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Abstract

Magnetic resonance imaging (MRI) studies have revealed positive associations between brain structure and physical activity,
cardiorespiratory fitness, and exercise (referred to here as PACE). While a considerable body of research has investigated
the effects of PACE on grey matter, much less is known about effects on white matter (WM). Hence, we conducted a sys-
tematic review of peer-reviewed literature published prior to 5" July 2021 using online databases (PubMed and Scopus) and
PRISMA guidelines to synthesise what is currently known about the relationship between PACE and WM in healthy adults.
A total of 60 studies met inclusion criteria and were included in the review. Heterogeneity across studies was calculated using
Qochran’s q test, and publication bias was assessed for each meta-analysis using Begg and Mazumdar rank correlation test.
A meta-regression was also conducted to explore factors contributing to any observed heterogeneity. Overall, we observed
evidence of positive associations between PACE and global WM volume (effect size (Hedges’s g)=0.137, p <0.001), global
WM anomalies (effect size=0.182, p <0.001), and local microstructure integrity (i.e., corpus callosum: effect size =0.345,
p <0.001, and anterior limb of internal capsule: effect size =0.198, p <0.001). These findings suggest that higher levels
of PACE are associated with improved global WM volume and local integrity. We appraise the quality of evidence, and
discuss the implications of these findings for the preservation of WM across the lifespan. We conclude by providing recom-
mendations for future research in order to advance our understanding of the specific PACE parameters and neurobiological
mechanisms underlying these effects.

Keywords Exercise - Physical activity (PA) - Physical fitness (PF) - Cardiorespiratory fitness (CRF) - White matter (WM) -
Magnetic resonance imaging (MRI)

Introduction

Engaging in regular physical activity is associated with
numerous health benefits, including reduced incidence of
certain cancers, cardiovascular disease, and type-2 diabe-
tes (U.S. Department of Health and Human Services, 2019;
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Australian Department of Health, 2021). Remarkably, the
positive effects of exercise also extend to the brain, with
large scale epidemiological studies demonstrating that
higher levels of physical activity, cardiorespiratory fitness,
and exercise (referred to here as ‘PACE’) are associated
with a significant reduction in the risk of mild cognitive

of Psychological Sciences and Monash Biomedical Imaging
Facility, Monash University, Clayton, Australia

Cognitive Neuroscience Unit, School of Psychology, Deakin
University, Geelong, Australia

Neural Systems and Behaviour, Turner Institute for Brain
and Mental Health, School of Psychological Sciences
and Monash Biomedical Imaging Facility, Monash
University, Clayton, Australia

Developmental Imaging, Murdoch Children’s Research
Institute, Melbourne, Australia


http://orcid.org/0000-0002-9358-6690
http://crossmark.crossref.org/dialog/?doi=10.1007/s11682-022-00693-y&domain=pdf

Brain Imaging and Behavior (2022) 16:2402-2425

2403

impairment and dementia in later life (Mandolesi et al.,
2018; Stigger et al., 2019). Underlying these effects, a con-
siderable body of research has shown that exercise has pro-
fuse, broad effects on neuroplasticity — the brain’s intrin-
sic ability to modify its structure and function in line with
changing internal or environmental factors (Voss et al.,
2013). For example, engaging in cardiovascular exercise
promotes the release of growth hormones and neurotrophic
factors (such as brain-derived neurotrophic factor) that medi-
ate neuroplasticity and are directly implicated in learning
and memory (Alkadhi, 2018; Hendrikse et al., 2017).

Here, we use the acronym PACE to encompass any form
of physical activity (PA), physical fitness (PF) (i.e., cardi-
orespiratory fitness; CRF), and exercise intervention. These
terms are interrelated and are sometimes used interchange-
ably, but in fact have distinct definitions. PA can be defined
as any bodily movements produced by skeletal muscles and
requires energy expenditure, with exercise being a subset
of physical activity that has planned, structured, and repeti-
tive movements with a goal of maintaining or improving
fitness (Caspersen et al., 1985). While PF is multi-factorial,
cardiorespiratory and muscular components are the most
commonly assessed, and can be quantified with health or
performance measures that index the efficiency of the cardio-
vascular and respiratory systems. The gold standard method
to assess cardiorespiratory fitness (CRF) is to measure the
highest rate of oxygen consumption by muscles (known as V
O, max) during exercise by maximal exercise test (Campbell
et al., 2013; Bouchard et al., 2012).

Higher levels of physical activity, exercise, and cardi-
orespiratory fitness (i.e. PACE) have beneficial effects on
brain volume and integrity (Firth et al., 2018; Sexton et al.,
2016). For example, neuroimaging studies have reported
positive associations between cardiorespiratory fitness
(CRF) and gray matter volume in the hippocampus (Den
Ouden et al., 2018), prefrontal cortex, anterior cingulate
cortex, and striatum (Firth et al., 2018; Gujral et al., 2017).
Similarly, exercise has been associated with improvements
in white matter (WM), particularly in older adults (Sexton
et al., 2016). WM is composed of myelinated axons, oligo-
dendrocytes, and astrocytes and accounts for approximately
half of total brain volume (Sampaio-Baptista & Johansen-
Berg, 2017). The primary function of WM is to structurally
connect cortical and subcortical regions into ensembles that
support cognition. Therefore, optimal coordination, coher-
ence, and conduction velocity of neural activities across
different cortical regions are essential for proper cognitive
function (Filley & Fields, 2016). WM health can be exam-
ined through structural MRI techniques by measuring WM
volume (T1-weighted), WM anomalies (T2-weighted), and
WM microstructure (e.g., diffusion weighted imaging).

