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E P I D E M I O L O G Y

The metabolomics of human aging: Advances, 
challenges, and opportunities
Daniel J. Panyard1*, Bing Yu2, Michael P. Snyder1*

As the global population becomes older, understanding the impact of aging on health and disease becomes 
paramount. Recent advancements in multiomic technology have allowed for the high-throughput molecular 
characterization of aging at the population level. Metabolomics studies that analyze the small molecules in the 
body can provide biological information across a diversity of aging processes. Here, we review the growing body 
of population-scale metabolomics research on aging in humans, identifying the major trends in the field, im-
plicated biological pathways, and how these pathways relate to health and aging. We conclude by assessing the 
main challenges in the research to date, opportunities for advancing the field, and the outlook for precision 
health applications.

INTRODUCTION
Aging is a fundamental part of the human experience, and it has 
long been understood to be a crucial component of health and dis-
ease. Population estimates of mortality fundamentally incorporate 
and adjust for age, which is widely considered the most important 
predictor of mortality (1) and can be seen in practice as early as 
Edmond Halley’s age-specific estimates of mortality in 1693 (2). The 
centrality of aging in health largely stems from the age-related in-
crease in risk for many diseases. Cancer, cardiovascular disease, 
neurodegeneration, and many other common disorders are more 
common among the elderly than among the young (3). Defining the 
biology that drives aging is challenging, but theories of aging have 
coalesced around several key hallmarks, ranging from cellular se-
nescence and stem cell exhaustion to mitochondrial, proteostasis, 
and genomic dysfunction (4). As the world’s population ages, with 
one in six expected to be 60 or older by the end of 2030 (5), under-
standing these physiological pathways and how to intervene in them 
will be critical to the prevention and management of the major driv-
ers of morbidity and mortality.

In recent decades, technological advancements have opened up 
new possibilities for obtaining molecular data at a population scale. 
One of these technologies is metabolomics, which refers to the 
study of small molecules in the body, generally less than 1500 Da in 
mass (6–9). The Recon3D resource (10) has mapped over 4000 
unique metabolites in a model of human metabolism, comprising 
over 13,000 metabolic reactions, and the Human Metabolome Data-
base (HMDB) (11) has annotated over 200,000 metabolites that 
may potentially be found in humans, including both endogenous 
(synthesized or generated by the body) and exogenous (derived 
from the environment) (7) molecules. Metabolites span a diversity 
of physiological processes, including the building blocks of the ma-
jor macromolecules [e.g., amino acids, nucleic acids, carbohydrates, 
and fatty acids (FAs)], functional nutrients (e.g., vitamins and co-
factors), and compounds such as sex hormones, drug intermedi-
ates, and toxins. While this molecular diversity makes chemical 

identification more challenging (6), it also makes the metabolome 
an attractive dataset for application to many biomedical problems 
(12, 13), such as diabetes and insulin resistance (14, 15), cancer (16), 
atherosclerosis (17), and Alzheimer’s disease (18, 19). Since pharma-
cological interventions are often small chemical substances them-
selves, metabolomics is of particular interest to pharmacologic 
studies looking to identify potential drugs or treatment targets (9).

The decreasing cost and increasing scalability of metabolomics 
platforms have led to a proliferation of cohorts and biobanks adding 
metabolomics to their studies. For instance, the U.K. Biobank (20), 
one of the largest population cohorts to date, announced a project 
in 2018 to measure over 200 metabolites in half a million blood 
samples (21); the Trans-Omics for Precision Medicine (TOPMed) 
program has funded metabolomics collection in over 60,000 sam-
ples from diverse populations to pair with deep phenotyping and 
whole- genome sequencing data (22); and the Consortium of Me-
tabolomics Studies (COMETS) has been working since 2014 to com-
bine blood metabolomics data from dozens of cohorts worldwide 
for large-scale biomedical research (23). These studies represent a 
new era of population health research and molecular epidemiology 
that has enabled an unprecedented molecular view of aging pro-
cesses with profound implications for precision health applications. 
In this review, we summarize the current state of population metab-
olomics research in aging in human cohorts, evidence for population- 
specific effects, the biological themes that have emerged among 
these studies and how they relate to health and aging metabolism, 
major challenges in the field, and opportunities for novel aging re-
search and precision health going forward.

HISTORICAL TRENDS IN POPULATION AGING 
METABOLOMICS RESEARCH
There is a long history of studies of how metabolism changes with 
aging, from early animal studies of longevity to cellular and molec-
ular studies of aging processes. With the advent of metabolomics 
technologies that can process samples at a large scale and reason-
able cost, human population studies of aging with metabolomics 
data began to emerge in the late 2000s. Since then, several dozen 
such studies have been published with a variety of populations, 
age ranges, sample types, study designs, and underlying metabolo-
mics technologies (Fig. 1 and Table 1) (24–59). The number of 
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participants has reached the thousands in several studies [including 
two studies with 20,000 or more participants (34, 48)], a feat that has 
become more common with the presence of ongoing, population- 
scale cohorts with biobanked samples and commercially available 
platforms for standardized metabolite quantification.

While there is a great and ever-increasing variety of technologies 
used to generate metabolomics data at scale, most studies may be 
categorized as using either nuclear magnetic resonance (NMR) or 
mass spectrometry (MS) to identify and quantify metabolites, with 
NMR being more common in the earlier studies (~2005–2010) and 
MS being the dominant technique since. A number of important 
differences exist between NMR- and MS-derived metabolomics data 
(7–9), including a difference in the kinds of metabolites typically 
captured. NMR platforms tend to capture larger structures such as 
lipoproteins in great detail (46) (hence the presence of many vari-
ables related to lipoprotein particle size and density) while not gen-
erally capturing as much of a variety as MS platforms (60). One 
complication is that the unit of analysis has varied over time and by 
methodology. While modern commercial platforms typically pro-
vide values for specific metabolites (although sometimes unidenti-
fied), older iterations of both NMR and MS metabolomics would 
sometimes be analyzed as features from the raw data. Some papers 
thus analyze “metabolite features” or “spectral variables” that may 
number in the thousands or tens of thousands, yet these features 
may not necessarily all be mapped to corresponding metabolites by the 
authors except for particular findings of interest. Direct comparisons 

of the number of metabolites analyzed across the history of the field, 
then, are difficult to make.

