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Introduction
Lung cancer (LC) is the most frequent malignant tumor (11.4% of all cases) with the 
highest mortality (18% of the total cancer deaths) around the world [1]. Subtypes of lung 
cancer are mainly lung adenocarcinoma (LUAD) and lung squamous cell carcinoma 
(LUSC). The incidence of LUAD has increased more quickly than that of LUSC in men 
and especially in women over the past few decades [1, 2]. For the reason that most lung 
cancer patients died of lung cancer itself finally, the incidence rate and mortality rate 
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of lung cancer tend to mirror one another [3]. Although the technologies of diagnosis 
and therapies such as surgical treatment, targeted treatment, radiotherapy and immu-
notherapy are progressing, the overall survival rate is still unfavourable [3–8]. Unluckily, 
only 15% of LC are discovered in early stages, which would make merits for the final 
prognosis, most LC patients are discovered at an advanced stage [7]. Therefore, effective 
biomarkers may be beneficial for early diagnosis and predicting prognosis in order to 
enhance the overall survival rate of lung cancer patients [9, 10].

Epigenetic regulation plays an essential role in LC. Although we have identified sev-
eral layers of epigenetic regulation, including modification in the DNA or proteins lev-
els, the mechanism of RNA modification remains unclear. N6-methyladenosine (m6A) 
is a modified pattern of epigenetic regulation, which takes up the most variety of mRNA 
modification in most eukaryotic cells. Recent researches support that almost all fields 
of mRNA metabolism are regulated by m6A methylation, including mRNA decay and 
translation in the cytoplasm, as well as pre-mRNA processing and expression in the 
nucleus [11–13]. Studies have suggested that dysregulation of m6A has taken a signif-
icant role of tumorigenesis and development of cancers, especially LC [14, 15]. Up to 
date, abnormal expression of m6A related proteins has proved to take part in some biol-
ogy processes of LC, including malignant proliferation, migration, invasion, metastasis 
and drug resistance [16]. The further study on the methylation of m6A indicates that the 
prospects of early diagnosis and new treatment of LC are more and more broad.

Comprehensive analyses based on multiomics provide more information for evaluat-
ing gene expressions and functions. This study used RNA-seq downloaded from TCGA 
dataset to systematically analyze the expression of 21 m6A-related genes at 1039 LC 
patients and 107 control patients. Our aim was to evaluate the role of m6A-related genes 
in forecasting the prognosis of LC patients, and analyze the tumor microenvironment 
and drug resistance through comprehensive bioinformatics analysis (Additional file  1: 
Figure S1).

Methods and materials
Data collection and analysis

We obtained the transcriptome data, somatic mutation data and the related clinico-
pathological data of 1039 LC tissues and 107 normal tissues from the TCGA database 
(http://​cance​rgeno​me.​nih.​gov/) as training set and GEO data as validation set. Those 
21 m6A-related genes included 7 m6A writers (RBM15B, ZC3H13, KIAA1429, WTAP, 
METTL14, RBM15, METTL3), 2 m6A erasers (FTO and ALKBH5), 11 m6A-binding 
protein genes (YTHDF1, YTHDF2, YTHDF3, ELAVL1, HNRNPA2B1, HNRNPC, 
LRPPRC, YTHDC1, IGF2BP1, YTHDC2 and FMR1) and 1 m6A-related protein gene 
(CBLL1), which were received from previous literatures [17–19].

DEMGs (differentially expressed m6A-related gene) were identified between the LC 
samples and corresponding non-tumorous samples by the “limma” package. The “pheat-
map” was utilized to draw heat maps of DEMGs.

Violin diagrams of DEMG were drawn using the “ggplot2” package. Online Gene 
ontology (GO) analysis was utilized to provide the definition of these proteins from 
three aspects, including biological process, molecular function and cellular component. 
Signaling pathway was analyzed at the same time. Protein–protein interaction (PPI) was 

http://cancergenome.nih.gov/


Page 3 of 23Yang et al. BMC Bioinformatics          (2022) 23:437 	

achieved from the String network (http://​string-​db.​org/​cgi/​input.​pl). Spearman correla-
tion coefficient with R package was performed to analyze the co-expressions among 10 
DEMGs.

Gene mutation analysis

The somatic mutation data was analyzed visually by the “maftools” R package [20]. 
According to RNA-seq data, coding RNAs were reserved for further analysis when their 
original expression count value was higher than 10 in more than three quarters of sam-
ples. The copy number variations (CNV) of m6A-related genes in LCs was analyzed in 
CNV module of GSCALite (http://​bioin​fo.​life.​hust.​edu.​cn/​web/​GSCAL​ite/) [21].

