 + regulatory cells 
along with enhanced proliferation of splenocytes 
in both resting and LPS-stimulated cells (John et  al. 
2011). Supplementation with polyphenol-rich biscuits 
in aged mice conferred immunomodulatory effects 
on both the innate and adaptive immune functions as 
compared to the control (De la Fuente et  al. 2011). 
In another study, ovariectomy accelerated the age-
related impairment of immune functions in old mice 
as well as the oxidative and proinflammatory imbal-
ance, which was reversed by the administration of 
soybean isoflavones and green tea (Baeza et al. 2010).

Not only polyphenols, consumption of other bio-
active phytochemicals, such as carotenoids, has 
also demonstrated potential modulatory effects in 
d-galactose induced aging rats by attenuating cel-
lular and humoral markers of immunosenescence 
(Chen et  al. 2020). Similarly, administration of the 
lignan Anwulignan reversed the effects of d-galactose 
induced immunosenescence in aged mice by sup-
pressing circulatory levels of inflammatory cytokines, 
enhancing immunoglobulins production, reducing 
oxidative stress in spleen, and augmenting antioxidant 
defenses (Li et al. 2020). Further, when aged animals 
were fed with a novel wheat–lentil bread, a significant 
decrease in inflamm-aging and an increase in CD8 + T 
cells was observed (Carcea et al. 2019). Consumption 
of Chrysanthemum indicum plant extracts amelio-
rated the effects of d-galactose induced senescence in 
mice through decreased oxidative stress, inflamma-
tion, and apoptosis in various animal tissues (Zhang 
et  al. 2019). Oral administration of β-1,3-glucans to 
aged male mice modulated immunosenescence char-
acterized by a significant increase in T helper cells, 
the delayed-type hypersensitivity response, and 
immunoglobulin production (Song et  al. 2020). The 
plant melatonin, i.e., phytomelatonin, is also emerg-
ing as a potential nutraceutical with pharmacological 
effects against cellular senescence and immunosenes-
cence in experimental animals (Arnao and Hernán-
dez-Ruiz 2018; Atayik and Çakatay 2022a; Cruciani 
et  al. 2022; Fernández-Ortiz et  al. 2022; Srinivasan 
et al. 2005). The mechanisms governing the apparent 
cellular senescence and immunosenescence modula-
tory effects of phytochemicals are multifaceted but 
are linked to the longevity nutrient sensing pathways 
such as the Sirtuins and mTOR as well as transcrip-
tion factors such as NRF-2 and NF-κB (Mannick 
et al. 2014; Micó et al. 2017; Robledinos-Antón et al. 

2019). As such, pharmacological natural modulators 
of these pathways are considered important interme-
diates to extend longevity including through immu-
nomodulation (Sharma 2021a).

Although preclinical studies using mice and other 
animals have been greatly useful in biomedical 
research; however, their association and translation 
with respect to humans is not always linear due to the 
evolutionary distance between species. This is starkly 
evident from the failure of a large percentage (up to 
85%) of clinical trials despite promising results in 
preclinical animal studies (Ledford 2011; Mak et al. 
2014). While this could be attributed to multiple rea-
sons including dosage, route, and concerned disease; 
however, the differences in the physiologies of exper-
imental animals and humans cannot be overlooked. It 
has been reported that despite having the same genes, 
species-dependent differences in cellular functions 
exist that contribute to considerable heterogeneity in 
cellular responses (Hodge et al. 2019). In terms of the 
immune system too, several characteristics changes 
in the innate and adaptive immune system, even dur-
ing immunosenescence, have been identified which 
warrant a cautious approach in using and interpret-
ing studies, especially related to immune modulatory 
preclinical work, for human translation (Goronzy and 
Weyand 2013; High et al. 2012; Mestas and Hughes 
2004). Nonetheless, similar to preclinical reports, few 
clinical trials in elderly have directly demonstrated 
the immunosenescence modulatory effects of phyto-
molecules. For instance, a recent double-blind, rand-
omized controlled pilot trial observed that consump-
tion of non-digestible polysaccharide preparations 
significantly improved the humoral immune response 
of healthy seniors (50–79  years aged) against influ-
enza vaccination (Laue et al. 2021). Similarly, admin-
istration of a fermented green banana-derived acidic 
glycoconjugate to 30 elderly bed-ridden patients for 
8  weeks increased the antibody responses to influ-
enza vaccination thereby countering the deleterious 
effects of immunosenescence (Horie et  al. 2021). A 
randomized clinical trial on sixty-six old subjects 
(aged ≥ 60 years) revealed that 8-week long consump-
tion of a polyphenol-rich diet significantly attenu-
ated systemic inflamm-aging by improving gut dys-
biosis (Del Bo et  al. 2021). A Japanese case study 
observed preventive effects of coffee consumption on 
the occurrence of pneumonia in the elderly (Kondo 
et  al. 2021). Another clinical trial reported that diet 
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supplementation with combinations of resveratrol, 
pterostilbene, morin hydrate, quercetin, δ-tocotrienol, 
riboflavin, and nicotinic acid reduced cardiovascular 
risk factors and inflammation in healthy senior sub-
jects (Qureshi et al. 2012).