As metabolomics technology has matured, the biological context 
studied by aging metabolomics researchers has diversified. While 
earlier studies primarily focused on plasma, serum, and urine sam-
ples, studies in the 2020s have expanded to more specialized con-
texts such as cerebrospinal fluid (CSF) (47, 49, 51, 53), saliva (52), 
and muscle (55). The biology driving the metabolomic signatures of 
these sample contexts can differ substantially, leading to unique in-
sights as described below.

Several resources have been developed to organize the major find-
ings of aging metabolomics studies, including curated lists of me-
tabolites associated with age and their direction of effect in online 
databases such as HMDB (61) and MetaboAge (62). Several reviews 
have also been published that have covered particular studies, me-
tabolites, and general trends identified in the aging metabolome 
(63, 64).

METABOLOMIC PATHWAYS IMPLICATED IN HUMAN AGING
Despite changes in the scale, technology, and sampling space studied, 
a number of themes have emerged regarding both the individual 
metabolites and metabolic pathways associated with aging in human 
population studies (Fig. 2). Below, we summarize these findings 
into seven major pathways of metabolomic aging: lipids and lipo-
proteins, steroid hormones, the renal system and excretion, amino 
acids and muscle, diet, oxidative stress, and inflammation.

Lipids and lipoproteins
One of the most readily apparent metabolic pathways associated 
with age (and one that is well known outside of the metabolomics 
field) involves lipids and lipoproteins, such as very-low-density lipo-
protein (VLDL), low-density lipoprotein (LDL), high-density 
lipoprotein (HDL), triglycerides (TGs), cholesterol, FAs, and poly-
unsaturated FAs (PUFAs). Older individuals tend to have lipid pro-
files that are considered worse clinically, such as lower HDL and 
higher VLDL, LDL, TGs, cholesterol, and FAs. With NMR plat-
forms providing good detail on these metabolites, these associations 
were captured early on in NMR studies of both blood and urine. For 
example, Kochhar et al. (24) observed higher total lipoproteins and 
lipids in older men. Vaarhorst et al. (29) observed larger LDL parti-
cles and lower TGs among the children of nonagenarians, who pre-
sumably have a better lifespan, than these children’s partners, who 
were the controls of the study. Auro et al. (34) observed increased 
VLDL, LDL, cholesterol, and TG with age, changes that also dif-
fered by sex in terms of timing. These lipids tended to increase starting 
around the 30s for men but not until around age 50 for women, a 
finding the authors suggested might be driven by the timing of meno-
pause for women. While VLDL typically increases with age, Li et al. 
(58) found that VLDL was lower among long-lived groups, including 
centenarians and nonagenarians, compared to a reference elderly 
population aged 60 to 89. MS-based studies have identified similar 
changes as these studies, including higher cholesterol associated 
with age in women (40), higher PUFAs with age (45), and a general 
implication of altered lipids and lipid metabolism with aging (38).

Steroid hormones and menopause
Another well-established metabolomic association with age is with 
steroid hormones and menopause. Several studies have observed a 

Fig. 1. Timeline of human aging metabolomics population studies. A timeline 
showing the sample size of aging metabolomics studies (by number of participants 
on a logarithmic scale) in humans is shown, including the metabolomics technolo-
gy used and the sample type. When multiple technologies or sample types were 
used, the study is considered a “combination” study. There has been no strong 
trend in sample size over time; instead, the field is dominated by occasional studies 
with much larger sample sizes than the rest. There has been a shift toward more 
MS-based technologies, although NMR studies are still being conducted and pub-
lished. Most studies have used blood or urine, although in the 2020s, a greater di-
versity of sample types (namely, CSF, saliva, and muscle) have started to be seen in 
the literature.
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Table 1. Summary of human population studies of the metabolome and aging.  

Year First author Region* Participants† Sample source Technology Analytes

2006 Kochhar Europe 150 Urine and plasma NMR 256 (urine) and 128 (plasma) 
variables

2007 Slupsky North America 60 Urine NMR Binned spectra and 50 
metabolites (targeted)

2008 Lawton North America 269 Plasma MS >300 metabolites

2008 Psihogios Europe 122 Urine NMR 194 spectral regions

2009 Gu North America 55 Urine NMR 800 frequency bins

2011 Vaarhorst Europe 2375 Serum NMR and others
7 lipoprotein and other 

lipid-related 
measurements

2012 Yu Europe 2904 Serum MS 163 metabolites

2013 Menni Europe 6942 Serum and plasma MS 280 (serum) and 456 (plasma) 
metabolites

2013 Swann Multiple 2005 Urine NMR and MS 64,000 spectral variables 
(NMR)

2013 Collino Europe 396 Serum and urine NMR and MS

163 metabolites (MS), 63 
eicosanoids (MS), and 

12,000 spectral variables 
(NMR)