Consensus clustering of LC

According to consensus clustering, Ward’s linkage and Euclidean distance provided ref-
erences to perform cluster analysis of the 10 m6A-related genes expression information 
in LC tissues and the corresponding clinical data. In order to infer the best K to con-
firm and categorize patients, the proportion of ambiguous clustering (PAC) was used as 
a distinct and simple unsupervised clustering method [22]. And principal component 
analysis (PCA) was also an intuitive way to assess the optimal k. Using “ConsensusClus-
terPlus” package, which consists of a total of 1,000 computation, we verified the stability 
and reliability of classification [23]. We used “pheatmap” package to analyze clinical cor-
relation. The overall survival rate of different clusters was analyzed, using Kaplan Meier 
method.

Construction of a gene signature and the evaluation of its prognosis and prediction

In order to evaluate the value on the prognosis of m6A-related genes and develop a 
potential risk model, Lasso cox regression analysis was utilized on their expression in 
the TCGA dataset [24, 25]. Univariable cox analysis was performed to screen out the 
genes that were related to survival. The minimum criterion was set as p value less than 
0.05, then four genes and their coefficients were determined. And λ as the best penalty 
parameter related to the TGGA dataset were selected. The equation was used to com-
pute the risk score of the signature [26]:

In which Coefficients represents the coefficient, while xi is the representative of rela-
tive expression value of the Z-score transformation of every chosen regulator. Each 
patient’s risk score was calculated by this formula in TCGA dataset. In LC cases, high-
risk group (the risk score of these samples exceeds 0.9539055) and low-risk group (the 
risk score of these samples is inferior to 0.9539055) were determined on the strength 
of the risk score of the tumor samples. Moreover, a nomogram was established, which 
assimilated the four selected genes with LC prognosis and we conducted 3-year and 
5-year ROC (receiver operating characteristic curve) analysis to assess the nomogram. 
In addition, Cox regression analyzed the clinical characteristics correlated with the over-
all survival rate of LC patients with univariate and multivariate analysis, and we applied 

Risk score =

n

i=1

Coefi ∗ xi

http://string-db.org/cgi/input.pl
http://bioinfo.life.hust.edu.cn/web/GSCALite/
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the Kaplan–Meier method to assess the practicality of risk prognostic models. Further, 
we conducted ROC analysis to detect the sensitivity and specificity of risk score.

Analysis of tumor microenvironment (TME)

Tumor microenvironment contributes to tumor advances and prognosis, while immune 
and stromal cells are the dominant ingredients of TME [27]. About LCs, estimation of 
stromal and immune cells in malignant tumor tissues using ESTIMATE and XCELL 
algorithm was performed to cast every sample in order to deduce from the admixture of 
immune, stromal and other non-cancerous ingredients in the TME. We then compared 
the stromal score, immune score, and estimate/microenvironment score in two clusters 
and in the risk model and visualized with the “ggplot2” package.

Analysis of infiltration level of immune cells and immune function

We calculated the infiltrated score of immune cells with CIBERSORT, CIBERSORT-
ABS, TIMER, XCELL, QUANTISEQ, MCPCOUNTER, EPIC and ssGSEA algorithm. 
We also used ssGSEA and TISIDB [28] to evaluate immune functions and immunother-
apy. The we got the correlation with risk model or cluster and compared the difference 
in the high and low risk groups. The TIMER2.0 database (http://​timer.​comp-​genom​ics.​
org/) was performed to validate the infiltrated level of immune cells. The abundance of 
immune cells is estimated using a novel statistical method in the tumor microenviron-
ment. The clinical, genomic and immunological features of tumors can be fully studied 
in the TIMER2.0 dataset [29]. The relationships between estimated immune infiltrates 
and somatic copy number alterations (sCNAs), somatic mutations, gene expression and 
clinical outcomes in the TCGA cohorts were allowed to investigate by the immune com-
ponent consisting of four modules [30]. Hub immune-related gene mutation types were 
evaluated on the strength of the four modules in the TIMER2.0 dataset.