WM anomalies observable as white matter hyperintensities
(WMH) in T2-weighted (FLAIR) MRI scans indicate poor WM

health. These WMH occur due to water accumulation, reflect-
ing demyelination and axonal loss and are mainly caused by
cerebral small vessel disease (Filley & Fields, 2016; Prins &
Scheltens, 2015). Aging and poor cardiovascular health (e.g.
chronic hypertension and high heart rate) are major risk factors
for onset and severity of WMHs (Fuhrmann et al., 2019; Prins &
Scheltens, 2015). Mounting evidence demonstrates that WMHs
can increase the risk of cognitive impairment (Filley & Fields,
2016; Frey et al., 2019; Fuhrmann et al., 2019; Prins & Schel-
tens, 2015), dementia (Fuhrmann et al., 2019; Prins & Schel-
tens, 2015), stroke, and certain forms of mental illness, such
as depression (Frey et al., 2019). Further, disruptions in WM
integrity (e.g. white matter volume and plasticity) underlie a
range of neurodevelopmental, psychiatric, and neurological con-
ditions including autism, schizophrenia, obsessive compulsive
disorder, depression, and Alzheimer’s disease (Filley & Fields,
2016). Hence, there is a critical need to investigate methods of
maintaining/improving WM integrity throughout the lifespan.
Increasing physical activity and/or exercise may provide a novel
effective approach, though a comprehensive understanding of
the corresponding effect on white matter is first required.

This review aims to provide a systematic review on MRI
studies investigating the associations between WM and phys-
ical activity, cardiorespiratory fitness and exercise (PACE)
in healthy populations. Again, to maintain a standard ter-
minology throughout this review, we use the term PACE to
encompass any form of physical activity (PA), physical fit-
ness (PF) (i.e., cardiorespiratory fitness; CRF), and exercise
intervention. A previous review by Sexton et al (2016) high-
lighted positive associations between higher CRF and WM
volume and integrity in frontal and temporal brain regions.
However, at the time of publication this review reported
cautious support for a link between physical activity and
WM outcomes due to the limited evidence base, and only
included studies conducted on older adults above 60 years
of age. Since then, many new studies featuring young and
middle-aged adult samples have been published, warrant-
ing an updated review of this literature. Hence, we review
the cross-sectional and longitudinal findings to date on each
aspect of structural WM health, including WM volume, WM
anomalies, and WM microstructure.

Methods
Data source and quality check

The Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) framework was used to
extract data and report study outcomes (Page et al., 2021).
Authors S.M and Y.C conducted a systematic search of the
literature via PubMed and Scopus online databases. The
search was conducted using the following keywords and
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operands: “exercise” OR “physical activity” OR “physical
fitness” OR “cardiorespiratory fitness” AND “white matter”
AND “MRI”. Reference lists of included studies were also
screened. Searches were limited to human studies published
prior to the 5™ July 2021 in the English language. The search
strategy is depicted in Fig. 1. The quality of evidence was
assessed for each of the included studies by authors S.M and
Y.C (and C.S in the case of inter-rater differences) using NIH
study quality assessment tools (see supplementary materi-
als). All eligible studies were deemed to have sufficient qual-
ity of evidence for inclusion in this review.

Study selection

Authors S.M. and Y.C. conducted independent title and
abstract screening. Inter-rater differences were resolved
through consult of author C.S. Studies were required to
meet the following criteria for inclusion in this review: (1)
published in a peer-reviewed academic journal; (2) utilised
either a cross-sectional or longitudinal study design; (3)
assessed PACE using objective/quantifiable methodology
that could be generalised to wider population (e.g. VO,,.«
for CRF, and actigraphy/accelerometry or self-report meas-
ures for PA); (4) included MRI assessment of WM (i.e. vol-
ume, anomalies, hyperintensities, and/or microstructural
integrity); (5) conducted with healthy participants above
15 years of age. Studies that did not meet these criteria,
and/or were conducted with N < 10, or utilised a multi-
modal intervention without considering a separate exercise
group (e.g., exercise combined with cognitive training) were
excluded.

Data extraction

For each study, the following data were extracted: (1) sample
demographics (N, age, biological sex), (2) WM assessment,
i.e., volume (WMYV), hyperintensities (WMH), and/or WM
microstructure (fractional anisotropy (FA), mean diffusiv-
ity (MD)); (3) study design (i.e., cross-sectional or longitu-
dinal); (4) PACE assessment (e.g., PA/CRF measure, and
where applicable exercise intervention parameters including
length, frequency and individual session duration). Studies that
employed an exercise intervention but only assessed WM at
a single timepoint (i.e., pre- or post-intervention were consid-
ered cross-sectional). All measures/results are reported as per
original study definitions, with the exception of CRF, which
for simplicity refers to both VO,, .. and other related exercise
tests of cardiovascular/respiratory function.