2014 Auro Europe 26,065 Serum and plasma NMR 135 metabolites

2014 Montoliu Europe 294 Serum NMR and MS 12,000 spectral variables 
(NMR) and 174 lipids (MS)

2014 Lee East Asia 152 Plasma MS ~2000 variables

2014 Saito ‡ 60 Serum and plasma MS 297 metabolites

2015 Thévenot Europe 183 Urine MS 170 metabolites

2015 Dunn Europe 1200 Serum MS 4584 metabolite features

2016 Jové Europe 150 Plasma MS 2678 metabolite features

2016 Chaleckis East Asia 30 RBCs MS 126 metabolites

2017 Rist Europe 301 Plasma and urine NMR and MS 442 (plasma) and 531 (urine) 
analytes

2019 Chak Europe 976 Serum MS 122 metabolites

2019 Darst North America 1212 Plasma MS 1097 metabolites

2019 Johnson North America 635 Plasma MS 360 metabolites

2020 Ahadi North America 106 Plasma MS 722 metabolites

2020 Bunning North America 268 Plasma MS 770 metabolites

2020 Robinson Europe 4,383 Serum and urine NMR and MS
28,941 metabolite features 

used in age prediction 
models

2020 Peters Europe 87 CSF MS
8036 metabolite features 

(untargeted) and 206 
metabolites (targeted)

2020 van den Akker Europe 23,590 Serum NMR 62 metabolites analyzed of 
226 metabolites available

2021 Hwangbo North America 198 CSF MS 7697 metabolite and 1070 
lipid features

2021 Mallol Multiple 316 Plasma NMR 173 metabolite features

2021 Peters Europe 41 CSF MS 1841 metabolite features

2021 Teruya East Asia 27 Saliva MS 99 metabolites

2021 Carlsson Europe 23 CSF MS 70 metabolites

continued on next page 
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general decrease in steroid hormones in human cohorts, including 
decreases in dehydroepiandrosterone sulfate (DHEA-S; an andro-
gen) (26, 57) and in androgens, progestins, and pregnenolones (42). 
Studies that built models to predict age based on metabolomics 
have noted that DHEA-S and other steroid hormones (androsterone 
and progesterone derivatives) were included as predictors (31, 45). 
Many metabolomic changes have also been observed that are pre-
sumably related to the onset of menopause, including an increase in 
sphingomyelins, certain amino acids (such as glutamine, tyrosine, 

and isoleucine), and changes in lipids and lipoproteins (34). A 
Japanese study (54) designed to identify blood metabolite changes 
with menopause identified numerous changes, particularly related 
to the tricarboxylic acid (TCA) cycle, urea cycle, and homocysteine 
metabolism. In a study of blood and urine metabolites in a German 
cohort, researchers found that menopause status could be predicted 
with 85 to 88% accuracy from metabolites, a finding supported by 
their general observation of increases in many metabolites in women 
around the age of 50 (40).

Year First author Region* Participants† Sample source Technology Analytes

2022 Watanabe East Asia 1193 Plasma MS 94 metabolites

2022 Janssens Europe 52 Muscle MS 137 metabolites

2022 Verri Hernandes Europe 6872 Serum MS 175 metabolites

2022 Li East Asia 117 Plasma NMR 35 identified metabolites

*Refers to the study population.   †Includes replication samples when applicable.   ‡Participants were described as “healthy Caucasian volunteers.”

Fig. 2. Overview of metabolomic associations with aging. An overview of the major metabolite changes associated with aging in human cohort studies is provided. 
The changes are grouped into seven major categories: lipids, steroid hormones, excretion, amino acids, diet, oxidative stress, and inflammation. These themes are broadly 
grouped by chemical structure (themes on the left) and biological pathway (themes on the right). Within each theme are some of the most consistently observed changes, 
with the change with age noted as an up (increased with older age) or down (decreased with older age) arrowhead. Some of the icons used in this figure were created 
with BioRender.com.

http://BioRender.com
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Renal system and excretion
Many studies have also implicated the renal system and excretion. 
Researchers have noted altered levels of several metabolites as po-
tentially indicative of changes in kidney function (declining with 
age) or urea metabolism, including aging-related increases in urea 
(blood) (26), ornithine (blood) (26), trimethylamine N-oxide (TMAO; 
urine and plasma) (27, 58), glutamine (urine) (35), citrulline [red 
blood cells (RBCs)] (39), pantothenate (RBCs) (39), dimethyl guanosine 
(RBCs) (39), and N-acetyl-arginine (RBCs) (39) and decreases in 
-hydroxy--methylbutyrate (HMB; urine) (32) and 1,5-anhydroglucitol 
(RBCs) (39). Studies have also found an enrichment of urea cycle 
metabolites in metabolomic clock models (46) and metabolites asso-
ciated with menopause (54). Creatine and creatinine levels have also 
commonly been associated with aging, which, some researchers have 
argued, could be indicative of altered kidney function (32, 40, 44, 45). 
Creatine levels have been reported to increase with age in plasma 
(26) and decrease in urine (32), while creatinine levels have com-
monly been associated with age (31, 40, 45), typically increasing with 
age in plasma (44, 45) and decreasing with age in urine (25, 27, 40) 
and saliva (52), although with some exceptions among putatively 
healthier agers and centenarians (35, 44) and among children where 
urine creatinine levels increased with age (28, 45).

Amino acids
Changes in amino acid levels with age have also been observed, al-
though the trends are more difficult to summarize. Broadly speak-
ing, amino acids tend to change with age but with varying direction. 
Two studies in plasma found most amino acids increased with age 
(26, 42), leading some to theorize that this broad increase may be due 
to increased protein and amino acid catabolism (24, 26). In con-
trast, one study in serum found that most amino acids gradually 
decreased with age (30). The difference in direction of effect might 
be due to the difference in sample type or the specific amino acids 
included, particularly since amino acids encompass a variety of 
molecules, so focusing on specific amino acids might be more inter-
pretable. As an example, a study in serum samples found trypto-
phan, threonine, serine, methionine, and cysteine decreasing with age, 
while tyrosine increased (37). Two of the more consistently re-
ported changes in amino acids include a decrease with age in 
tryptophan in both plasma (40) and serum (30, 33, 37) and an 
increase in tyrosine in serum (34, 37, 41) and plasma (24, 40). In 
metabolomic-based models of age, amino acids have been effective 
predictors, including one study where l-methionine increased among 
individuals who had a faster rate of biological aging (43). A study in 
saliva found citrulline, the amino acid–derived carnitine, and gluta-
mate to be associated with age, the last of which was thought to re-
flect taste-related processes (52). Last, the changes in creatine and 
creatinine levels described above may also be driven by changes in 
muscle tissue turnover or changing muscle mass throughout life 
(increasing through childhood and then decreasing at older ages), 
as has been pointed out by multiple studies (28, 32, 35, 40, 52).