Validation of expression of DEMGs

The Human Protein Atlas (HPA, https://​www.​prote​inatl​as.​org/) website was utilized 
to verify the expression of proteins encoded by LUAD and LUSC selected hub genes 
[31], based on quantitative transcriptomics data (RNA-Seq) and spatial proteomics 
data achieved by tissue microarray immunohistochemical analysis. In addition, we vali-
dated the expression of DEMGs in the GEPIA 2.0 dataset (http://​gepia2.​cancer-​pku.​cn/#​
index).

GSCALite

In GSCALite (http://​bioin​fo.​life.​hust.​edu.​cn/​web/​GSCAL​ite/) [21], we established a 
comprehensive public resource in order to research tissue-specific gene expression and 
regulation by integrating the normal tissue data from the Genotype Tissue Expression 
(GTEx) project and the LUAD and LUSC genomics data from TCGA. The GTEx sam-
ples of nearly 1000 individuals were collected from 54 non-diseased tissue sites. We 
submitted all the DEMGs to the GSCALite website to analyze the methylation of the 
DEMGs in LUAD and LUSC based on the TCGA LUAD and LUSC samples.

Besides, we explored DEMGs related miRNA regulation network and the role of 
DEMGs in drug sensitivity and cancer pathway activity. In addition, this represented 

http://timer.comp-genomics.org/
http://timer.comp-genomics.org/
https://www.proteinatlas.org/
http://gepia2.cancer-pku.cn/#index
http://gepia2.cancer-pku.cn/#index
http://bioinfo.life.hust.edu.cn/web/GSCALite/
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different expressions of DEMGs in LC subtypes. Moreover, CARE database was used to 
evaluate the drug resistance of these 4 selected hub genes. We defined p values or FDR 
less than 0.05 as statistically significant.

DNA methylation

In MethSurv [32] (https://​biit.​cs.​ut.​ee/​meths​urv/), we determined the expression and 
prognostic patterns of single CpG methylation of the DEMGs in LUAD and LUSC. Beta 
values (ranging from 0 to 1) represent DNA methylation values. M and U are methylated 
and unmethylated intensity values. Every single methylation of CpG was calculated by 
the M/(M + U + 100) formulation.

Statistical analysis

R software (version 4.4.30) was used to process data. The filtering conditions for all the 
results were: p < 0.05(“*”), p < 0.01(“**”) and p < 0.001(“***”).

Results
Gene set enrichment analysis of m6A‑related genes

In view of the key function of DEMGs in tumor occurrence and development, TCGA 
database was used to comprehensively explore the transcription of 21 m6A-related 
genes. We presented the RNA levels of DEMGs as heatmaps and violin diagrams 
(Fig. 1A, B), which suggested that there was significant difference between the expres-
sion levels of 10 m6A-related genes in LC patients and those in normal controls. Inter-
estingly, on the strength of the expression pattern, those 10 DEMGs (including ELAVL1, 
HNRNPC, CBLL1, HNRNPA2B1, ZC3H13, YTHDF1, KIAA1429, YTHDF3, YTHDF2 
and RBM15B) all expressed less in tumor samples than in normal samples (Fig. 1B).

Fig. 1  Expression of m6A-related genes and gene set enrichment analysis among them. A The 
differential-expression levels of 10 m6A-related genes in normal controls (n = 107) and LC (n = 1039) 
with agglomerative hierarchical clustering. B Vioplot diagram of 10 DEMGs in normal controls and LC. C 
Co-expressions among 10 DEMGs in lung cancer. D–F Biological process (BP), cellular component (CC) and 
molecule function (MF) of 21 m6A-related genes. G The pathway of 21 m6A-related genes

https://biit.cs.ut.ee/methsurv/
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Through GO analysis, in biological process, KIAA1429 (VIRMA), RBM15B, WTAP 
and CBLL1 may relate to mRNA methylation; YTHDF1, YTHDF2, YTHDF3 could have 
the relationship with positive regulation of translational initiation; while HNRNPC, 
IGF2BP1, ELAVL1 and LRPPRC were likely to have the process of negative regula-
tion of RNA catabolism. In cellular component, WTAP, KIAA1429 and RBM15B could 
belong to RNA N6-methyladenosine methyltransferase complex. In molecular function, 
HNRNPC and YTHDF3 had strong relationship with N6-methyladenosine-containing 
RNA binding, while the relationships among YTHDF1, YTHDF2 were weak (Fig. 1D–
F). ALKBH5 and FTO were identified with the pathway of DNA Damage Reversal and 
reversal of alkylation damage by DNA dioxygenases (Fig. 1G).