Meta-analysis

Global WM volume and WM anomalies data form cross-
sectional studies were analysed using Comprehensive
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Meta-Analysis (CMA, version 3) (Borenstein et al., 2013).
The statistical outcomes included in the meta-analysis were
calculated from the original reports. For studies not provid-
ing the statistical results of the regions of interest, we con-
tacted the corresponding authors to retrieve these data to
maximum our sample size. Given that this meta-analysis was
conducted on correlational outcomes, we computed the cor-
relation coefficients and Fisher’s z scale (based on sample size,
and p-values of correlational outcomes) for individual stud-
ies. These estimates were then used to calculate effect size
estimates (Hedges’s g), which provides an unbiased measure
of standardised mean differences. We then applied a random-
effects model to calculate the total effect size for all the meta-
analyses (Borenstein et al., 2010). Similarly, FA measures of
WM microstructure from cross-sectional studies were analysed
within the most frequently reported regions, namely the corpus
callosum and internal capsule (implicated in >4 studies). Due
to insufficient number of studies, a meta-analysis on longitu-
dinal data and cross-sectional global WM microstructure was
not performed.

We assessed evidence of heterogeneity across study outcomes
using Cochran’s Q method (CMA software) for each performed
meta-analysis. Similarly, CMA was used to explore evidence of
publication bias using Begg and Mazumdar rank correlations test
(Begg & Mazumdar, 1994). We also performed meta-regression
analyses to assess the influence of primary subject characteristics
(i.e. age and gender) on observed associations between PACE and
WM (Hedges’s g). Mean Age and Biological Sex ratios (i.e. %
Female) from each individual study sample were extracted and
entered as covariates across each meta-analysis model.

Results
Overview on selected studies

According to the flow chart (Fig. 1), 60 studies out of 441 arti-
cles will be reviewed in this paper. 57 studies were deemed to
have good evidence quality, and 3 were fair evidence quality
(see supplementary Material). All studies provided a detailed
description of their primary study aim(s) and sample demo-
graphics, and utilised reliable and valid measures of PACE.
Across studies, there was considerable heterogeneity in sample
size (longitudinal N=21 — 352; cross-sectional N=15—7148),
and exercise intervention parameters. For example, studies
utilised different exercise modalities (e.g., walking, cycling,
resistance, etc.), intervention durations (i.e., 1 -13 months), fre-
quencies (i.e., 1 — 4 sessions per week), and session durations
(20—90 min). MRI scanner field strength also varied across
studies (i.e., 1.5 or 3 Tesla). Also, studies varied in their report-
ing of experimenter blinding and statistical parameters (e.g.,
p-value specificity), and PACE methodology (e.g., objective vs
subjective methods).
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[ Identification of studies via databases and reviews ]

Records identified from:

e Databases

Total Records (n = 574)

\ 4

PubMed (n= 349)
Scopus (n= 217)

e Published Reviews (n= 8)

Duplicate records removed (n = 133)

Total records screened (n = 441)

Total Records excluded (n= 351):

No exercise or physical health indices effect reported on
white matter (n = 244)

Physical health indices assessment cannot be generalised
(n=57)

Reviews, case studies, mixed interventions (n = 40)

Children or paediatric population (n= 10)

A

Full-text studies assessed for

eligibility (n = 90)

v

Total studies included in this
review, healthy population (n = 60)

»| Excluded disease population (n = 30)

Fig. 1 Flow chart depicting the search strategy and number of studies included in the systematic review

PACE and white matter volume

Narrative synthesis

Longitudinal studies Seven studies measured the effects of
PACE on WM volume. Five demonstrated significant posi-
tive influence of PACE on WM volume (Rehfeld et al., 2018;
Tabei et al., 2017; Arnardottir et al., 2016; Best et al., 2015;
Stanley J. Colcombe et al., 2006), and two studies did not
observe significant effects (Sexton et al., 2020; Smith et al.,

2014). Four out of five studies with positive results featured
exercise interventions of a minimum six-month duration.
However, different types of physical fitness measurements
were utilised across studies (e.g., VO,max vs self-report
measure), and thus it is difficult to conclude whether these
effects were directly related to improvements in CRF (please
refer to Table 1 for details of longitudinal studies).

Cross sectional studies Seventeen studies have investigated

the associations between PACE and WM volume. Nine stud-
ies reported significant positive associations (Balbim et al.,
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2021; Benedict et al., 2013; Demirakca et al., 2014; Erick-
son et al., 2007; Gow et al., 2012; Gu et al., 2020; Ho et al.,
2011; Tian et al., 2015; Zhu et al., 2015), while the remain-
ing eight did not observe any significant outcomes (Bugg
& Head, 2011; Colcombe et al., 2003; Gordon et al., 2008;
Jochem et al., 2017; Koblinsky et al., 2021; Pentikédinen
et al., 2017; Tarumi et al., 2021; Wittfeld et al., 2020).
Across studies, PACE was associated with increased WMV
within particular regions including posterior cingulate gyrus
(Balbim et al., 2021; Demirakca et al., 2014), temporal and
parietal (Ho et al., 2011; Tian et al., 2015), corona radiata
(Ho et al., 2011), and prefrontal and genu of corpus callo-
sum (CC) (Erickson et al., 2007). Please refer to Table 2 for
details of cross-sectional studies.

