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Abstract

Rationale and Objectives—Peritumoral features have been suggested to be useful in 

improving the prediction performance of radiomic models. The aim of this study is to 

systematically investigate the prediction performance improvement for sentinel lymph node (SLN) 

status in breast cancer from peritumoral features in radiomic analysis by exploring the effect of 

peritumoral region sizes.

Materials and Methods—This retrospective study was performed using DCE-MRI scans of 

162 breast cancer patients. The effect of peritumoral features was evaluated in a radiomics pipeline 

for predicting SLN metastasis in breast cancer. Peritumoral regions were generated by dilating the 

tumor regions-of-interest (ROIs) manually annotated by two expert radiologists, with thicknesses 

of 2mm, 4mm, 6mm and 8mm. The prediction models were established in the training set (~67% 
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of cases) using the radiomics pipeline with and without peritumoral features derived from different 

peritumoral thicknesses. The prediction performance was tested in an independent validation set 

(the remaining ~33%).

Results—For this specific application, the accuracy in the validation set when using the two 

radiologists’ ROIs could be both improved from 0.704 to 0.796 by incorporating peritumoral 

features. The choice of the peritumoral size could affect the level of improvement.

Conclusion—This study systematically investigates the effect of peritumoral region sizes in 

radiomic analysis for prediction performance improvement. The choice of the peritumoral size 

is dependent on the ROI drawing and would affect the final prediction performance of radiomic 

models, suggesting that peritumoral features should be optimized in future radiomics studies.
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Introduction

Radiomics, a technique based on extracting high-dimensional quantitative image features to 

provide non-invasive biomarkers for clinical outcomes, has drawn marked interest in recent 

years(1–3). It has been shown to be a powerful tool which could support clinical decision 

making. Radiomic features are able to capture the heterogeneity and complexity of the 

tumor microenvironment(2). Whereas radiomic features are mostly impossible for humans 

to perceive, they can be predictive of the tumor status and easily used to develop models 

pertaining to clinical outcomes.

As MRI becomes increasingly common for breast cancer in clinical practice, recent 

studies have demonstrated that MRI-based radiomics can predict recurrence(4), disease-

free survival(5), malignancy(6), molecular subtypes(7), Ki-67 expression level(8), lymph 

node metastasis(9–11), response to neoadjuvant chemotherapy(12–14), etc. Our group(11) 

also developed a radiomics pipeline to predict sentinel lymph node (SLN) metastasis in 

breast cancer using image features extracted from the primary tumor. The SLN status, 

which is currently determined by invasive SLN biopsy, is a valuable prognostic factor for 

breast cancer patients. Our previously published radiomics pipeline achieved a promising 

prediction performance with a high negative predictive value (NPV), providing non-invasive 

imaging markers to evaluate SLN status. The high NPV indicates that the prediction model 

could greatly benefit breast cancer patients, especially those with negative SLN, eliminating 

unnecessary invasive SLN biopsy and avoiding overtreatment from axillary dissection and 

its associated serious complications(15).

Although the majority of breast cancer radiomics studies have focused on intratumoral 

features(4–10, 12), there is evidence that peritumoral features also provide complementary 

information(13, 14, 16–28). Recent development in breast cancer research has demonstrated 

that various crucial outcomes are indicated by changes in the tissue surrounding the 

tumors, such as angiogenic factors(16), peritumoral lymphatic and blood vessel invasion(17, 

18), lymphangiogenesis(19), peritumoral lymphocytic infiltration(20), stromal response(21) 
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and peritumoral edema(22–24). These reports suggest that the peritumoral region may 

contain valuable information about the tumor. Indeed, some recent publications have taken 

advantage of peritumoral features. Our previous study(11) included peritumoral features 

extracted from a dilated region with thickness of ~4mm surrounding the breast lesion 

on dynamic contrast-enhanced MRI (DCE-MRI) to improve the prediction performance 

on SLN status in breast cancer. Braman et al (13, 14) reported that a combination of 

intratumoral and peritumoral radiomic features from pretreatment DCE-MRI could more 

accurately predict pathological complete response to neoadjuvant chemotherapy for breast 

cancer patients; the peritumoral regions in their studies were defined by either a varying 

2.5- to 5-mm radius or 5 annular rings of 3mm each surrounding the tumor. Peritumoral 

features have also been used in radiomics studies investigating lung cancer, liver cancer, etc 

(25–28). These studies suggest that peritumoral features could provide valuable information 

in radiomic analysis.

