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Abstract
Although ultrasound plays an important role in the diagnosis of chronic kidney disease (CKD), image interpretation requires 
extensive training. High operator variability and limited image quality control of ultrasound images have made the application 
of computer-aided diagnosis (CAD) challenging. This study assessed the effect of integrating computer-extracted measur-
able features with the convolutional neural network (CNN) on the ultrasound image CAD accuracy of CKD. Ultrasound 
images from patients who visited Severance Hospital and Gangnam Severance Hospital in South Korea between 2011 and 
2018 were used. A Mask regional CNN model was used for organ segmentation and measurable feature extraction. Data 
on kidney length and kidney-to-liver echogenicity ratio were extracted. The ResNet18 model classified kidney ultrasound 
images into CKD and non-CKD. Experiments were conducted with and without the input of the measurable feature data. 
The performance of each model was evaluated using the area under the receiver operating characteristic curve (AUROC). A 
total of 909 patients (mean age, 51.4 ± 19.3 years; 414 [49.5%] men and 495 [54.5%] women) were included in the study. The 
average AUROC from the model trained using ultrasound images achieved a level of 0.81. Image training with the integra-
tion of automatically extracted kidney length and echogenicity features revealed an improved average AUROC of 0.88. This 
value further increased to 0.91 when the clinical information of underlying diabetes was also included in the model trained 
with CNN and measurable features. The automated step-wise machine learning–aided model segmented, measured, and 
classified the kidney ultrasound images with high performance. The integration of computer-extracted measurable features 
into the machine learning model may improve CKD classification.

Keywords  Chronic kidney disease · Computer-aided diagnosis · Convolutional neural network · Deep learning · Kidney 
ultrasound · Machine learning

Introduction

Differentiating chronic kidney disease (CKD) from acute 
kidney injury (AKI) is the most fundamental step in the 
management of impaired kidney function. AKI refers to a 
sudden loss of kidney function, whereas in CKD, kidney 
damage usually persists for some amount of time. When the 
cause of kidney damage is properly identified and removed, 
kidney function eventually recovers in AKI [1]. However, in 
patients with CKD, kidney damage is irreversible and often 
progressive, leading to end-stage renal disease (ESRD) [2]. 
Periodic blood test results that reflect kidney function are 
useful in distinguishing CKD from AKI. However, when 
such data are not obtainable, making an accurate diagnosis 
of CKD versus AKI is often challenging.
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Imaging studies are key diagnostic modalities for iden-
tifying CKD [3, 4]. In particular, ultrasound imaging is 
the most important scheme used to detect CKD in clinical 
practice [5–7]. The well-known advantages of ultrasound 
imaging, including its low cost and noninvasive nature and 
lack of ionizing radiation, have made it an attractive option 
for detecting kidney diseases [8]. The characteristic changes 
in kidney length, echogenicity, and corticomedullary dif-
ferentiation enable a CKD diagnosis without the need for 
invasive procedures such as kidney biopsy [9]. However, 
kidney ultrasound image acquisition and interpretation are 
prone to operator dependency [10–12]. Ultrasound-based 
diagnosis is highly dependent on the ability and experience 
of the person performing ultrasonography, and therefore 
requires extensive training and experience for optimal use. 
This limits its widespread application in facilities or regions 
lacking well-experienced specialists.

The application of machine learning in medical image 
analysis has been widely studied [13, 14]. Machine learn-
ing algorithms are helpful for reducing false-positive 
results in computed tomography (CT) image lung nodule 
detection [15, 16]. In addition, the ability to identify the 
malignant potential of breast nodules on CT and magnetic 
resonance imaging (MRI) images was greatly improved 
with machine learning–based computer-aided diagnosis 
(CAD) [17, 18]. Accumulating studies have also attempted 
to apply machine learning techniques to improve the detec-
tion rates of ultrasound imaging [19, 20]. However, machine 
learning–obtained diagnostic accuracy in ultrasound was 
often inferior to that performed by experienced radiolo-
gist [21, 22]. This would be due to the ultrasound-specific 
characteristics such as low image quality and high inter- and 
intra-observer variability [10].

In this study, assessments were performed to evaluate 
whether integrating data on measurable features into a con-
volutional neural network (CNN) could improve the CAD 
accuracy of CKD in ultrasound imaging. Segmentation of 
the kidney and extraction of measurable features, such as 
kidney length and echogenicity, were performed using deep 
learning methods.