Diet
There have been several metabolomic changes potentially attribut-
able to diet. Perhaps the most commonly observed association is with 
caffeine (26, 37, 57), which tends to increase with age, including in the 
CSF (51). In the study of Lawton et al. (26), researchers found that 
while caffeine levels rose, the ratio of paraxanthine (the primary me-
tabolite of caffeine in humans) to caffeine (paraxanthine:caffeine) 

decreased, a finding they suggested might indicate changes in the 
cytochrome P450 system. Beyond caffeine, several research groups 
have suggested that changes in creatine and creatinine (meat intake), 
TMAO (fish or salt intake), 2-hydroxybenzoate (fruit and vegetable 
intake), and citrate might be related to diet (27, 32, 33). The branched 
chain amino acids (BCAAs; leucine, isoleucine, and valine) are es-
sential amino acids acquired through diet, and they are known to 
have a complex relationship with age and age-related phenotypes (65). 
In population studies, this complexity seems to appear with inconsis-
tent directions of effect in the association of BCAAs with age. Valine was 
positively associated with age in women (24, 54) and in centenarians/ 
nonagenarians compared to typical elderly (58) but negatively asso-
ciated with age in men (50). Isoleucine was also associated with age 
in inconsistent directions: studies have reported an increase in CSF 
(53), decrease in plasma (40, 50), and increase in plasma (24, 34).

Oxidative stress
Oxidative stress has been another major theme in aging metabolomics 
(26, 30, 33, 36, 39, 41, 46, 50, 54, 55). Some of the more consistently 
associated metabolites are carnitines, particularly acylcarnitines 
(30, 36, 43, 57). Acylcarnitines tend to decrease at older ages, which 
may be related to the use of the carnitine-acylcarnitine shuttle in 
mitochondria to help mitigate oxidative stress. Carnitines more gen-
erally have been associated with age (46, 49, 52), with some studies 
reporting higher carnitine levels (41, 53, 54) and others lower levels 
(25, 36, 43). Glutathione, glutathione disulfide, ophthalmic acid (an 
analog of glutathione), and the glutathione/oxiglutathione ratio have 
also been found to decrease with age (39, 52, 55), suggesting that 
these antioxidant mechanisms may be compromised at older ages. 
Studies have also reported altered sphingolipid levels (35, 36, 42, 43), 
particularly an increase in sphingomyelins (30, 34), which might 
reflect processes related to the conversion of sphingomyelins to ce-
ramides in relation to oxidative stress and inflammation. Other 
age-associated metabolites that have been interpreted as evidence of 
oxidative stress include carnosine and its precursor histidine (de-
creased with age) (30, 39, 52), eicosanoids (33), vitamin E (46), serine 
[both decreased (50) and increased (41)], glutamate (decreased) (50), 
and certain TCA cycle intermediates (increased) (54).

Inflammation
Inflammation-related metabolites have also been observed to change with 
age. While many studies have linked their findings to inflammatory path-
ways (26, 33, 35, 41, 45, 46, 50, 51, 55), the metabolites in those associa-
tions have varied. The metabolites positively associated with aging include 
purine degradation compounds (26), complement protein peptides (26), 
ornithine (41), PUFAs (45), metabolites related to the cytochrome 
P450 system (51), and kynurenic acid (55). Metabolites that were nega-
tively associated with aging include glutamate (50), although other 
studies have identified an increase in glutamate with age (26, 31, 32). 
Among presumably healthy-aging centenarians, studies have found 
changes in tryptophan (decreased) (33), lysophosphocholines (decreased) 
(33), eicosanoids (33), 2-hydroxybenzoate (increased) (33), phenylalanine 
(increased) (35), and acetylglycoproteins (increased) (35) in cente-
narians relative to other elderly or younger individuals.

POPULATION-SPECIFIC AGING METABOLOMICS
While general changes in the metabolome with aging have been well 
studied, the differences in the aging metabolome within specific 
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populations are less well understood. Given the many known influ-
ences on the metabolome [including sex, diet, exercise, and body 
mass index (BMI)] (8, 9), it is reasonable to expect some interaction 
effects of these factors with age on metabolite levels, interactions that 
will be critical to understand for the sake of precision health ap-
plications. However, the differences in metabolomics technologies 
and study design between studies (Table 1) make direct comparison 
between studies on different populations harder to interpret. Most 
knowledge of these demographic and environmental interactions 
with aging metabolomics has come from a relatively small number 
of studies that have directly examined differences in age-metabolite 
associations between different groups.

Sex
One of the most frequently studied influences on age-metabolite 
associations is sex (24, 26, 27, 34, 37, 40, 42, 53, 56, 57), typically 
explored through stratified analyses (although these may be biased 
if the sample size is imbalanced) or direct interaction effects testing. 
One of the more frequently reported differences by sex is with meno-
pause. For instance, in one large NMR study, VLDL, LDL, choles-
terol, and TGs tended to increase with age for all participants 
overall, but among men, this increase was evident starting from the 
early 30s and onward, but women did not show similar trends until 
around age 50, presumably related to the timing of menopause (34). 
In another study (42), 68 significant age-sex interaction terms were 
identified among metabolites, including several for sphingolipids, 
phosphatidylcholines, and cholesterol, perhaps echoing similar in-
teractions seen in a pair of earlier studies (34, 40). Other reported 
interaction effects include more pronounced increases in urea and 
-tocopherol in women than men (26); age-sex interactions for caffeine, 
cysteine, a vitamin D metabolite, and inositol (37); and a greater in-
crease in 5-hydroxytryptophan with age in men than women (53).