Probiotics

The impact and relevance of commensal gut microbes 
in the development, maturation and regulation of 
immune response as well as maintenance of immune 
homeostasis is well recognized (Belkaid and Hand 
2014; Zheng et al. 2020). The composition of the gut 
microbiota strongly influences the type of immune 
response, and the presence of dysbiotic gut microbi-
ota is implicated in several inflammatory and immu-
nological disorders including immunosenescence 
(Al-Rashidi 2022; DeJong et al. 2020; Shimizu et al. 
2021; Toor et al. 2019). On the other hand, applica-
tion of probiotics is considered useful for the main-
tenance of gut eubiosis and improved immunological 
response and homeostasis (Gagliardi et al. 2018; Mal-
donado Galdeano et  al. 2019; Martin Manuel et  al. 
2017; Unno et  al. 2015). Not only the gut, probiot-
ics are known to influence several distal organs and 
functions through the generation of novel secretory 
metabolites that can enter circulation. Studies have 
also demonstrated that probiotics are particularly 
effective in altering different aspects of immunose-
nescence. For example, a recent study reported that 
consumption of probiotic Lactobacillus casei CRL 
431 in aged mice not only improved the cellular and 
functional markers of immunosenescence but also 
restored the age-related loss in the thymus medulla 
(Balcells et  al. 2022). Probiotic Lactobacillus plan‑
tarum JBC5 enhanced the lifespan of Caenorhabditis 
elegans through the modulation of multiple mark-
ers related to oxidative stress and innate immunity 
(Kumar et al. 2022). Application of a probiotic cock-
tail containing 5 Lactobacillus and 5 Enterococcus 
strains to old mice prevented the leaky gut by improv-
ing the expression of tight junction proteins that ulti-
mately prevented unwarranted aggravation of intes-
tinal immune cells and thus inflammation (Ahmadi 
et  al. 2020). Supplementation of milk fermented 
with probiotic microbes improved the redox state and 
functions of peritoneal immune cells such as mac-
rophages and NK cell in aged mice (Hunsche et  al. 
2019). Administration of Lactobacillus acidophilus 

DDS-1 to aging mice attenuated the proinflammatory 
profile in serum and colonic explants as compared 
to age match controls (Vemuri et  al. 2019). Feed-
ing accelerated aging  Ercc1−/Δ7 mice with probiotic 
Akkermansia muciniphila for 10 weeks modulated the 
colonic immune profile by inhibiting B-cell migra-
tion, expression of genes related to inflammation 
along with a reduction in peritoneal resident mac-
rophages thereby suggesting its anti-inflammatory 
effects for healthy aging (van der Lugt et al. 2019). In 
our previous study, we also observed that consump-
tion of a synbiotic formulation containing green tea 
EGCG and probiotic Lactobacillus fermentum alle-
viated various aspects of immunosenescence as evi-
denced by increased proliferation and activation of 
CD3 + T cells as well as improved Th1/Th2 cytokines 
ratio in splenic culture supernatants (Sharma et  al. 
2019). Further, oral consumption of milk fermented 
with probiotic Lactobacillus rhamnosus to aged mice 
attenuated age-related Th1/Th2 cytokine imbalance, 
inflamm-aging, IgG1/IgG2a antibodies ratio, and also 
improved the immune response against pathogenic E. 
coli (Sharma et  al. 2014a). Similarly, administration 
of probiotic fermented dahi increased the phagocytic 
potential and oxidative burst capacity in aging mice 
(Kaushal and Kansal 2014). When supplemented 
with probiotic Lactobacillus reuteri BM36301, aged 
mice exhibited gender-specific effects wherein male 
mice experienced less weight gain and higher testos-
terone level while females maintained a lower serum 
TNF-α levels as well as healthy skin with active fol-
liculogenesis and hair growth (Lee et al. 2016).