However, the optimal peritumoral region size has not yet been systematically investigated 

in the current literature. The purpose of this study is to further investigate the usefulness of 

peritumoral features by exploring the effect of the peritumoral region sizes on the prediction 

performance in the radiomic analysis for predicting SLN status in breast cancer.

Materials and Methods

This retrospective study was approved by our Institutional Review Board.

Dataset

A total of 162 breast cancer patients at our institution were identified, and their DCE-MRI 

scans and clinicopathological characteristics were collected. The details of the inclusion 

and exclusion criteria were described in(11), and an additional study was excluded due to 

incomplete data. Patient characteristics are provided in Table 1.

The DCE-MRI scans were performed with 8-channel breast coils on 1.5T GE Signa HDxt 

scanners (GE healthcare, Wauwatosa, Wisconsin). Intravenous injection of gadolinium 

contrast (Magnevist, Schering, Berlin, Germany) was administered at a dose of 0.2ml/kg 

at a rate of 2 ml/s and followed by a 20-ml saline flush at a rate of 2 ml/s. One pre-contrast 

(prior to the contrast injection) and four post-contrast phases (at 2, 4, 6 and 8 minutes 

after contrast administration) were acquired using a VIBRANT sequence in sagittal plane 

with the following parameters: repetition time (TR)= 4.46~7.80ms; echo time (TE) = 

1.54~4.20ms; flip angle=10°; slice thickness = 2mm; matrix size=256X256; pixel size = 

0.7 X 0.7 mm2.

ROI Segmentation and Processing

Regions-of-interest (ROIs) covering the whole tumor were manually drawn slice by slice 

on the first post-contrast images in sagittal plane using MRIcron (version 4AUGUST2014, 

open source software; https://www.nitrc.org/projects/mricron) by two expert radiologists 

independently (R1, with 11 years of experience in breast MRI, and R2, with 10 years’ 

experience). The two radiologists were blinded to the clinicopathologic characteristics and 

each other’s delineation when drawing the ROIs. When there were multiple tumor ROIs in 
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the breasts, only the largest one was used for analysis. The peritumoral regions were then 

obtained using MATLAB 2017b by dilating the intratumoral ROIs by 2mm, 4mm, 6mm 

and 8mm in 3D. The dilation of the ROI was achieved by convoluting the ROIs with a 3D 

box kernel to achieve the desired size. As the in-plane resolution (0.7mm) is higher than 

the slice thickness (2mm), the convolution kernel was adjusted to match the voxel size. The 

regions outside the breasts after dilation were excluded for further analysis. A representative 

DCE-MRI image and its corresponding ROIs are shown in Figure 1. The radiomic features 

were extracted from both the intratumoral ROIs and the peritumoral ROIs. The usefulness of 

peritumoral features were evaluated in our radiomics pipeline by using different peritumoral 

region sizes (2mm, 4mm, 6mm and 8mm respectively, and also the one among these sizes 

that generated the peritumoral volume closest to the intratumoral volume for each patient).

Feature Extraction

Radiomic features were extracted from three maps: wash-in maps ((S1-S0)/S0)×100%, 

wash-out maps ((S1-S4)/S1))×100% and signal enhancement ratio (SER) maps ((S1-S0)/

(S4-S0))×100%, where S0, S1, and S4 are the pre-contrast, first post-contrast and fourth 

(the last) post-contrast images, respectively. These ratio maps reflect the changes in contrast 

agent concentration and allow direct comparison of the extracted features across patients.

Five categories of features were extracted: (1) shape features (in LIFEx v4.00(29) and 

MATLAB 2017b), (2) histogram features (in LIFEx), (3) texture features (in LIFEx), (4) 

Laws features(30) (in MATLAB), and (5) CoLlAGe features(31) (in MATLAB). Shape 

features were extracted only from the intratumoral ROIs, while features of the other 

three categories were extracted from both intratumoral ROIs and the peritumoral ROIs 

with different peritumoral sizes. For each patient, a total of 359 radiomic features were 

finally extracted in the intratumoral ROI, and 351 radiomic features were extracted in each 

peritumoral ROI (see Supplementary Table S1 for a detailed list of the extracted features).

Feature Selection and Prediction Model Generation (in training set)

In order to avoid overfitting due to the large amount of extracted features, we randomly 

separated our dataset two independent subsets: a training set (~67%, 108 patients with 37 

positive SLN) and a validation set (~33%, 54 patients with 18 positive SLN). The training 

set was used for feature selection and prediction model generation.