Race, ethnicity, and region
Interaction effects of age with race, ethnicity, or region have only 
been reported in a few studies. One of these studies was performed 
in the United States with a relatively diverse cohort (using the cate-
gories “Caucasian,” “African-American,” and “Hispanic”) (26). While 
numerous age-sex interaction effects were identified, no age-race/
ethnicity effects were observed. Another study that examined dif-
ferences by population group did so by comparing urine metabolo-
mic profiles between American (United States) and Taiwanese 
participants (32). The age-metabolite associations between the pop-
ulations had considerable overlap, including similar age associa-
tions noted for phenylacetylglutamine, 4-cresyl sulfate, HMB, and 
creatine. Some age-metabolite associations were unique by popula-
tion, including associations seen only in the American population 
for N-methylnicotinamide, N-methylnicotinic acid, and N-methyl- 
4-pyridone-3-carboxamide. The relationship of these nicotinic acid 
metabolites with neurodegeneration and cognitive dysfunction pro-
vides a potential example of population differences in aging identi-
fied through metabolomics.

Health status
Perhaps the most intriguing interaction effects have been from 
comparative studies by health status. Two studies investigated the 
metabolomic roots of longevity, with one study comparing children 
of nonagenarians to children of controls (29) and the other study 
comparing centenarians to typical elderly (around age 70) (35). In 

the former study, the children of nonagenarians tended to have more 
beneficial lipid profiles (larger LDL particles and lower TG levels) 
than the children of the controls. In the latter study, the centenarians 
showed numerous differences that might indicate better antioxidant 
and lipid remodeling capacities and less cellular senescence. Specif-
ically, centenarians had higher phenylalanine (anti-inflammatory), 
higher sphingomyelins, and lower glycerophosphocholine (related 
to senescent cells). A study comparing younger adults, older exer-
cisers, typical older individuals, and older individuals who were 
physically impaired identified a general trend in several key metab-
olites [including nicotinamide adenine dinucleotide (NAD+) and 
ophthalmic acid] that spanned the spectrum from younger adults to 
older exercisers to older and physically impaired, suggesting that 
aging-related changes might be modifiable through exercise (55).

SAMPLE TYPE SPECIFICITY OF AGING METABOLOMICS
Unlike genomics, where an individual’s genetic sequence essentially 
remains the same throughout life, metabolomics is dynamic by time 
and location. Thus, the metabolomic profiles of different bodily fluids 
or tissues are likely to yield different biological information, making 
sample type an important consideration for study design and inter-
pretation. Most large-scale human metabolomics studies of aging 
have been performed in plasma, serum, or urine samples, but the 
2020s have ushered in greater diversity in sample type (Table 1). 
Several studies have now been performed in the CSF, yielding findings 
that might be of particular relevance to neurological conditions. 
For example, a study of CSF among individuals without neuro-
degeneration found themes of altered metabolites from the cyto-
chrome P450 system, energy metabolism, the immune system, and 
-aminobutyric acid (GABA) (51), and another study of the CSF found 
an increase of 5-hydroxytryptophan, which is a precursor to serotonin 
(53). A study in children’s CSF found that 17 of the 30 metabolites they 
studied were associated with age, suggesting that an understanding of 
metabolomic changes with age is critical when assessing neurometabolic 
disease (47). A recent study of aging in saliva metabolites found sev-
eral amino acids associated with age, including anserine and gluta-
mate, which might be related to changes in taste sensory pathways 
in the elderly (52). In 2022, a study of aging metabolomics in mus-
cle biopsies identified increases in dihydroxyacetone phosphate and 
3-methoxytyramine with age, both of which are related to mitochon-
drial respiration and might indicate changes in the musculature (55). As 
the diversity of sample types grows, the insights into cell- and tissue- 
specific metabolic changes in aging will become more nuanced.

THE CLINICAL IMPORT OF AGING METABOLOMIC PATHWAYS
The seven metabolomic pathways identified by aging studies de-
tailed above—lipids and lipoproteins, steroid hormones and meno-
pause, renal system and excretion, amino acids, diet, oxidative stress, 
and inflammation—represent not just a collection of markers of 
aging but a set of biological processes with important health ramifi-
cations. Lipoproteins such as VLDL, LDL, and HDL have an im-
portant role of transporting cholesterol (a lipid) throughout the 
body, and these lipoproteins have long been included in standard 
clinical assays evaluating dyslipidemia (66). Dysregulated lipid and 
lipoprotein levels (particularly high LDL and low HDL) have been 
associated with a variety of conditions, including coronary heart 
disease, ischemic heart disease, obesity, metabolic syndrome, type 2 
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diabetes, hypothyroidism, and chronic renal disease (67, 68), which 
themselves impose an enormous burden of morbidity and mortality 
worldwide (69).

Steroid hormones affect a diverse array of physiological processes 
(70, 71). Changing steroid hormone levels have been associated with 
numerous conditions such as ovarian cancer (72), frailty (73), lower 
urinary tract symptoms (74), inflammation (75), and Alzheimer’s dis-
ease (76), while menopause has been associated with cardiovascular 
disease risk (77) and osteoporosis (78, 79).

With the renal system and excretion function, age-related changes 
in the kidney are commonly observed, including decreases in glo-
merular filtration rate, renal blood flow, and tubular capacity for 
secretion and reabsorption (80). Risk for chronic kidney disease in-
creases with age (81) as does risk of progression to end-stage renal 
disease, which may require a kidney transplant or dialysis (82).

Changing amino acid levels may reflect changes to musculature 
with aging, which includes sarcopenia, a loss of muscle mass, which 
may be driven by decreased functional motor units, axonal with-
drawal, decreased anabolic hormones and protein synthesis, or in-
creased muscle catabolism (83). The clinical impact of this muscular 
loss can include greater frequency of falls, osteoporosis, obesity, 
arthritis, dyspnea, and joint instability, which all can result in worse 
quality of life and loss of independence (83, 84). Some interventions 
have been explored that involve supplementation of specific amino 
acids, including BCAA (especially leucine) and HMB, that may po-
tentially help recover muscle synthesis (85).