Human randomized controlled studies have also 
reported immunosenescence alleviating effects of 
probiotics. A recent study observed that consump-
tion of combination of the probiotics Lacticaseiba‑
cillus rhamnosus GG and Bifidobacterium animalis 
subsp. lactis BB-12 in elderly subjects for 12 months 
enhanced seasonal influenza vaccination response 
despite limited effects on other immune functions 
(Castro-Herrera et  al. 2021). A randomized, double-
blind, placebo-controlled trial was conducted with 98 
elderly subjects (aged 84.6 ± 7.8 years), supplemented 
for 30 days with a biscuit containing a probiotic mix-
ture of Bifidobacterium longum Bar33 and Lactoba‑
cillus helveticus Bar13 resulted in increased naive, 
activated memory, regulatory T cells, B cells, and NK 
cell activity compared with placebo suggesting strong 
influence on prevalent immunosenescence (Finamore 
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et al. 2019). Several other studies have reported that 
consumption of probiotic bacteria in elderly subjects 
can protect against incidences of acute upper respira-
tory tract infections and augment vaccine response 
(Boge et al. 2009; Davidson et al. 2011; Fonollá et al. 
2019; Jespersen et al. 2015; Pu et al. 2017). Further, 
immune cell subpopulations also appeared to change 
in elderly subjects supplemented with heat-killed 
Lactobacillus gasseri wherein CD8(+) T cells not 
only significantly increased in PBMCs, but expression 
of the co-stimulatory molecule CD28 did not exhibit 
age-dependent decline in expression as observed for 
the placebo group (Miyazawa et al. 2015). Similarly, 
increased levels of CD4 + T cells and reduced mark-
ers of inflammation were observed after ingestion of 
Lactobacillus gasseri KS-13, Bifidobacterium bifi‑
dum G9-1, and Bifidobacterium longum MM-2 in 
older adults (Spaiser et  al. 2015). Supplementation 
of a synbiotic composed of probiotic Lactobacillus 
rhamnosus GG and prebiotic corn fiber in healthy 
elderly enhanced NK cell response while decreas-
ing systemic inflamm-aging (Costabile et  al. 2017). 
In contrast, some studies have also observed limited 
or complete lack of immunomodulation by probiotic 
bacteria in elderly subjects which could be related 
to the efficacy of the particular type of probiotic 
strain used (Maruyama et al. 2016; Van Puyenbroeck 
et  al. 2012). Studies assessing the role of probiot-
ics in influencing cellular senescence and SASP are 
limited but emerging. It has been demonstrated that 
probiotic bacteria and their metabolites can directly 
suppress cellular senescence at least in vitro (Kumar 
et  al. 2020a) while previous studies indicated that 
probiotic treatment can inhibit colonic senescence by 
downregulating the expression of cell cycle markers 
p53/p16 (Jeong et al. 2015a, b). However, to the best 
of our knowledge, there is no information whether 
probiotic treatment can also suppress cellular senes-
cence in immune cells. Nonetheless, given the known 
immunosenescence modulatory as well as emerging 
anti-cellular senescence effects of probiotics, it seems 
prudent to assess their cellular senescence modula-
tory attributes in senescent immune cells.

Polyunsaturated fatty acids

Polyunsaturated fatty acids (PUFAs), especially n-3 
PUFA such as eicosapentaenoic acid (EPA) and doc-
osahexaenoic acid (DHA) are important constituents 