Material and Methods

Study Design and Subjects

Patients who underwent kidney ultrasound imaging between 
2011 and 2018 at Severance Hospital and Gangnam Sever-
ance Hospital in South Korea were screened. Patients with 
estimated glomerular filtration rate (eGFR) ≥ 90 or ≤ 60 
were initially selected for inclusion to compare imaging 
of patients with normal eGFR and patients with CKD [23, 
24]. Patients who met the following criteria were excluded: 

(1) age < 18 years; (2) ESRD with dialysis at the time of 
ultrasound imaging; (3) previous kidney transplantation; (4) 
previous nephrectomy; (5) known kidney cysts, solid mass, 
or hydronephrosis; and (6) missing liver or kidney images 
on ultrasound. A total of 909 patients were included in the 
final analysis. This study was conducted in accordance with 
the Declaration of Helsinki and approved by the Institutional 
Review Board of Yonsei University Health System Clinical 
Trial Center (1–2018-0039). The need for informed consent 
was waived by the institutional review board owing to the 
study’s retrospective design.

Patient Classification

Serum creatinine levels were determined using an isotope 
dilution mass spectrometry–traceable method at a central 
laboratory. The eGFR was calculated using the Chronic Kid-
ney Disease Epidemiology Collaboration (CKD-EPI) cre-
atinine equation [25]. Laboratory results within 3 months 
before kidney ultrasound imaging were used for patient 
classification. Those whose eGFR was ≥ 90 mL/min/1.73 m2 
within the prior 3 months were labeled the non-CKD group. 
Those whose eGFR was < 60 mL/min/1.73 m2 throughout 
the prior 3 months were classified as the CKD group (Fig. 1).

Data Collection and De‑Identification

Demographic and laboratory data were retrieved from 
electronic medical records. Data on the presence of comor-
bidities at the time of ultrasound imaging, including hyper-
tension, diabetes, and coronary artery disease, were also 
collected. All kidney ultrasound images were obtained by 
board-certified radiologists. Ultrasound machines (Philips 
Healthcare, [Amsterdam, Netherlands], Siemens Health-
ineers [Erlangen, Germany], and GE Healthcare [Chicago, 
Illinois, USA]) were used for the ultrasound image acquisi-
tion. For training and testing, ultrasound images contain-
ing both kidney and liver were used. The number of ultra-
sound images including both the kidney and liver differed 
for each patient. An average of 3.7 images were employed 
for evaluation. Although the number of ultrasound images 
varied for each patient, a single prediction for each patient 
was derived using average voting. Therefore, the weights of 
patients were equally used for evaluation. The ultrasound 
images were transferred as Digital Imaging and Commu-
nications in Medicine (DICOM) files, and pixel data were 
converted to portable network graphics files. Images that did 
not include annotations for segmentation or length measure-
ments were selected for the analysis. In addition, patients’ 
personal information was deleted from the image files before 
the evaluation. This de-identification program was newly 
developed for the study. It blacked out the upper corners 
of the images with personal data to mask the identifying 
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information. Since this program only modified the upper 
corners of the images, it did not fabricate the ultrasound 
images of the organs that were used for analysis.

Kidney and Liver Segmentation

A Mask regional convolutional neural network (R-CNN) 
model, which adds an additional head to the Faster R-CNN 
model, was used for the kidney and liver segmentation [26, 
27]. The Mask R-CNN is commonly used for instance seg-
mentation where each pixel is assigned an object class 
and instance identity. This instance segmentation method 
performs segmentation in a two-step manner: initial detec-
tion of the object region followed by object segmenta-
tion within the detected area. The U-Net and fully con-
volutional network, which is widely used in semantic 
segmentation techniques in medical image segmentation, 
requires post-processing to filter out small segments and 
remove holes within the segmentation [28–30]. However, 
the instance segmentation method requires no additional 
processing for incorrect segmentation removal. In addi-
tion, fewer holes were created compared to one-step meth-
ods. The Mask R-CNN models used ImageNet-pretrained 
ResNeXt101 as the backbone [26, 31]. For feature extrac-
tion, ROIAlign and Feature Pyramid Networks (FPN) 
were used [32]. The ultrasound images were input into the 
backbone, and the inference and recombined features were 

extracted from each layer through the FPN. The extracted 
features were resampled at different scales and ratios at 
each anchor using ROIAlign and inputted into the Mask 
R-CNN head for detection, classification, and segmenta-
tion. Multi-task loss was used during training. Softmax 
cross-entropy for classification, smooth L1 for bounding 
box regression, and binary cross-entropy were used for 
segmentation. To obtain the trained segmentation model, 
the combined loss was minimized using a gradient descent 
(Fig. 2A).