To better investigate the interactions among the 21 m6A-related genes, co-expression 
analysis (Fig.  1C) was applied to explore the correlations among the 10 differential-
expression genes. Then, we identified highly correlated m6A regulator gene pairs as |cor-
relation coefficient|≥ 0.7, p < 0.05, which included KIAA1429 and YTHDF3, YTHDF2 
and RBM15B, RBM15B and ELAVL1, RBM15B and HNRNPA2B1, CBLL1 and ELAVL1, 
HNRNPC and ELAVL1, ELAVL1 and HNRNPA2B1.

Landscape of the LC mutation profiles

In the waterfall plot, the mutations of TP53, TTN, MUC16 were the top three mutated 
genes in LC samples, and fraction of found TP53 mutations was higher than 60% in LC 
samples (Additional file 2: Figure S2A and 2B). In addition, the most common type of 
mutation was missense mutations, the proportion of single nucleotide polymorphisms 
(SNPs) in the variant type was higher than that of inserted mutation or deleted muta-
tion, and the most familiar single nucleotide variant (SNV) was C > A in LCs (Additional 
file 2: Figure S2B–D). Moreover, we figured up the variance of each sample and set up 
box plots with different colors to display the mutation types for LCs (Additional file 2: 
Figure S2B). Additional file 2: Figure S2F visualized the exclusive associations and co-
occurrence between mutated genes. As shown in Additional file  2: Figure S2E, RTK-
RAS, TP53, HIPPO were the top three pathways affected in LC sample, while TGF-Beta, 
MYC, Cell Cycle were the least three pathways (Additional file 2: Figure S2E).

Then, the somatic mutation profiles of 10 DEMGs were analyzed in 1059 LC patients 
and the altered 142 samples of SNV were selected for further analysis in the VCF for-
mat. In the oncoplot, ZC3H13, KIAA1429, CBLL1 were the top three mutant m6A 
genes in LC samples (Additional file 2: Figure S2G–I and Additional file 3: Figure S3C). 
Furthermore, the most common mutation classification was missense mutations, single 
nucleotide polymorphisms (SNPs) account for a higher proportion of variant types than 
insertion or deletion, and the most common single nucleotide variant (SNV) was C > T 
in the m6A RNA methylation regulators altered of LCs (Additional file 2: Figure S2H). 
In addition, we calculated the number of variants in each sample, and used box plots to 
show the mutation types for 142 samples (Additional file 2: Figure S2H).

Next, we studied the CNV of m6A-related genes in LCs. As shown in Additional 
file  2: Figure S2J, YTHDF1 had the highest correlation between CNV and mRNA 
while RBM15B had the least (Additional file 2: Figure S2J). A homozygous variation of 
YTHDF1 was the majority of the homozygous amplification without deletion by CNV% 
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analysis. The probability of heterozygous amplification was relatively high in gene 
YTHDF1/3, KIAA1429, HNRNPA2B1 and CBLL1 (Additional file 2: Figure S2K–M).

Consensus clustering based on the expression of 10 DEMGs

From Additional file 3: Figure S3A–B, the area under the cumulative distribution func-
tion (CDF) curve stabilized when k equaled to 2 (Fig. 2A, Additional file 3: Figure S3A–
B). The consensus matrix shown in Fig.  2A represented the consensus for k = 2 and 
well-defined 2-block structure, where there was no crossover. The PC analysis showed 
a relatively stable partitioning of the samples in two clusters (Fig.  2B). Moreover, the 
prognostic analysis demonstrated significantly difference between cluster 1 and 2, and 
patients from cluster 1 had a better overall survival than that in cluster 2 (Fig. 2C). Then, 
we compared the TME in two clusters. Cluster 1 had higher immune score and esti-
mate score than cluster 2, while there was little statistical significance in stromal score 
between them (Fig. 2D–F). In the violin plot (Fig. 2G), remarkable difference was found 
in activated memory CD4+ T cell, γδ T cell in two LC sample clusters. Therefore, we 
found a novel clustering for prognosis and immune characteristics of LC patients. The 
infiltration difference of immune cells in two clusters was shown in Fig.  2H. Among 
them, the infiltrated level of common lymphoid progenitor_XCELL, T cell CD4+ 
Th2_XCELL, Macrophage M2_CIBERSORT, T cell CD4+ Th1_XCELL, Mast cell rest-
ing_CIBERSORT, T cell CD8+ naive_XCELL, Neutrophil_CIBERSORT, Macrophage 
M1_CIBERSORT, Mast cell resting_CIBERSORT-ABS, T cell CD8+_QUANTISEQ, T 
cell CD4+ memory activated_CIBERSORT, Myeloid dendritic cell_QUANTISEQ, Neu-
trophil_CIBERSORT-ABS was higher in cluster 2 group.