Meta-analysis

A meta-analysis of nine cross sectional studies examining the
association between PACE and global WMV changes showed
an overall small mean effect size of 0.137 (95% confidence inter-
val (CI)=0.066 to 0.208, p <0.001) (Fig. 2). Studies were not
significantly heterogeneous (Q=12.199, p=0.143,1>= 34.419).
The possibility of publication bias was explored by inspecting
a funnel plot (Fig. 3) and quantified by calculating Begg and
Mazumdar rank correlation test. Qualitatively, there was some
evidence of skew in the distribution, though this was not statis-
tically significant (Tau=0.25, two-tailed p=0.348). There was
also no evidence that the effect size (Hedges’s g) was influenced
by sample characteristics (i.e.Age and Biological Sex) (Q=2.78,
df=2, p=0.24).

PACE and white matter anomalies

Narrative synthesis

Longitudinal studies Three studies examined the effect of
PACE on WMH, with two non-significant results (Colme-
nares et al., 2021; Moon et al., 2018). One study reported
significantly decreased WMH following moderate intensity
resistance training (Bolandzadeh et al., 2015). Moon et al.
(2018) did not observe significant positive associations,
though higher WMH were observed in individuals who
engaged in less PACE over a three year follow-up period
(Moon et al., 2018).

Cross sectional studies Fifteen studies examined associa-
tions between PACE and WMH (Table 2). Nine studies
showed significantly reduced WMH in individuals with
higher PACE (Boots et al., 2015; Burzynska et al., 2014;
Freudenberger et al., 2016; Gow et al., 2012; Johnson et al.,
2020; Raichlen et al., 2019; Vesperman et al., 2018; Wil-
liamson et al., 2018; Wirth et al., 2014). However, six studies
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did not observe any significant relation between PACE and
WMH (Palta et al., 2021; Balbim et al., 2021; Gu et al.,
2020; Frederiksen et al., 2015; Fleischman et al., 2015; Tian
et al., 2014a). In summary, while longitudinal evidence is
preliminary, the majority of existing cross-sectional stud-
ies suggest that greater PACE is associated with a reduced
occurrence of WM anomalies.

Meta-analysis

A meta-analysis of fifteen cross sectional studies examin-
ing the relationship between PACE and global WMH vol-
ume showed an overall small mean effect size of -0.182
(95% confidence interval (CI)=-0.262 to -0.102, p <0.001)
(Fig. 4). There was significant heterogeneity among the
included studies (Q=35.44, p=0.001, 2= 60.50). The
funnel plot (Fig. 5) was not symmetric and the Begg and
Mazumdar rank correlation was non-significant (Tau=-0.36,
two-tailed p=0.06). The covariates of Age and Biological
Sex were entered into the regression model to assess their
influence on the observed heterogeneity, however, this was
not significant (Q=0.52, df=2, p=0.769).

PACE and white matter microstructural changes

Narrative synthesis

Longitudinal studies Nine studies investigated the effect of
PACE on WM microstructure, with the majority utilising
DTTI outcome measures (Table 1). Basic standard metrics of
diffusion analysis are fractional anisotropy (FA), mean dif-
fusivity (MD), axial diffusivity (AD), and radial diffusivity
(RD). The two most frequently reported metrics are FA and
MD which generally reflect WM integrity and average diffu-
sivity respectively (Curran et al., 2016). Also, increased AD
(diffusivity along principal axis) has been linked to axonal
damage and increased RD (average of diffusivity along per-
pendicular axes) has been associated with demyelination
(Curran et al., 2016; Mayo et al., 2019).

Three studies found significant FA increase following
exercise intervention, while four studies did not find signifi-
cant effects (Best et al., 2017; Lehmann et al., 2020; Maltais
et al., 2020; Sexton et al., 2020). Of those studies reporting
positive effects, FA increases were observed across a number
of brain regions including prefrontal, parietal, and temporal
cortices (Voss et al., 2013), as well as specific WM tracts
including the fornix (Burzynska et al., 2017), and left corti-
cospinal tract (CST) (Palmer et al., 2013). Interestingly, one
study reported a decrease in whole brain mean FA follow-
ing 6 months aerobic exercise intervention, but these results
may have been influenced by demographic differences which
were not controlled for between groups (Clark et al., 2019).
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The effect of PACE on MD has been analysed in five stud-
ies. Four studies reported significant associations between
PACE and MD (Burzynska et al., 2017; Lehmann et al.,
2020; Maltais et al., 2020; Palmer et al., 2013), while one
study reported no significant effects (Clark et al., 2019).
Three studies reported changes in MD following exercise
interventions across a number of tracts including superior
longitudinal fasciculus, anterior thalamic radiation, unci-
nate fasciculus, inferior fronto-occipital fasciculus, forceps
minor, and the corticospinal tract (Burzynska et al., 2017;
Lehmann et al., 2020; Palmer et al., 2013). However, the
direction of MD change was inconsistent across studies, with
studies reporting both increased (Burzynska et al., 2017) and
decreased MD (Lehmann et al., 2020; Palmer et al., 2013)
following exercise. One observational study reported greater
decrease in MD over a five year period in individuals engag-
ing in lower PACE (Maltais et al., 2020).