of a healthy diet and are implicated in a myriad of 
health beneficial effects including against cardiovas-
cular diseases, chronic inflammation, diabetes, and 
age-related cognitive decline (Shahidi and Ambi-
gaipalan 2018). Fish and sea food are particularly rich 
sources of PUFAs and studies have demonstrated that 
PUFAs can impact certain features of cellular senes-
cence and immunosenescence in immune cells per 
se. For instance, clinical trials have shown that con-
sumption of n-3 PUFAs is associated with increased 
telomere length of blood leucocytes in elderly that 
results in improved proliferative response and attenu-
ation of several markers of immunosenescence (Ali 
et  al. 2022). A study on Chinese population con-
cluded that higher plasma n6:n3 PUFA ratio, and 
lower EPA and DHA n-3 PUFAs were associated 
with shorter leucocyte telomere length and increased 
coronary artery disease (Chang et al. 2020). Another 
study observed that age-related telomere shortening 
in leucocytes can be attenuated in elderly subjects 
with mild cognitive impairments by PUFA supple-
mentation for 6 months (O’Callaghan et al. 2014). A 
double-blind 4-month trial on older adults revealed 
that supplementation with n-3 PUFA increased tel-
omere length in leucocytes which correlated with 
decreasing n-6:n-3 ratios and decreased oxidative 
and inflammatory stress thereby indicating that n-3 
PUFAs can impact immune cell aging (Kiecolt-Gla-
ser et al. 2013). Supplementation with EPA and DHA 
(2.5  g/day) in elderly subjects for 8  weeks reduced 
the circulatory markers of inflamm-aging (Tan et al. 
2018). Similarly, consumption of PUFA by middle 
aged older adults reduced systemic inflamm-aging as 
evident by a decrease in markers of pro-inflammatory 
cytokines (Kiecolt-Glaser et al. 2012). Another rand-
omized clinical trial observed that even very low con-
sumption of marine oil (600 mg/day) for 6 weeks by 
elderly subjects can significantly improve the immune 
response by enhancing the proliferative potential and 
antioxidant capacity of lymphocytes (Bechoua et  al. 
2003). Animal studies have also demonstrated that 
consumption of fish oil and other PUFAs can attenu-
ate several markers of age-related immunosenescence, 
inflamm-aging, and Th1/Th2 cytokine imbalance (de 
Gomes et  al. 2018; Gheorghe et  al. 2017; Jolly and 
Karri 2009). Despite these compelling observations, 
few studies have also reported the lack of any signifi-
cant effect of n-3 PUFA administration on frailty and 
infection rates in the elderly (Bischoff-Ferrari et  al. 
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2020; Orkaby et  al. 2022). However, taken together, 
there appears to be enough data to suggest that PUFA 
may be effective in modulating aging immune cell 
functions including both immunosenescence and cel-
lular senescence, and thus could be useful sources 
of potential anti-aging foods although their further 
characterization in terms of anti-cellular senescence 
effects is desirable.

Vitamins and minerals

Micronutrients such as vitamins and minerals are 
essential for immunocompetence and their nutritional 
deficiency is associated with inadequate immunologi-
cal response (Alpert 2017; Djukic et al. 2014). Micro-
nutrients can influence multiple aspects of immune 
functions such as activation of phagocytes, regula-
tion of inflammation, antigen presentation, as well 
as humoral antibody response (Gombart et al. 2020). 
Studies have also shown that supplementation with 
certain vitamins and minerals can counter immunose-
nescence and boost the immune response in elderly. 
For instance, oral application of vitamins C and E 
to elderly subjects improved blood neutrophils and 
lymphocytes functions which were maintained even 
after 6 months of treatment (De la Fuente et al. 2020). 
Ex  vivo application of vitamins C and E to lym-
phocytes isolated form healthy elderly significantly 
enhanced the proliferative response and attenuated 
oxidative stress (Bouamama et  al. 2017). Similarly, 
long-term high-dose intake of vitamin C (200 mg/kg/
day) in senescence marker protein-30 knockout mice 
for 1 year significantly enhanced the circulatory leu-
cocyte profile and splenic T cell differentiation while 
also suppressing thymic involution with age (Uchio 
et  al. 2015). Vitamin C application to old mice pre-
vented age-related depletion of memory T cells in 
bone marrow while also augmenting the activation 
of antigen presenting cells (Meryk et  al. 2020). In 
addition to vitamins C and E, clinical trials of vita-
min D have observed improved response to vaccines 
and enhanced ability to resist respiratory infections in 
old age adults (Ginde et al. 2017; Goncalves-Mendes 
et  al. 2019; Sadarangani et  al. 2016). Using vitamin 
A, it was observed that retinoic acid had no signifi-
cant effect on the leukocyte subpopulations or on the 
functions of PBMCs but enhanced the spontaneous 
migration and adhesion of neutrophils in elderly sub-
jects (Minet-Quinard et al. 2010). Similarly, vitamin 

A levels were correlated with preserved neutrophil 
functions during aging in humans characterized by 
increased cellular migration and phagocytic activity 
(Farges et al. 2012).