Segmentation, Training, and Validation

For segmentation training and validation, 9407 ultrasound 
images were acquired from 456 patients. A trained techni-
cian manually depicted the two-dimension regions of the 
kidney and liver under nephrologist supervision. A total of 
3917 kidney segmentations and 7234 liver segmentations 
were collected (some images contained both kidney and 
liver); of them, 993 images were randomly selected for 
validation. The stochastic gradient descent was utilized 
with a batch size of 48, and the learning rate started at 
0.001 and decreased by 0.1 at 30,000 steps and 40,000 
steps. The model was trained in 50,000 steps. The seg-
mentation performance was validated on the validation 
dataset every 2500 steps using dice coefficient, and the 
most accurate model was selected.

Fig. 1   Flow diagram of the included participants
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Extraction of Measurable Features

Measurable features were extracted from the segmented 
ultrasound images using the Mask R-CNN model. The kid-
ney length was derived by calculating the longest horizontal 
length of the segmented kidney. To derive the actual length 
(cm) of the kidney, the kidney length in the image space 
was calibrated using the machine information stored in the 
DICOM file. Measuring the absolute level of echogenicity is 
difficult since echogenicity varies with ultrasound machine 
operating settings and patient’s state of hydration. Therefore, 
kidney cortical echogenicity is generally graded relative to 
the liver parenchyma [33]. Liver echogenicity was obtained 
by averaging the pixels of the segmented liver area. For cal-
culation of the kidney cortical echogenicity, the segmented 
kidney was first divided into 3 × 4 grid cells along the long-
est horizontal axis. The top middle cell was considered to 
represent cortical echogenicity, and the pixels in this area 
were averaged (Fig. 2B).

Classification of Kidney Ultrasound Image

For the classification model, the ResNet18 model was 
used [34]. This model classified kidney ultrasound images 
into CKD or non-CKD. To input meaningful areas in the 
classification model, the kidney region was cropped into a 
rectangular shape aligned with the longest horizontal axis of 
the kidney segmentation. ResNet uses a skip connection to 
the convolutional layer, where the input features are added 
to convoluted features. After the convolutional stage was 
finished, global average pooling was applied to the convo-
luted output feature, and a fully connected layer was used 
to classify the images as CKD or non-CKD. For classifica-
tions considering both the image feature and the extracted 

measurable feature, the features were pre-processed via 
standardization (mean of 0 and standard deviation of 1) and 
combined through channel-wise concatenation to the penul-
timate layer and input to the following final fully connected 
layer. Softmax cross-entropy was used to calculate the error 
between the true label and the model prediction (Fig. 2C).

Classification, Training, and Testing

Using the model trained in the segmentation, a total of 3495 
ultrasound images that contained both the kidney and the 
liver were acquired from 909 patients. These images were 
used for the classification training and testing. For the train-
ing dataset, 839 patients (3001 images, 92%) were randomly 
selected. The remaining 70 patients (247 images, 8%) were 
used as the testing dataset. For the validation dataset, the 
patients in the training dataset were divided into 10 groups. 
Consequently, 10 validation datasets were constructed 
by selecting one group for validation (approximately 249 
images [8%]) and the others for training. To reduce the 
difference in brightness between ultrasound manufactur-
ers, images that contained both kidney and liver segments 
were selected, and the kidney echogenicity was normalized 
against that of the liver. The adaptive moment estimation 
optimizer was used with a batch size of 16 and a learning 
rate of 0.001, and the learning rate was reduced to 90 epochs 
following the cosine annealing learning rate scheduler [35, 
36]. In addition, the augmentation techniques (random flip, 
translate, rotate, scale, contrast, noise, dropout, and blur) 
were used for training. To ensure reliability, 10 training 
sessions were conducted on one validation dataset (tenfold 
cross-validation), resulting in a total of 100 training pro-
cesses (10 training sessions with different training seeds 
for each of the 10 different validation datasets). For each 