Beyond the fundamental importance of nutrition to general 
health and physiology, diet has been associated with aging and age- 
related diseases. In studies of longevity, one of the more intriguing 
interventions to improve lifespan is dietary or calorie restriction, 
since both the amount and makeup of food has been associated with 
survival in rodents, fruit flies (Drosophila melanogaster), and nem-
atode worms (Caenorhabditis elegans) (86). In studies of dementia, 
dietary interventions such as the MIND diet (Mediterranean-DASH 
diet intervention for neurodegenerative delay) have shown poten-
tial for slowing the rate of cognitive decline (87).

Oxidative stress has historically been recognized as part of the 
biology of aging, including as one of the consequences of mitochon-
drial dysfunction, a proposed hallmark of aging that can lead to free 
radical generation, reactive oxygen species, and oxidative stress (4). 
Oxidative stress has been linked to the pathophysiology of many 
diseases, including atherosclerosis, chronic obstructive pulmonary 
disease, idiopathic pulmonary fibrosis, hypertension, type 2 diabe-
tes, Alzheimer’s disease, cancer, and others (88).

Inflammation is another common feature of aging with diverse 
effects on health. The concept of inflammaging has been proposed as 
a way to describe the general and sustained increase in inflammatory 
markers such as C-reactive protein (CRP), interferons alpha and beta 
(IFN- and IFN-), tumor necrosis factor (TNF), several interleukins, 
and others as people age (89). Chronic inflammation has been linked 
to numerous health conditions, including cardiovascular disease, type 
2 diabetes, chronic kidney disease, nonalcoholic fatty liver disease, auto-
immune disorders, neurodegenerative disease, obesity, atherosclero-
sis, and asthma (90, 91).

Together, these seven biological pathways identified among ag-
ing metabolomics studies have numerous consequences relevant to 
health and disease. The ability to track these changes at scale in hu-
man cohorts opens up new possibilities for diagnosis and prognosis 
for the diseases of older age.

BRIDGING AGING METABOLISM AND METABOLOMIC FINDINGS
Metabolomics, as used here, refers to the study of the levels of small 
molecules in the body, particularly as measured by large-scale me-
tabolomics platforms such as MS and NMR. Metabolism, however, 
is more encompassing and includes the study of all of the funda-
mental and essential chemical reactions of the body that break 
down, build up, and eliminate different compounds. While a fuller 
discussion of the biology of aging has been well covered in previous 
reviews (4, 92–95), it is worth mentioning some of the major biolog-
ical pathways of aging pertaining to metabolism and metabolic pro-
cesses that have particular relevance to the findings from human 
population metabolomics studies.

One such pathway is nutrient sensing. Numerous studies of aging 
have implicated the insulin, insulin-like growth factor 1, mammalian 
target of rapamycin (mTOR), adenosine monophosphate–activated 
protein kinase (AMPK), and sirtuin pathways, which respond to levels 
of nutrients and represent potential points of intervention for lon-
gevity (4). Some sirtuins can be activated in the presence of NAD+, 
leading to increased mitochondrial activity (96). Among the human 
population studies reviewed above, NAD+ was associated with age 
in several studies. NAD+ was the main metabolite association iden-
tified in muscle cells (55), and it was also associated with age in both 
saliva (52) and RBCs (39). The observed changes in NAD+ in human 
cohorts is especially notable given the connection of NAD+ with 
aging (97) and the development of drugs to increase NAD+ levels (98). 
BCAAs also have roles in nutrient signaling pathways and have been 
implicated in aging research through caloric restriction, mTOR activity, 
and other mechanisms (65, 99). Numerous population metabolomics 
studies have corroborated the association of BCAAs with aging, with 
associations noted for leucine (39), isoleucine (24, 34, 39, 40, 50, 53), 
and valine (24, 50, 54).

Another major hallmark of aging is mitochondrial dysfunction 
along with altered TCA cycle and reactive oxygen species pathways. A 
number of elements contribute to this dysfunction, including muta-
tions in mitochondrial DNA, reduced generation of mitochondria 
or removal of damaged mitochondria, destabilized electron trans-
port chain complexes, and others, resulting in a reduction of the 
effectiveness of mitochondria in generating energy and leading to 
greater oxidative stress (4). As noted above, age has been associated 
with changing levels of numerous metabolites associated with oxi-
dative stress, which might reflect aging-related problems with mito-
chondrial function. In addition, some studies have found altered 
levels of metabolites from the TCA cycle (26) [such as citrate 
(43, 54)], which might also be indicative of mitochondrial dysfunction. 
Another metabolite relevant to the TCA cycle, acetyl–coenzyme A 
(CoA), has been linked to aging, connected to histone acetylation, 
gene expression, and sirtuins, among other mechanisms (100, 101). 
The study of metabolites in RBCs identified an increase in pantoth-
enate, a precursor of CoA, among elderly participants, which may 
indicate dysregulation of CoA synthesis and effects on downstream 
acetyl-CoA metabolism (39). FAs, which can be broken down to 
generate acetyl-CoA within mitochondria and which are them-
selves related to oxidative stress and aging (102), have also been as-
sociated with age in several metabolomic studies (43, 56, 103).