Construction of risk prognostic signature and the evaluation of its prognosis 

and prediction

With the purpose of better predicting the clinical prognosis based on these m6A-
related genes in patients with LC, we got the risk model. When the log(lambda) was 
between − 4 and − 5, the four m6A-related gene signature (ZC3H13, CBLL1, ELAVL1 
and YTHDF1) of the best prognostic model was identified. The Lasso regression coef-
ficient of the four hub DEMGs was 4.361e−05 of ZC3H13, −  3.233e−05 of CBLL1, 
− 6.080e−05 of ELAVL1 and 2.777e−05 of YTHDF1, respectively.

Then, risk score was calculated as the signature of LC prognosis. We divided all 
patients into low-risk group and high-risk group (Fig. 3A), and the OS of the two groups 
was carefully checked with significant difference (Fig. 3B). One-year AUC of ROC curve 
was 0.881 (Fig. 3C). In addition, the OS analysis represented that only low expression of 
CBLL1 had significantly longer survival time, whereas ELAVL1, ZC3H13 and YTHDF1 
had no statistical difference (Fig. 3D). In order to better quantify the prediction results, 
we developed a nomogram (Fig. 3E).

Moreover, the univariate and multivariate cox analysis was respectively conducted 
combined with clinical characteristics. The univariate cox analysis showed that gender 
(HR = 1.758; p = 0.004) and pathologic stage (HR = 1.253; p = 0.030) had a significant 
correlation with a poor OS (Fig.  3F). The multivariate cox analysis demonstrated that 
gender (HR = 1.646; p = 0.014) and pathologic stage (HR = 1.742; p = 0.007) were signifi-
cantly correlated to a poor OS (Fig. 3G), which was consistent with the previous analysis. 
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Fig. 2  PC analysis, overall survival rate and analysis of TME of LC in 2 robust clusters. A The optimal cluster 
number was two using the ConsensusClusterPlus package. B Principal component analysis (PCA) was also 
an intuitive way to assess the optimal k. C Overall survival analysis between cluster 1 and cluster 2 of LC. 
D–F Comparison of stromal score, immune score and estimate score between two clusters in the TME of 
LC samples. G Violin diagram of the proportion of 22 types of immune cells involved in two clusters in LC 
samples. H The infiltration of immune cells involved in cluster1 and cluster2 in LC samples with 7 algorithm. 
*p < 0.05; **p < 0.01; ***p < 0.001



Page 9 of 23Yang et al. BMC Bioinformatics          (2022) 23:437 	

In addition, GEO dataset validated the prognosis of the risk prognostic signature by the 
same analyses (Additional file 3: Figure S3D–G).

Analysis of immune characteristic in the risk model

We compared the immune characteristic in the risk model. There was remarkable sta-
tistical difference in immune score, stromal score and estimate score between the high- 
and low-risk groups, and the score of the high-risk group was higher in stromal, immune 
and estimate group (Fig. 4A) and XCELL groups (Fig. 4B). About the total trend of the 
immune cell infiltration difference, most immune cells were infiltrated more in high-risk 
group (Fig. 4C, E–K). About the immune functions, high risk samples got higher scores 
in APC co-stimulation, CCR, checkpoints, HLA, parainflammation, T cell co-inhibition, 
T cell co-stimulation and type I IFN response with ssGSEA (Fig. 4D).

Fig. 3  Summary of the 10 DEMGs and the selection of a 4 m6A-related gene signature in predicting LC as 
well as effect on LC prognosis and clinicalpathological characteristics of the 4 m6A-related gene signature. A 
Risk score and survival status for each patient in LC of TCGA datasets. B Kaplan–Meier OS curves for patients 
in the TCGA datasets designated to high- and low-risk groups depended on the risk score. C ROC curves 
demonstrated the predictive efficiency of the risk signature in LC of TCGA datasets. D Survival curve of CBLL1 
between high- and low-expression levels in LC of TCGA datasets. E Nomogram for forecasting prognostic 
risk of LC patients. F, G Univariate and Multivariate analysis of the hazard ratios for risk score as independent 
prognostic elements to anticipate the overall survival