Fig. 2   The schematic diagram of the algorithm used. A Mask R-CNN 
model was used to perform segmentation of the kidney and liver 
(A) and extract measurable features (B). ResNet18 model was used 

to classify the kidney ultrasound images into CKD or non-CKD (C). 
CKD, chronic kidney disease; R-CNN, regional convolutional neural 
network; ROI, region of interest; RPN, region proposal network
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training process, the most accurate model was chosen, and 
the best model was evaluated in the test dataset. Three types 
of experiments were conducted: “image training without 
any measurable features,” “image training with extracted 
measurable features,” and “image training with extracted 
measurable features and diabetes information.” Each of the 
three experiments was trained with a randomly initialized 
model and an ImageNet-pretrained model, resulting in a total 
of 600 experiments. The final classification results were then 
calculated for each subject. In cases where multiple ultra-
sound images included both kidney and liver per subject, 
each network probability output was averaged to yield one 
diagnostic result. These evaluations were performed on Intel 
i7-8700 K and Nvidia GeForce GTX 1080 Ti.

Statistical Methods

Variables were expressed as mean and standard deviation 
(SD) for continuous variables and frequency and percentage 
(%) for categorical variables. Intergroup comparisons were 
performed using Student’s t-test for continuous variables 
and Pearson’s chi-squared test for categorical variables. The 
CNN-based CKD classification was compared with the diag-
nosis of CKD based on eGFR, while the model performance 
was evaluated using the area under the receiver operating 
characteristic curve (AUROC). All statistical analyses were 
performed using SPSS Statistics v.23 (IBM Corporation, 
Armonk, NY, USA) and STATA v.15.1 (Stata Corporation, 
College Station, TX, USA). Statistical significance was set 
at two-sided values of p < 0.05.

Results

Baseline Characteristics

The mean participant age was 51.4 ± 19.3  years; 414 
(49.5%) of them were male (Table 1). The non-CKD group 
comprised 524 (57.6%) participants, while 385 (42.4%) 

participants were allocated to the CKD group. The CKD 
group was older and had a higher prevalence of hyperten-
sion, diabetes, and coronary artery disease. The average 
eGFR was 115.5 ± 29.1 and 27.3 ± 11.0 mL/min/1.73 m2 in 
the non-CKD and CKD groups, respectively.

Kidney Segmentation

To evaluate the performance of the segmentation imple-
mented by the Mask R-CNN model, its segmented area 
was compared to the area depicted by trained technicians. 
In the validation dataset, the best model achieved a mean 
intersection on union (mIoU) of 81.62, while the frequency-
weighted intersection on union (fwIoU) was 89.35 (Fig. 3A 
and B).

Measurable Feature Extraction

Measurable features, including kidney length and cortical 
echogenicity, were also obtained using the Mask R-CNN 
model. The average kidney length was 9.49 ± 1.11 cm in 
the non-CKD group and 8.90 ± 0.94 cm in the CKD group 
(p < 0.001; Fig. 4A). When the kidney-to-liver echogenicity 
ratio was compared between the non-CKD and CKD groups, 
the echogenicity was significantly higher in the CKD group 
than in the non-CKD group (1.08 ± 0.44 vs. 1.42 ± 0.53, 
p < 0.001; Fig. 4B).

CKD Detection Performance Using Ultrasound 
Image Information Only

The model performance was evaluated using a test dataset 
that had been excluded from the training beforehand. Three 
experiments were completed, and 10 training sessions were 
performed for each of the 10 validation set experiments. The 
average AUROC from the model trained with ultrasound 
images achieved only a level of 0.81 (sensitivity 78.2%, 
specificity 71.5%, and accuracy 74.4%) (Fig. 5).

Table 1   Patients’ baseline 
characteristics

Values are expressed as mean ± SD for continuous variables and frequency (%) for categorical variables
CAD coronary artery disease, CKD chronic kidney disease, eGFR estimated glomerular filtration rate