Methionine metabolism has also been implicated in aging, notably 
from studies of the beneficial effects of methionine restriction on 
longevity. The methionine cycle is related to the production of numer-
ous other metabolites, including S-adenosylmethionine (SAM), polyam-
ines (via the methionine salvage pathway), and cysteine, glutathione, 
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and taurine (via the transsulfuration pathway) (104). In human me-
tabolomics cohorts, methionine itself has been associated with age 
repeatedly, including in plasma (40, 43), serum (37), and CSF (53). 
A decrease in arginine and an increase in ornithine was also ob-
served in serum, both of which can feed into the polyamine synthesis 
pathway (41), and several ratios between serum levels of ornithine, 
arginine, putrescine, and spermidine were associated with age (59). 
Glutathione was observed to be associated with age (39, 52, 55), 
which might indicate aging-related changes involving the transsul-
furation pathway.

CHALLENGES OF THE FIELD
While much has been learned about the aging metabolome, there are 
many challenges to its study, some of which are inherent to contem-
porary metabolomics methodology. For instance, difficulty in com-
pound identification often leads to unidentified metabolites that 
can obscure underlying themes in the results. Some metabolomics 
researchers have been successful in using multiple modalities (40) or 
integrating genetic association data (105) to help resolve unknown 
identities, but the issue is likely to persist as reference libraries, and 
identification methods continue to improve. Another challenge is that 
metabolite quantification is typically relative instead of absolute, 
which adds to the challenge of combining datasets from different 
studies. Similarly, comparing results across studies is made difficult by 
incomplete overlap in the metabolites measured. The growing use 
of more standardized commercial platforms has made comparison 
more feasible when the same platform is used, but cross-platform 
metabolite overlap among the more common groups (such as 
Metabolon, the Broad Institute, Biocrates, and Nightingale Health) 
may be low [<65% pairwise overlap according to a study from the 
COMETS consortium (23)].

More specific to the field of aging metabolomics, there are a num-
ber of obstacles in study design and interpretation (Fig. 3). Perhaps 

the most difficult to resolve is the issue of confounding. Given how 
dynamic the metabolome is and how interconnected aging processes 
are with social, demographic, environmental, and lifestyle factors, 
there are many potential confounders. The factors most commonly 
controlled for in the aging metabolomics literature (and much of 
the human metabolomics literature at large) are sex and, to a lesser 
extent, BMI. However, some identified age-metabolite associations 
might be related to diet or health status, raising the question whether 
the associations are noncausal, causal, or reverse causal. One might 
imagine other factors confounding population metabolomics re-
sults, such as income, education, exercise, and chronic health con-
ditions, although these elements are rarely controlled for. Regarding 
health status, many aging metabolome studies use “healthy” partic-
ipants, but the word healthy is not always well defined nor is it nec-
essarily the best choice for understanding the aging metabolome. As 
aging is a risk factor for many diseases, studying only individuals 
without disease, particularly at older ages, might be inducing a se-
lection bias by studying only healthy agers. Nevertheless, with me-
tabolomics data being added to large-scale population studies with 
a wealth of social, economic, nutritional, medical, and other data 
(21), we anticipate more studies exploring the role of potential con-
founders with the aging metabolome.

A related limitation is the lack of longitudinal data collection 
(63, 106, 107). Most studies of the aging metabolome have been per-
formed cross-sectionally, with only one sample per person, and many 
earlier studies grouped participants into age bins (usually, younger 
or middle-aged adults compared to the elderly). The few studies that 
included longitudinal samples have often only had a handful of sam-
ples from participants over a few years (42, 44) or at two different 
time points spaced further apart (41). Nearly all studies have been in 
adults as well despite much variation being seen with age among 
children (47). With a sizeable portion of metabolite variability driven 
by “unstable” day-to-day variation (108), the lack of high-resolution 
longitudinal data might be obscuring insight into the changes of the 

Fig. 3. Complex interplay of aging and metabolism underneath population-level associations. The age-metabolite associations observed in population studies may 
reflect a number of underlying processes. One interpretation is that metabolic changes initiate or exacerbate aging processes or affect survival, leading to observed 
age-metabolite associations in the population. In the reverse conceptualization, biological changes occurring as part of aging processes lead to changes in metabolite 
level. In both cases, confounding and interaction effects with high-level demographic and lifestyle characteristics—including exercise, social determinants of health, sex, 
environment, BMI, health conditions, diet, and race and ethnicity—may be modifying the observed associations. Teasing apart these different effects from observational 
and often cross-sectional data is challenging, requiring careful study design and interpretation.
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metabolome with age. Longitudinal data on a larger scale would 
also be useful in disentangling cause and effect. For instance, while 
a theme of altered metabolites related to oxidative stress is evident 
from multiple studies, the causal direction of these relationships is 
unclear, as an elevated metabolite might be causing oxidative stress, 
caused by some upstream process that separately causes the change 
in metabolite and oxidative stress or caused by the oxidative stress. 
While prior biological knowledge may provide reasonable clues to 
the role a given metabolite plays, novel discoveries of metabolite 
associations will require additional follow-up to determine the ap-
propriate causal relationships.

OPPORTUNITIES MOVING FORWARD
Moving forward, there are many new avenues of research to ex-
plore. Perhaps the most evident need is for increased diversity of 
aging metabolomics research in several respects. Regarding regional, 
racial, and ethnic diversity, of the 36 studies reviewed here, 29 (81%) 
were based in North America or Europe, and 6 (17%) were based in 
East Asia, leaving much of the world underrepresented (Fig. 4). 
Even for the geographic regions where many studies have been per-
formed, not all populations within those regions have necessarily 
been well represented. Especially given the differences in experiences 
of aging across the world, it is critical that a more diverse set of pop-
ulations be included in future work. Similarly, since age-associated 
metabolites presumably provide insight into the typical functioning 
of the human body, we would benefit from more studies of the me-
tabolome among children and young adults. The study of children 
reviewed here (47) identified nonlinear relationships of metabolites 
with age, pointing to complex developmental influences on metab-
olite levels that might provide fundamental insight into metabolic 
regulation. Furthermore, a greater understanding of the changing 
metabolome in children would likely aid efforts to identify, diagnose, 
and treat childhood metabolic conditions using increasingly acces-
sible metabolomics technology that may eventually be commonly 

used in clinical applications. In addition, as mentioned above, the 
metabolome is highly context specific, so continuing to increase the 
diversity of sample types explored will likely yield fruitful results.