Four studies investigated the effect of PACE on RD.
Two studies reported non-significant results (Sexton et al.,
2020; Voss et al., 2013), and two studies reported significant
outcomes (Burzynska et al., 2017; Lehmann et al., 2020),
though the direction of these effects differed between stud-
ies. Specifically, one study reported decreased RD in right
frontotemporal fiber tracts following exercise (Lehmann
et al., 2020), while another study found that a dance-based
intervention ameliorated the increase in RD observed over
a 6-month period in older adults (Burzynska et al., 2017).

Three studies measured the effects of PACE on AD. One
study found that higher PACE offset an increase in AD
across inferior longitudinal fasciculus, parahippocampal and
dorsal regions of the cingulum in individuals over a 10-year
period (Best et al., 2017). Two other studies reported no
change in AD following an exercise intervention (Sexton
et al., 2020; Voss et al., 2013).

One study utilised the T1/T2 ratio (a measure of WM
integrity derived by dividing the T1-weighted image by the
T2-weighted image) to investigate the effect of a 6-month
aerobic exercise on WM integrity. Significant differences
in total WM were observed in a walking group relative to
controls, with increases observed in the genu and splenium
of CC, cingulum, and forceps minor in the walking group.
Similarly, significant differences in total WM were also
observed in a dance group relative to controls, with increases
observed in the genu of CC following a dance intervention
(Colmenares et al., 2021).

white matter lesion.

Symbol “~” means association/ correlation. All p-values are corrected unless otherwise stated. Non-significant outcomes are denoted by “ns”. Footnotes: a) PA measured at baseline and after

25 years, but MRI only assessed at 25-year timepoint. b) individuals were divided into 3 categories of sedentary, light, and moderate-vigorous based on their PA

0.0002 uncorrected)

Cognition: NA

extending into the parietal-occipital junc-

genu of CC
Cognition: ns

cognitive function
WMV: ns

WMYV: ns

tion (p
WMYV: 1 CRF~WMV in prefrontal and

WMYV: 1 PA~WMV in corona radiata
Cognition: 7 CRT predicted improved

Cognition: NA

Results
white matter hyperintensity, WML

PA/ CRF Assessment
PA (questionnaire)
white matter volume, WMH

CRF
CRF
CRF

ner Field
Strength
5T

3T
3T
15T

Female Rate MRI Protocol Scan-
1
T1
T1
Tl

%
100
50
57.5
55.6

Age
779 (3.6) 57.5
58—380
20 -28
60—381
55—79
=not applicable (i.e. not assessed), WMV

Sample Size
226

54

20 young
40 old

55

Cross sectional studies The association between PACE
and WM microstructure has been explored in 21 studies
to date. Of these, fifteen studies reported significant asso-
ciations between PACE and FA (Table 2), while four stud-
ies did not observe significant associations (Balbim et al.,
2021; d’Arbeloff et al., 2021; Bracht et al., 2016; Tian et al.,
2014a). Of the studies reporting significant associations,

PA Physical activity; CRF Cardiorespiratory fitness. NA

Table 2 (continued)
Ho et al. (2011)
Erickson et al. (2007)
Gordon et al. (2008)
Colcombe et al. (2003)

Author

@ Springer
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Fig.2 Effect sizes for global
white matter volume within
cross-sectional studies. Higher
PACE is correlated with higher
WM volumes

Fig. 3 Funnel plot of standard
errors plotted against effect
sizes (Hedges’s g) for studies in
Fig. 2 to visualise publication
bias

Fig.4 Effect sizes for WM
anomalies within cross sectional
studies. Higher PACE is corre-
lated with a reduced occurrence
of WM anomalies (hyperinten-
sities)
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Meta Analysis
Study name Statistics for each study Hedges's g and 95%ClI
Hedges's Standard Lower Upper
g error limit limit p-Value
Koblinsky 2021 0.455 0.256 -0.046 0.956 0.075
Gu 2020 0.136 0.053 0.032 0.239 0.010 e 3
Wittfeld 2020 0.010 0.044 -0.075 0.096 0.810 B
Jochem 2017 0.111 0.069 -0.025 0.247 0.110 Hil-
Pentikainen 2017 0.202 0.247 -0.281 0.685 0.413
Zhu 2015 0.183 0.085 0.017 0.349 0.030 —i—
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Meta Analysis
Study name Statistics for each study Hedges's g and 95%Cl
Hedges's Standard Lower Upper
g error limit limit  p-Value
Palta 2021 -0.017 0.050 -0.115 0.081 0.730 '.'
Balbim 2021 -0.108 0.351 -0.797 0.580 0.758
Johnson 2020 -0.481 0.238 -0.948 -0.014 0.044
Gu 2020 -0.022 0.053 -0.126 0.081 0.670 :-
Raichlen 2019 -0.073 0.024 -0.120 -0.027 0.002
Vesperman 2018 -0.479 0.200 -0.872 -0.087 0.017 —_—
Williamson 2018 -0.800 0.304 -1.395 -0.204 0.008 &
Freudenberger 2016 -0.177 0.068 -0.310 -0.044  0.009 -
Frederiksen 2015 -0.119 0.120 -0.353 0.116  0.321 —a—
Fleischman 2015 -0.214 0.156 -0.521 0.092  0.171 —a—1
Boots 2015 -0.375 0.115 -0.600 -0.149  0.001 18—
Wirth 2014 -0.491 0.217 -0.916 -0.067 0.023 —_—
Burzynska 2014 -0.632 0.226 -1.075 -0.190 0.005 =
Tian 2014-a -0.263 0.216 -0.685 0.160  0.223 -
Gow 2012 -0.174 0.080 -0.330 -0.018  0.028 —
-0.182 0.041 -0.262 -0.102  0.000 <&
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Fig.6 Effect sizes for loca.l Meta Analysis
‘WM microstructure reporting
FA metric changes in corpus L . o
callosum. Higher FA values Study name Statistics for each study Hedges's g and 95%ClI
were positively associated with Hedges's Standard Lower Upper
PACE level g error limit limit p-Value
Tarumi 2021 0.519 0.270 -0.011 1.049 0.055 r
Balbim 2021 0.191 0.352 -0.500 0.882 0.588
Kim 2020 0.441 0.218 0.014 0.867 0.043 —Il—
Strommer 2020 0.240 0.101 0.042 0.438 0.017 ——
Opel 2019 0.121 0.062 -0.000 0.242 0.050 HIll-
Oberlin 2016 0.319 0.164 -0.003 0.640 0.052 ——
Hayes 2015 1.194 0465 0.283 2.105 0.010
Johnson 2012 1.124 0.467 0.209 2.039 0.016
Liu 2012 1.128 0.633 -0.114 2369 0.075
0.345 0.092 0.164 0.525 0.000 S
1.00 -050 0.00 050 1.00