Total (n = 909) Normal (n = 524) CKD (n = 385) P

Age, years 51.4 ± 19.3 42.4 ± 17.6 63.7 ± 14.1  < 0.001
Male sex, n (%) 414 (45.5) 212 (40.5) 202 (52.5)  < 0.001
Height, cm 162.9 ± 8.9 163.6 ± 9.0 161.9 ± 8.6  < 0.004
Weight, kg 62.8 ± 14.2 63.0 ± 15.8 62.6 ± 11.6  < 0.71
Hypertension, n (%) 476 (52.4) 161 (30.7) 315 (81.8)  < 0.001
Diabetes, n (%) 231 (25.4) 71 (13.5) 160 (41.6)  < 0.001
CAD, n (%) 134 (14.7) 44 (8.4) 90 (23.4)  < 0.001
eGFR, mL/min/1.73 m2 78.2 ± 49.4 115.5 ± 29.1 27.3 ± 11.0  < 0.001
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CKD Detection Performance After Integrating Deep 
Learning–Extracted Measurable Features

The performance of CKD detection from the model 
trained with ultrasound images only was compared with 
models that integrated deep learning–extracted meas-
urable feature data and information on diabetes. When 

data on measurable features, including kidney length and 
kidney-to-liver echogenicity ratio, were extracted through 
deep learning algorithms, the average AUROC for CKD 
detection improved to 0.88 (sensitivity 86.1%, specific-
ity 77.5%, and accuracy 81.2%). Adding information on 
the presence of diabetes among the participants into the 
training models resulted in a CKD detection AUROC of 

Fig. 3   Kidney segmentation using Mask R-CNN model. The best 
model achieved an mIoU of 81.62 and an fwIoU of 89.35. A and B 
are representative images of kidney and liver segmentation that were 

achieved by the Mask R-CNN model. fwIoU, frequency-weighted 
intersection on union; mIoU, mean intersection on union; R-CNN, 
regional convolutional neural network

Fig. 4   Extracted measurable features by the Mask R-CNN model. 
A The average lengths of the kidney were 9.49 ± 1.11  cm and 
8.90 ± 0.94  cm in non-CKD and CKD groups, respectively. B The 

ratios of echogenicity of the kidney to liver were 1.08 ± 0.44 and 
1.42 ± 0.53 in non-CKD and CKD groups, respectively. CKD, chronic 
kidney disease; R-CNN, regional convolutional neural network
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0.91 (sensitivity 89.4%, specificity 82.9%, and accuracy 
85.9%) (Fig. 5).

Discussion

In this study, CKD was detected using kidney ultrasound 
image analysis using deep learning methods. A sequential 
step-by-step process was employed for the image analyses. 
First, kidney and liver segmentations were performed using 
a Mask R-CNN model. Next, the measurable features were 
extracted from the segmented kidney images. Features such 
as kidney length and relative cortical echogenicity compared 
to that of the liver were extracted from the images. Concomi-
tantly, the kidney images were analyzed using the ResNet18 
model for CKD detection. Finally, three different models, 
the image-only model, the model including extracted meas-
urement data, and the model also including diabetes his-
tory information, were used for CKD detection. Through 
this systematic process, the accuracy of detecting CKD was 
significantly increased when computer-extracted measurable 
features were added to the machine learning models.

Recently, machine learning algorithms have been applied 
to increase the accuracy and practicality of medical image 
analyses. [15–18] Using CNN methods, the detection of 
breast cancer in screening mammograms revealed an AUC 
of 0.98 [37]. Functional magnetic resonance imaging (fMRI) 
data were analyzed using LeNet-5 to detect Alzheimer’s dis-
ease, which resulted in a mean accuracy of 96.86% [38]. 
Although employing machine learning algorithms to medical 
image data has resulted in high accuracy, the number of sys-
tems utilizing ultrasound images is limited compared to CT 
or MRI [39, 40]. Several investigations have achieved rela-
tively high accuracy, such as the study that applied a three-
layer deep belief network in time-intensive curves extracted 
from contrast-enhanced US (CEUS) video sequences to clas-
sify malignant and benign focal liver lesions, which revealed 
an accuracy of 86.36% [41]. However, most of the attempts 
at applying machine learning to ultrasound images have 
resulted in lower accuracies than other imaging modalities. 
In this study, the AUROC for CKD classification was sig-
nificantly improved by the imputing of measurable feature 
data that were automatically extracted through a machine 
learning process in addition to the CNN-based analysis. This 

Fig. 5   ROC curve of CKD detection performance. Three types of 
experiments were conducted. There were 10 validation datasets for 
each experiment, and the AUROC was obtained for each dataset (A–
C). The average AUROC was 0.81 in training without any measur-
able features, 0.88 in image training with extracted measurable fea-

tures, and 0.91 in image training with extracted measurable features 
and diabetes information, respectively (D). AUROC, area under the 
receiver operating characteristic curve; ROC, receiver operating char-
acteristic
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improvement in accuracy shows that imputing supplemen-
tary data that could be obtained from the images themselves 
may compensate for the low accuracy of the CNN-based 
methods for evaluating ultrasound images.