Before feature selection, data rebalance in the training set was first performed. As significant 

prediction bias could be caused by class imbalance (samples tend to be classified into the 

majority group), new samples were synthesized for the minority group using the adaptive 

synthetic sampling approach for imbalanced learning algorithm(32). The feature selection 

was then conducted on the rebalanced training set.

For feature selection, a Mann-Whitney U-test was first performed as a backward selection 

to identify those radiomic features with p-value<0.05 between patients with positive 

and negative SLN. Next, in order to remove redundant features, each group of highly 

correlated radiomic features (Spearman |ρ|≥0.95) was represented by the one with the 

highest discriminative power, that is, area under the receiver operating characteristic (ROC) 

curve (AUC) furthest from 0.5 on predicting SLN metastasis. The remaining radiomic 
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features were then combined with the 7 clinicopathologic characteristics shown in Table 

1 as input for least absolute shrinkage selection operator (LASSO) regression. A logistic 

LASSO model with 3-fold cross-validation was implemented to select the most important 

predictors, i.e. those features with nonzero coefficients when the minimum cross-validation 

error plus one standard deviation was reached. In order to avoid overfitting caused by 

the use of too many features in the prediction model, the maximum number of the 

selected features were restricted to 10. The selected most important features were used to 

establish logistic regression models to predict SLN metastasis in breast cancer. The optimal 

threshold of the ROC prediction analysis was determined by maximizing the Youden index 

(sensitivity+specificity−1).

As the training dataset was randomly divided into 3 groups in the 3-fold cross-validation 

LASSO model, this procedure was repeated 100 times with different random seeds. The 

model that achieved the highest accuracy in the training set was selected as the prediction 

model for further validation. The corresponding AUC, sensitivity, specificity, NPV and 

accuracy were calculated.

The above steps in this section were repeated by using the radiomic features extracted 

from ROIs drawn by R1 and R2, respectively, and also without peritumoral features 

(peritumoral size = 0mm) and with peritumoral features generated by different peritumoral 

sizes (2mm, 4mm, 6mm, 8mm respectively, and the one with peritumoral volume closest 

to the intratumoral volume for each patient). All of the procedures in this section were 

conducted in MATLAB R2017b.

Prediction Performance Evaluation (in validation set)

The prediction performance of the model generated for each condition was further tested in 

the independent validation set using the same threshold determined in the training set. The 

corresponding AUC, sensitivity, specificity, NPV and accuracy were calculated.

Results

Tables 2 and 3 demonstrate the prediction performance in the training and validation 

sets when incorporating the peritumoral features derived from different peritumoral region 

sizes (0mm, 2mm, 4mm, 6mm, 8mm, and the one with peritumoral volume closest to the 

intratumoral volume for each patient) using ROIs drawn by R1 and R2, respectively. The 

selected features of each model were provided in the Supplementary Tables S2 and S3. 

When peritumoral features were input for feature selection and model generation, the final 

selected features of the prediction models all included several peritumoral features.

Table 4 shows the changes in prediction performance, particularly the AUC, NPV and 

accuracy, in the independent validation set after incorporating the peritumoral features with 

different peritumoral sizes using R1’s and R2’s ROIs. As shown in the tables, the prediction 

performance could be improved when combining peritumoral features into the radiomic 

analysis (0mm vs other sizes), showing the usefulness of peritumoral features in predicting 

SLN status in breast cancer. For R1’s ROIs, using 6mm as the thickness of the peritumoral 

regions could achieve the highest accuracy in the validation set. For R2’s ROIs, both 4mm 
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and 8mm yielded higher accuracy compared to other sizes. This suggests the prediction 

performance of the radiomics models can be further improved by optimizing the peritumoral 

region sizes. The level of improvement was affected by the choice of the peritumoral size 

and also the ROI drawing. It also needs to be noted that the optimal peritumoral sizes 

mentioned above are likely to be specific to this particular application.

An ad hoc analysis was also performed to compare the prediction performance between 

different molecular subtypes and histological grades in the validation set. As our dataset was 

not sufficient to draw any conclusion and it is out of the scope of this study, we included 

these interesting results in the Supplementary data section (Supplementary Tables S4 and 

S5).

Discussion

This is the first work attempting to systematically investigate the prediction performance 

improvement from peritumoral features in radiomic analysis by exploring the effect of 

peritumoral region sizes in breast cancer. By performing radiomic analysis for predicting 

SLN status in breast cancer, we demonstrate that the prediction performance of the radiomic 

model can be improved when incorporating peritumoral features. This finding confirms the 

observation in some previous radiomics studies that peritumoral region provides additional 

information about the tumor (13, 14, 25–28).