greater engagement in PACE was correlated with higher FA
across numerous regions, particularly the CC (Hayes et al.,
2015; Johnson et al., 2012; Kim et al., 2020; Liu, 2012;
Oberlin et al., 2016; Opel et al., 2019; Strommer et al., 2020;
Tarumi et al., 2021), anterior limb of internal capsule (Liu
et al., 2012; Oberlin et al., 2016; Opel et al., 2019; Strom-
mer et al., 2020; Tarumi et al., 2021), cingulum (Tarumi
et al., 2021; Oberlin et al., 2016; Tian et al., 2014b; Marks
et al., 2011), uncinate fasciculus (Opel et al., 2019; Strom-
mer et al., 2020; Tarumi et al., 2021), and superior longi-
tudinal fasciculus (Oberlin et al., 2016; Opel et al., 2019;
Tarumi et al., 2021). However, three studies have reported
that higher PACE was associated with reduced FA across the
bilateral posterior limb of internal capsule (Oberlin et al.,

2016), left fornix and stria terminals (Smith et al., 2016),
and left CST (Herting et al., 2014).

Correlation between PACE and MD have been reported
in nine studies. Overall, four studies reported significant
outcomes, while five studies did not observe any significant
results (Bracht et al., 2016; Gow et al., 2012; Johnson et al.,
2012; Marks et al., 2011; Smith et al., 2016). Of the studies
reporting positive outcomes, one study reported significantly
lower MD in middle-aged subjects engaging in moderate to
vigorous PA, compared to controls (Palta et al., 2021). Two
studies observed significant negative correlations between
PACE and MD with associations observed across the hip-
pocampus and entorhinal cortex (Tian et al., 2014b), and left
inferior longitudinal fasciculus (Kim et al., 2020). One study
compared MD between sedentary individuals and those
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Fig.7 Funnel plot of standard
errors plotted against effect
sizes (Hedges’s g) for studies in
Fig. 6 to visualise publication
bias

Fig. 8 Effect sizes for local

WM microstructural findings

in anterior limb of internal
capsule. Higher FA values were
positively associated with PACE
level

Fig.9 Funnel plot of standard
errors plotted against effect
sizes (Hedges’s g) for studies in
Fig. 8 to visualise publication
bias
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Fig. 10 Regions commonly
reported in the outcomes of
longitudinal and cross-sectional
studies. The figure is only for
visualisation purposes. The
colour bar-plot on top left indi-
cates the number of studies that
reported associations between
PACE and the WM region

engaging in regular exercise. Significant differences in MD
were observed between groups, with lower MD observed in
the medial temporal lobe and cingulate cortex in individuals
engaging in regular exercise (Tian et al., 2014a).

The association between PACE and AD was examined
in six studies. One study reported higher AD in a sample of
physically active subjects, relative to controls, across several
regions including CC, SLF, uncinate fasciculus, and fornix
(Tarumi et al., 2021). However, five studies reported non-
significant results (Bracht et al., 2016; Herting et al., 2014;
Johnson et al., 2012; Kim et al., 2020; Smith et al., 2016).

Six studies examined the relationship between PACE and
RD. Two studies reported significant negative correlations
between PACE and RD in corpus callosum (Johnson et al.,
2012), and left inferior longitudinal fasciculus (Kim et al.,
2020). Of these, however, one study reported inconsistent
effects, whereby increased RD was observed in the brain-
stem and decreased RD in external capsule in physically
active subjects (Tarumi et al., 2021). Three studies reported
non-significant findings (Bracht et al., 2016; Herting et al.,
2014; Smith et al., 2016).

One study employed a multicomponent-driven equilib-
rium single pulse observation of T1 and T2 (mcDESPOT)
sequence to investigate the relationship between PACE and
WM integrity. They observed a positive association between
PACE and myelin water fraction in right parahippocampal
cingulum and a positive trend in the fornix (Bracht et al.,
2016).