The CKD-detecting machine learning process developed 
in this study features an end-to-end characteristic. Each step 
of segmentation of the organs, extraction of measurable fea-
tures, and CNN-based classification proceeds automatically 
without the need for manual intervention. Machine learning 
methods were assigned to each of these steps. An overall 
CKD classification accuracy of 85.6% was recently obtained 
by training kidney ultrasound images through a ResNet 
model [42]. However, in that study, the boundaries of the 
kidneys were cropped based on kidney length annotations 
that were manually performed by sonographers. Although 
the accuracy of CKD classification (85.9%) was comparable, 
it should be noted that a fully automated process from seg-
mentation to classification was applied in the current inves-
tigation. Compared to previous machine learning–based 
classification systems, this end-to-end automated workflow 
would be a noteworthy advantage for practical application 
in the clinical field.

The accessibility to medical ultrasound imaging is rela-
tively higher than that of other imaging modalities, such as 
CT and MRI. In addition to the relatively lower cost asso-
ciated with equipment installation, ultrasound machines 
require much less space and are portable [6, 7]. These char-
acteristics allow ultrasound to be the primary choice for 
organ imaging in developing countries and in regions that 
have poor medical access. However, the comparatively low 
image quality and inter-operator variability were the main 
limitations of ultrasound, which has prevented it from being 
more widely used [10]. In this regard, the presented auto-
mated machine learning–based CKD classification model 
may help overcome the shortcomings of ultrasound diag-
nosis. Considering the recent increase in CKD incidence in 
developing countries, the clinical usefulness of automated 
high-precision models is high. In addition, the strategy of 
combining measurable data with CNN to improve ultrasound 
classification accuracy could also be applied to diagnose 
other diseases of various organs. Since high-prevalence dis-
eases such as liver diseases [41] and breast [43] and thyroid 
cancer [44] are initially screened through ultrasound imag-
ing, methods for improving machine learning–based clas-
sification accuracy are imperative.

This study has several limitations. First, kidney ultra-
sound images with large cysts, solid masses, and hydrone-
phrosis were not included in the analysis. The decision to 
exclude these disease states was made so that a working 
model solely focused on CKD classification could be devel-
oped. However, real-world ultrasound images would include 
various findings, and a system capable of differentiating 
the concomitant abnormalities would be needed for actual 

clinical use. Second, in order to compare the images of nor-
mal eGFR patients with those with chronic kidney disease, 
images from patients whose eGFRs were between 60 and 
90 were not collected. eGFR higher than 90 is considered 
normal kidney function, while the presence of chronic kid-
ney disease is suspected when eGFR is lower than 60 [23, 
24]. This selection criterion would affect the real-world effi-
ciency of the developed system. Nonetheless, this conceptual 
study shows that the integration of computer-extracted meas-
urable features improves the classification accuracy of image 
machine learning models. Third, although a fully automated 
process was applied to classify the images for CKD detec-
tion, the ultrasound images were initially acquired by clini-
cians. This would have resulted in inter-operator variability, 
which could have introduced bias to the analysis. Forth, the 
fact that the validation sets used for segmentation and clas-
sification were not identical could result in overfitting the 
training set on the segmentation task. This may lead to an 
overestimation of overall performance. In addition, since 
the pixel normalization for values of kidney to liver was 
performed per dataset rather than per-image basis, a possi-
bility of data leak which may have resulted in performance 
augmentation should also be considered. Finally, the ultra-
sound images were not standardized because of the study’s 
retrospective nature. Ultrasound images were uploaded at 
various angles, and the ultrasound machines used also var-
ied. However, the variability of ultrasound machines may 
enable view-invariant properties, which may increase the 
practicality of real-world applications.

Conclusion

The automated step-wise machine learning–aided model 
successfully segmented the kidney and liver on ultrasound 
images. It was also effective at extracting measurable fea-
tures, such as kidney size and echogenicity. The integration 
of computer-extracted measurable features into the machine 
learning model resulted in a significantly improved CKD 
classification. Further investigations are needed to apply this 
model in the real world.
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