Fig. 4  Analysis of immune characteristics of high-risk and low-risk samples. A Comparison of stromal score, 
immune score and estimate score between high-risk and low-risk groups in the TME of LC samples with 
CIBERSORT. B Comparison of stromal score, immune score and microenvironment score between high-risk 
and low-risk groups in the TME of LC samples with XCELL. C Scores of infiltration cells in high-risk and low-risk 
groups of LC samples with ssGSEA. D Scores of infiltration functions in high-risk and low-risk groups of LC 
samples with ssGSEA. E Correlation with various immune cells and risk model. F The infiltration of immune 
cells involved in high-risk and low-risk groups in LC samples with XCELL. G The infiltration of 22 types of 
immune cells involved in high-risk and low-risk groups in LC samples with CIBERSORT. H The infiltration of 
22 types of immune cells involved in high-risk and low-risk groups in LC samples with CIBERSORT-ABS. I The 
infiltration of immune cells involved in high-risk and low-risk groups in LC with Timer. J The infiltration of 
immune cells involved in high-risk and low-risk groups in LC with QUANTISEQ. K The infiltration of immune 
cells involved in high-risk and low-risk groups in LC samples with MCPCOUNTER

(See figure on next page.)
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About immune checkpoints, the expression of CD160, HAVCR2 and KDR was higher 
in high-risk group. The expression of CD274 was higher in low-risk group (Additional 
file  4: Figure S4). From TISID, the four hub DEMGs was relatively correlated with 
immune characteristics of LC.

Fig. 4  (See legend on previous page.)
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Correlation between immune cells infiltration level and hub DEMGs

We performed a correlation of m6A-related genes expressions with immune infiltra-
tion level in LUAD and LUSC. When there was no immune infiltration in LC, four hub 
DEMGs had no statistical significance in LUAD. Except for ZC3H13, the other three 
genes (CBLL1, ELAVL1 and YTHDF1) were positively correlated with purity state of 
tumor cell in LUSC. Intriguingly, there were no variation between YTHDF1 level and 
either of 6 infiltrates in both LUAD and LUSC except with CD4+ T cell and macrophage 
infiltrate in LUSC. CBLL1 positively related to macrophage in LUSC, CD8+ T cell, 
macrophage and neutrophil in LUAD and LUSC. Besides, ELAVL1 and ZC3H13 had 
remarkable positive correlations with almost every 6 immune infiltration cells in LUAD 
and LUSC. These results provided important evidence for the correlation between 
immune infiltrates and the expression of DEMGs in LUAD and LUSC (Additional file 5: 
Figure S5A–W).

We analyzed somatic copy number variation of m6A-related genes in LUAD and 
LUSC. The results demonstrated that an arm-level gain of CBLL1 gene reduced the 
immune infiltration of CD8+ T cell, dendritic cell and neutrophil in LUSC, while an 
arm-level deletion of CBLL1 gene attenuated neutrophil infiltrate in LUAD and an arm-
level gain or a high amplication of CBLL1 increased the immune infiltration of CD8+ T 
cell in LUAD. Besides, an arm-level deletion of ELAVL1 attenuated the immune infiltra-
tion of dendritic cell and neutrophil in both LUAD and LUSC, as well as B cell in LUSC 
and CD4+ T cell in LUAD. And an arm-level gain of ELAVL1 also decreased dendritic 
cell and neutrophil infiltrates in LUSD. In addition, an arm-level gain of YTHDF1 and 
attenuated CD4+ T Cell infiltrate in LUAD, while an arm-level deletion of YTHDF1 
decreased neutrophil infiltrate in LUSD. Moreover, an arm-level deletion and an arm-
level gain of ZC3H13 reduced CD4+ T cell infiltrate in LUAD. Interestingly, mac-
rophage had almost none impact by CNV of DEMGs in both LUAD and LUSC. These 
results demonstrated that neutrophil, CD4+ T cell and dendritic cell infiltration levels 
were particularly affected by CNV of DEMGs in patients with both LUAD and LUSC 
(Additional file 5: Figure S5AK–AY).

To further investigate the mutation of the four hub DEMGs, we found that the mutated 
CBLL1 attenuated the immune infiltration of neutrophil in LUSC, while the mutated 
ZC3H13 improved the macrophage infiltration in LUSC. In addition, there was no sta-
tistical significance in other mutated genes infiltrated by immune cells. These findings 
suggested that immune cells, which were affected by mutation of DEMGs made little 
impact in patients with both LUAD and LUSC (Additional file 5: Figure S5AI and 5AJ).