In this study, the peritumoral features were generated with peritumoral thicknesses of 

2mm, 4mm, 6mm and 8mm, and they were inputted respectively to the radiomics pipeline 

together with the intratumoral features and clinical characteristics. Prediction performance 

improvement was observed when using the two radiologists’ ROIs with different peritumoral 

sizes. Our results not only demonstrate the usefulness of peritumoral features in radiomics, 

but also indicates the choice of the peritumoral size affects the prediction results of the 

radiomics pipeline. Instead of using arbitrary or uncertain peritumoral region sizes (as most 

of the current radiomics studies used when including peritumoral features), we suggest the 

optimal peritumoral thickness should be explored with systematic comparison, which could 

further improve the prediction model and optimize its performance.

The level of improvement in the prediction performance was affected by not only the 

choice of the peritumoral size but also the ROI delineation. In this study, the peritumoral 

regions were determined by dilating the manually annotated tumor ROIs by two expert 

radiologists, and the prediction performance and the level of improvement brought by 

peritumoral features were different for these two sets of ROIs. As this study focused on 

investigating the effect of peritumoral region sizes on the prediction performance of the 

radiomic models, the inter-reader reliability of the ROIs and the radiomics features was 

beyond the scope of this study and not practical due to the large number of features included 

in this analysis. In this study, separate radiomic models were trained for each radiologist. As 

a result, as long as their own ROI drawing is consistent, the model should be able to learn 

such drawing habits. In fact, the variations in the ROIs drawn by different radiologists are 

inevitable as they have their own drawing habits. Although deep learning-based automated 

breast lesion segmentation has been developed(33), such automated segmentation method 
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was found to mimic the drawing behavior of the radiologist whose ROIs were used to train 

the segmentation network. Therefore, when establishing an “end-to-end” radiomics pipeline, 

the optimization of prediction performance using peritumoral features actually depends on 

the ROI drawing, which should be taken into consideration for further radiomics studies.

This study has some limitations. The effect of the peritumoral sizes on radiomic analysis 

depends on different clinical questions and various factors, including the image modalities, 

scanners, sequence protocols and image resolutions. Our study only focuses on the 

usefulness of peritumoral features in the specific radiomic application of predicting SLN 

status in breast cancer patients using the routine DCE-MRI data collected in our institute. 

Future work includes the combination of different MRI contrasts and the investigation of the 

impact of tumor subtypes using a larger dataset, ideally with an external validation. More 

explorations are needed to validate the effect of peritumoral sizes on radiomic analysis in 

other studies, and the optimal peritumoral size should be determined based on the specific 

applications.

In conclusion, this study further demonstrates the usefulness of peritumoral features in 

radiomic analysis in breast cancer, suggesting that peritumoral features contain important 

information of tumor characteristics and should be included in future radiomics studies. 

Furthermore, this study is also the first attempt to systematically explore the effect of 

peritumoral sizes in radiomic analysis in breast cancer. As the choice of the peritumoral size 

would affect the final prediction performance of the radiomic model, this study suggests that 

peritumoral features should also be optimized in future radiomics studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Abbreviation key:

AUC area under the receiver operating characteristic curve

DCE-MRI dynamic contrast-enhanced MRI

LASSO least absolute shrinkage selection operator

NPV negative predictive value

ROC receiver operating characteristic

ROI region-of-interest

SER signal enhancement ratio

SLN sentinel lymph node

TE echo time

TR repetition time
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Figure 1. 
A representative slice of the input DCE-MRI images and the corresponding ROIs. (a) 

the first post-contrast image; (b) the intratumoral ROI (yellow regions) drawn by two 

radiologists R1 (top) and R2 (bottom) with the peritumoral ROIs (red regions) generated by 

different peritumoral sizes. This case was invasive ductal carcinoma of grade 2, classified 

into the luminal B subtype.
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Table 1

Clinical and histopathological characteristics.