Among minerals, the role of zinc is recognized 
as of particular significance in countering immuno-
logical aging (Baarz and Rink 2022). That elderly are 
often deficient in zinc suggesting a direct correlation 
between chronic inflammation, immunosenescence, 
and increased susceptibility to infections (Cabrera 
2015). Studies have demonstrated that dietary sup-
plementation with zinc can reverse several facets of 
immunosenescence as evident by increased naïve 
T-cell subset (Wong et  al. 2020, 2021), improved 
immune cell functions (Barnett et  al. 2016; Varin 
et  al. 2008), increased thymopoiesis (Wong et  al. 
2009), attenuated inflamm-aging (Wong et  al. 
2013), and modulated Th1/Th2 immune homeosta-
sis (Uciechowski et  al. 2008) during aging. In addi-
tion to zinc, copper (Giacconi et al. 2017; Malavolta 
et  al. 2015) and iron (Handono et  al. 2021; Macciò 
and Madeddu 2012) deficiency is also correlated 
with aging and health, including immunosenes-
cence. Further, there is sporadic evidence indicat-
ing that impaired metabolism of specific minerals 
in senescent non-leucocyte cells could be a preva-
lent phenomenon (Killilea and Ames 2008; La Fata 
et al. 2015; Masaldan et al. 2018a, b), and that sup-
plementation with certain vitamins can delay cellular 
senescence (Chen et  al. 2019; Jeong et  al. 2017; La 
Fata et  al. 2015; Ricciarelli et  al. 2020). However, 
such information in immune cells is completely lack-
ing and needs to be pursued. Further, it is important 
to consider that although elderly often have dietary 
deficiency of minerals such as zinc, copper, selenium, 
and iodine (Vural et  al. 2020) as well as vitamins 
including vitamins D, K, and B (Fabian et  al. 2012; 
Wei et  al. 2019); indiscriminate supplementation of 
vitamins and minerals in individuals with no clini-
cal deficiency is considered controversial, especially 
related to non-communicable diseases (Zhang et  al. 
2020b), and could even be harmful (Hamishehkar 
et  al. 2016). Moreover, supplementation with multi-
vitamins and minerals is not always sufficient to alter 
immune status in the elderly population as evidenced 
recently (Fantacone et al. 2020), and thus a cautious 
approach in this regard is warranted. Table 2 summa-
rizes selected studies demonstrating nutritional mod-
ulators of immunological aging.
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Conclusions and future prospects

How to define an aged immune cell? The answer to 
this deceptively simple question is challenging since, 
as discussed in this manuscript, the immune cells are 
unique to undergo two different and mutually inclu-
sive age-dependent processes, i.e., cellular senescence 
and immunosenescence. Besides, understanding 
aging in immune cells has always remained ambigu-
ous due to the limitations and contradictions associ-
ated with immunosenescence (Pawelec et  al. 2020), 
and the emerging significance of cellular senescence 
in immune cells only adds to this conundrum. The 
relevance of the emerging immunoadaptation view of 
immunosenescence in cellular senescence in immune 
cells is also not known. However, in this regard, it is 
interesting to note that unlike non-leucocyte cells, 
contradictions among characteristic effects of cellu-
lar senescence in immune cells such as macrophages 
have already been reported (Hall et  al. 2017; Sto-
jiljkovic et al. 2019), which perhaps suggest a similar 

plasticity akin to immunosenescence that, however, 
needs further exploration. Nonetheless, the emerging 
cellular senescence-based perspective in understand-
ing of the aging immune system as well as develop-
ing mitigative nutritional therapies has prompted 
more questions than answers. There are several niche 
research areas that need immediate attention:

• The extent and depth of cellular senescence in 
immune cells is not fully understood, particularly 
in innate immune cells including macrophages and 
DCs, which is important considering their hetero-
geneity and tissue-specific niches. Although such 
attempts have been made recently, but elucida-
tion of cellular senescence in immune cells is still 
much limited as compared to immunosenescence. 
Moreover, several available reports are contradic-
tory which possibly indicate an unexpected role of 
cellular senescence in these cells.