In addition, we discovered that the infiltration levels of B cell had a positive correlation 
with the OS of LUAD patients, while the infiltration levels of dendritic cell negatively 
related to the OS of LUSC patients (Additional file 5: Figure S5AA–AH).

Meanwhile, we validated the correlation of the other 6 DEMGs (HNRNPA2B1, 
HNRNPC, KIAA1429, RBM15B, YTHDF2 and YTHDF3) with immune cells in LUAD 
and LUSC. Intriguingly, HNRNPA2B1 correlated positively with almost every 6 immune 
infiltration cells in LUAD and LUSC, while other DEMGs had less correlations with 
infiltrates (Additional file 6: Figure S5BA–CI). The somatic copy number variation of 6 
DEMGs was also analyzed in LUAD and LUSC, the results showed an arm-level gain of 
HNRNPA2B1 attenuated neutrophil infiltrate in LUSC. An arm-level gain of YTHDF3 
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decreased the infiltration level of dendritic cells in LUAD. The results were consistent 
with our previous findings that neutrophil and dendritic cell infiltration levels were 
particularly affected by CNV of DEMGs in patients with LC (Additional file 7: Figure 
S5DQ–DR). In the terms of mutation of 6 DEMGs, the mutated HNRNPA2B1 atten-
uated the immune infiltration of CD4+ T cells in LUAD, while the mutated YTHDF3 
decreased immune infiltration of B cells in LUAD. And HNRNPC decreased CD4+ T 
cells and dendritic cells infiltration in LUAD. These findings demonstrated that immune 
cells, which were affected by mutation of DEMGs made little impact in patients with 
both LUAD and LUSC (Additional file 7: Figure S5DM–DP). Similar to previous find-
ings, the infiltration levels of B cell positively related with the OS of LUAD patients, 
while the infiltration levels of dendritic cell had a negative relationship with the OS of 
LUSC patients (Additional file 7: Figure S5DA–DL).

Relationship between immune functions and four hub DEMGs

The expression of ELAVL1 and YTHDL1 was negatively correlated to chemokine recep-
tor, MHC molecular in LUAD and LUSC. The expression of CBLL1 was positively cor-
related to CCL7, CCL8, CXCL9, CXCL10, CXCL11, CCR5, TAP1, TAP2, memory B 
cell, active CD4+ T cell, Th2 T cell, MICB, CD274 and PDCD1LG2. The expression of 
ZC3H13 was positively correlated to CCR8, Tem CD4+ T cell, Th2 T cell, memory B 
cell, IL6R, TNFSF15, KDR and TGFBR1. The expression of ELAVL1 was positively cor-
related to XCL1, active CD4+ T cell, CD276, PVR, TNFSF18, ULBP1 and PVRL2. The 
expression of YTHDL1 was positively correlated to CXCL17, CD276, PVR and PVRL2. 
The remaining factors were negatively or not correlated to the four hub DEMGs (Addi-
tional file 8: Figure S6).

Methylation and pathway

We collected expression profiles of the m6A-related genes with methylation in order 
to assess the potential effects of disrupting m6A-related genes in LUAD and LUSC 
patients. These results suggested that YTHDF2, KIAA1429 and RBM15B were remark-
ably down-regulated in LUAD compared with normal samples. Besides, significantly 
high levels of YTHDF3, ZC3H13, CBLL1, ELAVL1 and YTHDF2 in LUSC compared 
to normal tissues, while HNRNPA2B1, YTHDF1, KIAA1429 and RBM15B were down-
regulated in LUSC in comparison with normal tissues (Fig. 5A). In addition, methyla-
tion led to down regulation of HNRNPA2B1, ZC3H13, YTHDF1, RBM15B, KIAA1429, 
CBLL1, YTHDF3, YTHDF2 in LUAD and LUSC tissues, and of ELAVL1 in only LUSC 
tissues, while mediate HNRNPC upregulation in LUSC tissues (Fig. 5B). Furthermore, 
LUSC patients with hypermethylation tended to have a better overall survival (Fig. 5C). 
To further confirm and validate our findings, DNA methylation of all DEMGs were ana-
lyzed. We presented heatmap and prognostic value of DNA methylation expression lev-
els of DEMGs in LUAD and LUSC (Additional file 9: Figure S7 and Additional file 11: 
Table S1). DNA methylation expression levels concluded that cg01043729 from ELAVL1 
and cg06720244 from ZC3H13 had the highest DNA methylation levels and significant 
prognostic value (likelihood ratio (LR) test p value < 0.05) in LUAD.