Meta-analysis

A meta-analysis of nine cross sectional studies reporting
region-of-interest analysis of FA in corpus callosum was
conducted. We observed a small positive effect size of 0.345
in the corpus callosum (95% confidence interval (CI)=0.164
to 0.525, p<0.001, Fig. 6). Studies were not significantly
heterogeneous (Q = 15.399, p=0.052, I’= 48.05). The fun-
nel plot was partially asymmetric (Fig. 7) and the Begg and
Mazumdar rank correlation was significant (Tau=0.583,
two-tailed p=0.028). The meta-regression showed no

significant relationship between Hedges’s g and both covari-
ates (Q=4.18, df =2, p=0.124).

A meta-analysis of six cross sectional studies report-
ing FA changes at anterior limb of internal capsule was
performed and a small positive effect size of 0.198 was
observed (95% confidence interval (CI)=0.084 to 0.311,
p<0.001) (Fig. 8). Studies were not significantly heteroge-
neous (Q=5.562, p=0.351, I?’= 10.102). The funnel plot
(Fig. 9) is symmetric and there was no evidence of signifi-
cant bias (Tau=0.53, two-tailed p=0.132).

Discussion

We conducted a systematic review of the literature investi-
gating interactions between PACE and WM. We found that
majority of cross-sectional and longitudinal studies reported
that greater engagement in PACE was associated with
greater WM volume and integrity. Similarly, across studies
higher PACE was also associated with reduced WM anoma-
lies. This pattern of results was also supported by meta-
analysis of the data, which indicated a significant positive
effect of PACE on WM volume and integrity, although the
size of this effect was small. However, we note that within
the sampled literature, several studies reported null results,
suggesting that the effects of PACE on WM are likely vari-
able, and quite plausibly influenced by certain methodologi-
cal considerations and/or PACE parameters. Overall, despite
considerable heterogeneity in study methodology and out-
comes, we provide evidence of positive correlation between
greater engagement in PACE and several aspects of WM.
The following sections will provide a detailed discussion of
our findings in relation to past evaluations of this evidence,
and outline possible methodological variables that may mod-
erate the effects of PACE on WM.

Evidence of regionally specific effects
of PACE on WM

Across the sampled literature, there was some indication
of regionally specific interactions between PACE and
WM. Specifically, associations between PACE and WM

@ Springer



2420

Brain Imaging and Behavior (2022) 16:2402-2425

integrity were observed primarily in the corpus callosum
(Colmenares et al., 2021; Hayes et al., 2015; Johnson
et al., 2012; Kim et al., 2020; Liu et al., 2012; Oberlin
et al., 2016; Opel et al., 2019; Strommer et al., 2020;
Tarumi et al., 2021), uncinate fasciculus (Lehmann et al.,
2020; Maltais et al., 2020; Opel et al., 2019; Strommer
et al., 2020; Tarumi et al., 2021), internal capsule (Liu
et al., 2012; Oberlin et al., 2016; Opel et al., 2019; Strom-
mer et al., 2020; Tarumi et al., 2021), cingulum (Balbim
et al., 2021; Tarumi et al., 2021; Oberlin et al., 2016;
Tian et al. 2014a, 2014b; Marks et al., 2011), and fornix
(Burzynska et al., 2017; Oberlin et al., 2016; Smith et al.,
2016; Tarumi et al., 2021) (see Fig. 10). These findings
are largely consistent with those of a previous review by
Sexton et al. (2016), which reported some evidence of an
association between PACE and WM volume and micro-
structure (particularly in frontal regions) in older adults.
We extend on these findings by demonstrating that these
effects are observed across all age cohorts, suggesting
that the beneficial effects of PACE are observable across
the lifespan.

We also note certain differences between our findings
and those of Sexton et al. (2016). Our analysis indicates
associations between PACE and WM in temporal regions.
Comparatively, Sexton et al. provided some evidence of
localised effects within frontal cortex. The cause of these
topologically distinct findings is unclear, though it is pos-
sible that this may be partially attributable to differences in
the age range of sampled literature. The previous review by
Sexton et al. (2016) restricted their analysis to studies with
a mean sample age > 60 years. Comparatively, we included
all studies conducted with healthy adults (i.e. > 18 years of
age). While our meta-regression analyses did not show clear
evidence of associations between age and primary outcome
measures, it remains possible that differences in our sam-
pling approach and inclusion criteria have contributed to
these inconsistencies. Frontal and temporal regions are par-
ticularly susceptible to age-related structural decline (Ben-
nett & Madden, 2014; Sullivan & Pfefferbaum, 2006), and
may therefore be differentially impacted by PACE at differ-
ent life stages. We aimed to provide a comprehensive assess-
ment of the associations between PACE and WM across the
healthy adult lifespan, but future studies are required to elu-
cidate the interactions between PACE, age, and white matter.