On a more methodological note, one opportunity is to explore 
more nonlinear effects of aging (106, 107). Most studies have used 
some form of linear analysis to identify metabolites changing with 
age, yet the nonlinear trajectories seen among children (51) and the 
shift seen with menopause (40) both suggest that more nuanced 
models might be more appropriate, especially as wider age ranges or 
dense longitudinal sampling are included. Indeed, nonlinear models 
have already been useful in metabolomic clocks to predict chrono-
logical age (109). Machine-learning methods and deep-learning 
(particularly neural network–based methods) can be well suited to 
handle complex relationships and have been increasingly used in 
metabolomics work, which has been well described in several recent 
reviews (110–114). The impact of these methods on the aging 
metabolomics field can be seen already through the use of fuzzy 
c-means clustering to identify aging trajectories (45) or the use of 
support vector machines, regularized regression, and partial least 
squares (PLS) methods to predict age (40).

Tools from the network analysis literature will also be helpful in 
understanding the role of the metabolome in age. Many studies have 
used pathway enrichment analysis as a means of identifying over-
represented pathways among sets of associated metabolites, such as 
the mummichog method (115), which has been used in several ag-
ing metabolomics studies (46, 49). Other approaches focus on net-
work inference or topology to study the properties of metabolic 
networks, similar to what has been used with other omics data, such 
as gene coexpression and protein interaction networks (116, 117).

While metabolomics alone can provide a wealth of information, yet 
greater insights can be achieved through integration with other om-
ics datasets. Some of the early work on omic clocks of aging was 
driven by epigenetic data (118), and more recent omic clocks have 
included the transcriptome, proteome, and telomeres (119, 120). 
Multiomic analysis has been useful already in identifying different 

Fig. 4. Distribution of aging metabolomics population studies worldwide. (A) The distribution of participants in the reviewed aging metabolomics studies by country 
is shown. Most studies have been located in North America, Europe, or East Asia, leaving a substantial gap in our understanding of aging across the world. (B) The regional 
breakdown of aging metabolomics human population studies by study count and (C) participant count is shown. In both cases, Europe has been represented to a greater 
extent than other regions. The category “Multiple” includes studies that had cohorts from more than one of the regions listed. Transparent regions were not represented 
among the human aging metabolomics studies reviewed here.
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patterns of aging (44), which suggests that our understanding of 
the aging metabolome would benefit from jointly generated data on 
other omes that could help contextualize the metabolic changes that 
are occurring. The best way to integrate different kinds of omics data 
is an active area of research that has been the subject of several excel-
lent reviews (121, 122). Several methods exist that leverage the growing 
metabolite genome-wide association study (GWAS) datasets (123) to 
study metabolites in novel ways. For instance, the popular transcriptome-  
wide association study (TWAS) framework that uses genomic data 
to impute transcript levels in order to detect gene-phenotype associ-
ations (124, 125) has since been extended to the imputation of me-
tabolomic data (126). Another method, Mendelian randomization 
(MR) (127), uses genetic mutations as an instrumental variable to esti-
mate the effect of one phenotype on another (given that the assump-
tions of MR are met) and has similarly been extended to the study of 
metabolite-phenotype relationships (128).

A number of methods rooted in systems biology have provided 
a different mode of integrating other kinds of data into metabolom-
ics analysis. The field of fluxomics focuses more on the dynamic 
changes in the flux through a metabolic network, using tracer-based 
experimental data, reaction kinetics, thermodynamics, stoichiome-
try, and other information about the underlying metabolic network 
in a variety of ways (129–132). These holistic approaches have been 
useful in many contexts, including identifying new metabolic and 
regulatory functions and finding potential drug targets (131). An-
other systems biology approach combined blood metabolomics 
data with transcriptomics data, mapped them to the Human Recon 
2 metabolic network, and compared the network-based distance of 
metabolites and transcripts to their correlation in blood, which al-
lowed them to evaluate the kinds of proteins typically correlated 
with blood metabolite levels (133). The application of these and other 
systems biology approaches will undoubtedly be useful to the study 
of aging in its full complexity.

THE FUTURE OF AGING, METABOLOMICS, 
AND PRECISION HEALTH
One of the goals in medicine is precision health: the incorporation of 
individual-level characteristics (genetics, physiology, demographics, 
and environment) into the management of one’s health. The mul-
tiomic technology revolution that has made deep molecular profil-
ing possible has also opened the doors to personal physiological 
tracking (134). These data hold tremendous promise for expanding 
our understanding of biology and disease etiology, but the proper 
contextualization of this multiomic landscape—at both the individ-
ual and population level—is a necessary precursor to precision health 
applications. Since aging is the largest risk factor for mortality and 
one of the most important risk factors for chronic diseases, under-
standing the omics of aging processes will be crucial. As reviewed 
above, several studies have begun exploring the diversity of aging 
experiences, from nonagenarians and centenarians (29, 33, 35) to 
healthy agers (43) and ageotypes (44). This knowledge will help pro-
vide the backdrop against which precision aging data are interpreted 
as we seek to understand an individual’s personal health trajectory. 
The success of precision health in aging will depend, in no small 
part, on how comprehensively human metabolomics cohorts are 
able to study aging across the spectrum of populations, sample types, 
and conditions: the diversity of research will drive the universality 
of application.

Aging is a complex phenomenon that is difficult to define, and 
its many connections with disease represent a challenge for causal 
inference. Yet disentangling the molecular drivers of these aging 
processes will be key to managing the disease risk they confer. The 
growing field of population aging metabolomics offers tremendous 
promise for understanding aging and how it varies over time and 
context in humans, which will be crucial to building a foundation 
for precision health in an increasingly aging world.
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