Group Patients with negative SLN
(n=107)

Patients with positive SLN
(n=55) p-value*

Age (mean±SD) 55.6±12.6 55.1±12.9 0.815

Molecular subtype

0.425

 Luminal A 44 (41.1%) 16 (29.1%)

 Luminal B 49 (45.8%) 29 (52.7%)

 HER2 positive 4 (3.7%) 4 (7.3%)

 Triple negative 10 (9.4%) 6 (10.9%)

Histological type

0.252
 Invasive ductal carcinoma 87 (81.3%) 49 (89.1%)

 Invasive lobular carcinoma 16 (15.0%) 6 (10.9%)

 Others 4 (3.7%) 0 (0.0%)

Histological grade

0.001
 I 26 (24.3%) 1 (1.8%)

 II 56 (52.3%) 34 (61.8%)

 III 25 (23.4%) 20 (36.4%)

LVI status

<0.001 Negative 98 (91.6%) 20 (36.4%)

 Positive 9 (8.4%) 35 (63.6%)

Tumor location (UIQ
†
 or not)

0.336 No 99(92.5%) 53 (96.4%)

 Yes 8 (7.5%) 2 (3.6%)

Number of other lesions in the ipsilateral breast

0.863

 0 99 (92.5%) 51 (92.7%)

 1 6 (5.6%) 3 (5.5%)

 2 1 (0.9%) 1 (1.8%)

 3 1 (0.9%) 0

*
Two-tailed two-sample t-test with unequal variances was used to compare the age. Other characteristics were tested by chi-square cross-tabulation.

†
Tumors in UIQ has been shown to have significantly lower frequency of axillary lymph node metastasis compared to tumors in all other 

quadrants.

Abbreviations: SLN – sentinel lymph node, SD – standard deviation, HER2 – human epidermal growth factor receptor-2, LVI – lymph-vascular 
invasion, UIQ – upper inner quadrant.
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Table 2.

The prediction performance in the training and validation sets when using different peritumoral sizes based on 

ROIs drawn by R1.

Training set Validation set

AUC Sens Spec NPV Acc AUC Sens Spec NPV Acc

0mm 0.921 0.924 0.831 0.922 0.876 0.770 0.667 0.722 0.813 0.704

2mm 0.931 0.859 0.873 0.861 0.866 0.761 0.667 0.778 0.824 0.741

4mm 0.942 0.926 0.845 0.923 0.885 0.841 0.778 0.722 0.867 0.741

6mm 0.919 0.922 0.859 0.924 0.889 0.824 0.667 0.861 0.838 0.796

8mm 0.908 0.985 0.775 0.982 0.876 0.776 0.667 0.722 0.813 0.704

Tumor size 0.917 0.929 0.789 0.918 0.858 0.801 0.667 0.750 0.818 0.722

Abbreviations: AUC – area under the receiver operating characteristic curve, Sens – Sensitivity, Spec – Specificity, NPV – negative predictive 
value, Acc – Accuracy.
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Table 3.

The prediction performance in the training and validation sets when using different peritumoral sizes based on 

ROIs drawn by R2.

Training set Validation set

AUC Sens Spec NPV Acc AUC Sens Spec NPV Acc

0mm 0.935 0.912 0.873 0.912 0.892 0.793 0.556 0.861 0.795 0.759

2mm 0.960 0.831 0.972 0.852 0.901 0.792 0.722 0.694 0.833 0.704

4mm 0.934 0.944 0.817 0.935 0.881 0.846 0.778 0.806 0.879 0.796

6mm 0.939 0.841 0.915 0.855 0.879 0.812 0.833 0.694 0.893 0.741

8mm 0.932 0.940 0.859 0.938 0.899 0.827 0.778 0.806 0.879 0.796

Tumor size 0.954 0.944 0.845 0.938 0.894 0.829 0.778 0.694 0.862 0.722

Abbreviations: AUC – area under the receiver operating characteristic curve, Sens – Sensitivity, Spec – Specificity, NPV – negative predictive 
value, Acc – Accuracy.
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Table 4.

The prediction performance changes in the validation set when using different peritumoral sizes based on 

ROIs drawn by R1 and R2.

Changes
R1 R2

AUC NPV Acc AUC NPV Acc

2mm − 0.009 + 0.011 + 0.037 − 0.001 + 0.038 − 0.055

4mm + 0.071 + 0.054 + 0.037 + 0.053 + 0.084 + 0.037

6mm + 0.054 + 0.025 + 0.092 + 0.019 + 0.098 − 0.018

8mm + 0.006 0 0 + 0.034 + 0.084 + 0.037

Tumor size + 0.031 + 0.005 + 0.018 + 0.036 + 0.067 − 0.037

Abbreviations: AUC – area under the receiver operating characteristic curve, NPV – negative predictive value, Acc – Accuracy.
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