The relationship between exercise ‘dose’and WM

The optimal exercise parameters for improving WM struc-
ture and integrity are yet to be elucidated. It is quite likely
that associations between PACE and WM may vary accord-
ing to the particular exercise parameters under investigation
(i.e., modality, frequency, intensity, and duration). While
the majority of the literature has investigated the effects of
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moderate intensity cardiovascular exercise (e.g., moder-
ate intensity walking/cycling), it remains unclear whether
these parameters are most effective for improving WM in the
healthy population. Similarly, the ideal exercise frequency
and duration (e.g., that balance potency and tolerability) are
also yet to be established, and thus it is difficult to estimate
an ideal ‘dose’ of exercise in this context. Differences in
PACE measurement has also likely introduced the consist-
ency in study outcomes. For instance, studies that measured
PACE level based on subjective methods (e.g. self-report
questionnaires) may have introduced systematic bias into
their outcomes compared to studies that employed objective
methods (e.g. VO,max test). However, given that the links
between PACE and WM have been observed across a range
of exercise protocols, it is possible that these associations
may not relate to the specific nature of the activity per se, but
rather depend on the individual’s physiological response to
the regimen. In this sense, in developing effective exercise
programs to improve WM it may be important to focus on
parameters that elicit a certain physiological response (e.g.,
achieving a certain cardiorespiratory response), to modulate
the relevant mechanisms (e.g., brain derived neurotrophic
factor (BDNF)) that may mediate these effects. Interestingly,
there is some evidence of a positive association between
the heart rate response to exercise and BDNF circulation
(Marquez et al., 2015). While speculative, focussing on the
physiological response to exercise in this manner may offer
a means of individualising exercise prescription to maximise
associated benefits. Such a framework may also be beneficial
in identifying factors which have contributed to the observed
variability in study outcomes to date. Future studies are
encouraged to report physiological outcomes in response to
exercise (e.g., achieved heart rate, VO,,,., perceived level
of exertion) to assess the validity/utility of this perspective.

Mechanisms mediating the effects of PACE on WM

The underlying mechanisms mediating the effects of PACE
on WM remain unclear (Sexton et al., 2016). One plausible
hypothesis implicates the known effects of PACE on sev-
eral cellular and molecular mechanisms mediating aspects of
neuroplasticity. For example, both animal and human studies
have shown that exercise influences the expression and cir-
culation of key neurotrophins and growth factors (i.e. BDNF,
vascular endothelial growth factor (VEGF), and insulin like
growth factor (IGF-1)), which modulate a range of micro-
scale structural and synaptic plasticity processes (e.g. syn-
aptogenesis and angiogenesis) (Cotman et al., 2007; Maass
et al., 2016). To date, few studies have evaluated the rela-
tionship between PACE, WM, and these mechanisms. How-
ever, there is preliminary evidence to suggest interactions
between expression of these factors and WM (Weinstock-
Guttman et al., 2007). Despite the limitations of available
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measurement techniques in vivo in humans (i.e., reliance on
indirect peripheral estimates), future studies are encouraged
to investigate the possible mediating role of these factors in
the relationship between PACE and WM.

The effects of PACE on WM may also occur via activity-
dependent myelination. There is evidence that action poten-
tials trigger the sequence of events underlying myelination
(Zatorre et al., 2012). Physical activity and exercise inher-
ently rely upon movement and the distributed brain networks
that underpin interlimb coordination (Byblow et al., 2007;
Caeyenberghs et al., 2011; Coxon et al., 2010; Swinnen,
2002; Swinnen & Wenderoth, 2004). As such, it is plausi-
ble that the neural activity supporting interlimb coordination
during physical activity/exercise stimulates myelination pro-
cesses, which may over time manifest as an overall increase
in WM volume and integrity across distributed networks. On
a functional level, an increase in myelination in this man-
ner may serve to increase conduction speed across networks
supporting interlimb coordination to increase the efficiency/
accuracy of movement intrinsic to specific forms of physical
activity/exercise. This perspective may also help to explain
the regionally specific effects of PACE on WM. Namely, the
consistent relationships observed between PACE and certain
tracts, such as the corpus collosum and anterior internal cap-
sule, may reflect increased communication across brain net-
works involving these tracts to support motor coordination,
or possibly other cognitive demands during exercise/physi-
cal activity (e.g., spatial memory, decision making). While
speculative, future studies may also consider this potential
relationship between the functional demands inherent to
exercise, and associated influence on white matter.

Conclusion

In summary, following our systematic review of the litera-
ture, we report evidence of a significant positive associa-
tion between PACE and WM within the healthy population.
Interestingly, there was evidence of a regionally specific
relationship between PACE and WM, with medial temporal
regions/tracts commonly reported in study outcomes. Future
studies are encouraged to consider/report the physiological
response to exercise (e.g. heart rate, and BDNF) to help elu-
cidate potential factors contributing to the heterogeneity in
study outcomes and plausibly optimise the prescription of
exercise. Future work in this field may also consider the rel-
evance of particular neurotrophic growth factors in mediat-
ing neuroplasticity and the relationship between PACE and
WM. In regard to MRI methodology, the majority of studies
have employed diffusion imaging to investigate correlations
between PACE and WM microstructure. Moving forward,
studies are recommended to employ multi-modal methods
to gain a more nuanced understanding of the specific WM

components influenced by PACE. For example, future may
employ MRI modalities that are sensitive to changes in
myelination, such as the T1/T2 ratio, magnetisation transfer
ratio, or mcDESPOT (Sampaio-Baptista & Johansen-Berg,
2017). It is hoped that improving our understanding of the
influence of PACE on WM may yield novel, effective life-
style-based interventions to optimise brain health across the
lifespan.
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