• More significantly, the impact and biological rel-
evance of cellular senescence in immune cells 

Table 2  Representative examples of modulation of immunological aging through major dietary bioactive factors

S. no. Dietary factors Reported effects Experimental model References

1 EGCG Anti-SASP and anti-cellular senes-
cence effects ex vivo

Murine macrophages Kumar et al. (2020b)

2 Resveratrol Suppression of inflamm-aging and 
oxidative stress in immune cells 
in vivo

Sprague-Dawley rats Garrigue et al. (2021)

3 Lignan Anti-immunosenescence effects 
in vivo

ICR mice Li et al. (2020)

4 Carotenoids Improved immunoglobulins profile 
during aging in vivo

Rats Chen et al. (2020)

5 Polysaccharide preparations Improved humoral immune response 
against influenza vaccine during 
aging

Clinical trial Laue et al. (2021)

6 Polyphenol-rich diet Anti-inflammaging effects and gut 
eubiosis during aging

Clinical trial Del Bo et al. (2021)

7 Lactobacillus casei CRL 431 Anti-immunosenescence effects 
including on thymus

Aged mice Balcells et al. (2022)

8 Probiotic Akkermansia muciniphila Modulation of colonic B cell migra-
tion and inflammation

Aging  Ercc1-/Δ7 mice van der Lugt et al. (2019)

9 Synbiotic preparation Increased proliferation and activation 
of CD3+ T cells

Aged mice Sharma et al. (2019)

10 n-3 PUFAs Increased telomere length of blood 
leucocytes

Clinical trial Ali et al. (2022)

11 EPA and DHA Anti-inflamm-aging Clinical trial Tan et al. (2018)
12 Vitamins C&E Improved neutrophils and lympho-

cyte functional markers
Clinical trial De la Fuente et al. (2020)

13 Zinc Increased naïve T-cell subset Aged mice Wong et al. (2020)
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in  vivo is little understood and lacks conclusive 
evidence in natural aging settings. Besides, since 
immune cells constantly interact with tissue SC 
(and SASP thereof), how tissue SC can impact 
aging in resident immune cells (such as mac-
rophages) is only beginning to be understood.

• Delineating the dichotomy of cellular senescence 
and immunosenescence in aging immune cells 
should be the ultimate goal. Studies focused on 
the molecular etiology of these processes are thus 
highly desirable for specifying the functional fea-
tures of cellular senescence and immunosenes-
cence.

• The relationship between accumulation of SC in 
tissues and the aging immune system is still devel-
oping and unclear. There seems to be causative 
association, but is yet to be verified in vivo during 
natural aging. The effects of adaptive immune sys-
tem aging and increased SC turnover with age is 
even less understood.

• Functional foods and especially curated diets, such 
as the Mediterranean diet or plant-based diets, 
have shown the potential to suppress inflamm-
aging as well as cellular senescence (Canudas 
et al. 2020; Crous-Bou et al. 2019; García-Calzón 
et  al. 2015; Sharma and Diwan 2022). However, 
studies identifying nutritional targets of cellular 
senescence in immune cells per se are severely 
limited and thus efforts should be made to assess 
the immune modulating potential of natural bio-

active compounds and/or healthy diets within the 
purview of cellular senescence (Fig. 5).

• Similarly, whether the apparent immunosenes-
cence modulatory effects of dietary factors also 
result in improved immune functions with regard 
to clearance of natural SC in  vivo is not known 
(Fig. 5). This is of significance as it could unravel 
a direct correlation between improved immune 
functions and senescence immunotherapy. It 
is therefore desirable that future investigations 
study the immune rejuvenation potential of puta-
tive nutraceuticals within the purview of cellular 
senescence for a more meaningful and integrative 
understanding.

In conclusion, cellular senescence is emerging 
as an impactful phenomenon in immune cell aging 
which should be considered not only for truly com-
prehending the aging physiology in the immune sys-
tem but also for implementing nutritional strategies 
aimed at potentially rejuvenating the aging immune 
system.
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Fig. 5  Dietary factors can 
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of aging by impacting both 
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immune and non-leucocyte 
cells) and immunosenes-
cence (to a relatively larger 
extent). However, whether 
their known anti-immu-
nosenescence or anti-
cellular senescence effects 
can also translate into 
enhanced removal of tissue 
senescent cells in vivo and 
thus systemic improvements 
in organismal senescent 
cell burden remains to be 
elucidated
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