Moreover, we made an exploration of DEMGs in cancer hallmark pathways. The 
results indicated that hormone AR, DNA damage response, TSC/mTOR and cell cycle 
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were activated in LUSC, TSC/mTOR, apoptosis and cell cycle were activated in LUAD 
and hormone ER, RTK, RAS/MAPK, PI3K/AKT and EMT were inhibited in both LUSC 
and LUAD (Fig. 5D–F).

Drug sensitivity and DEMGs

The analysis of gene set drug resistance was obtained from GDSC/CTRP IC50 drug 
data. The spearman correlation is representative of correlation between the gene 
expression and the drug. The negative correlation represents that the gene low 
expression is sensitive to the drug. In CTRP, low level of almost all the DEMGs, 
including ELAVL1, HNRNPC, RBM15B, YTHDF2, CBLL1, KIAA1429, HNRN-
PA2B1 and ZC3H13 were negatively associated with drugs. CBLL1 and KIAA1429 
had positive correlation with abiraterone, ZC3H13 and HNRNPC positively corre-
lated with FGIN-1-27 and YTHDF1 was positively associated with tozasertib. Pacli-
taxel and docetaxel had negative correlations with ELAVL1, HNRNPC and RBM15B, 
while etoposide correlated negatively with ELAVL1, HNRNPC, RBM15B, YTHDF2 
and CBLL1 (Fig. 6A). In GDSC, ELAVL1 and HNRNPC had both positive and nega-
tive correlation with specific drugs, while RBM15B, YTHDF2, CBLL1, KIAA1429, 
HNRNPA2B1 and ZC3H13 were negatively correlated with the drugs. 17-AAG, 
PD-0325901, RDEA119, selumetinib, trametinib were positively correlated with both 
ZC3H13 and HNRNPC. ZC3H13 had positively association with afatinib and cetuxi-
mab, while HNRNPC was positively associated with dasatinib, erlotinib, lapatinib 
and TGX221. Crizotinib had a negative correlation with ELAVL1, CBLL1, HNRNPC 
and RBM15B (Fig. 6D). In addition, the false discovery rate of HNRNPC was posi-
tive in both LUAD and LUSC, while the false discovery rate of HNRNPA2B1 was 

Fig. 5  The association between m6A-related genes and methylation and the role of m6A-related genes in 
cancer-related pathways. A Methylation difference between tumor and normal samples in LUAD and LUSC. B 
Spearman Correlation Coefficient of methylation and gene expression in LUAD and LUSC. C Overall survival 
difference between hypermethylation and hypomethylation in LUSC. D Global percentage of activity of 
m6A-related gene pathway in LUAD and LUSC. A represents Activate, while I represents Inhibit. E Interaction 
map of m6A-related genes and pathway in LUAD and LUSC. Solid line represents activation, while dotted 
line means inhibition. F Pie percentage of activity of m6A-related gene pathway in LUAD and LUSC. Red part 
means activation, while green part represents inhibition
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positive in LUSC (Fig. 6B). Moreover, higher level of HNRNPA2B1 and lower level 
of YTHDF2 in LUSC had a better overall survival (Fig.  6C). As shown in Fig.  6E, 
YTHDF1/2, ELAVL1 and CBLL1 expressed in LUAD and LUSC, and the expression 
level of YTHDF2, ELAVL1 was extremely high. YTHDF3, RBM15B, KIAA1429 and 
HNRNPA2BA expressed only in LUAD (Fig. 6E). Moreover, the CARE score of only 
CBLL1 was higher than 0 in CCLE, CGP and CTRP in the four hub DEMGs (Fig. 6F).

Validation of expression of DEMGs

The expression levels of proteins which were encoded by the 4 selected central genes 
correlated with LUAD and LUSC were obtained from the HPA website. The HPA 
website reports no data on proteins encoded by YTHDF1, while Fig.  7 shows the 
expression profiles of the other 3 genes in LUAD and LUSC clinical samples. The 
protein level of ELAVL1 was downregulated in LUAD and LUSC tissues in compar-
ison with normal tissues, while the protein expression of CBLL1 was upregulated 
in LUAD in comparison with normal tissues. CBLL1 overexpressed in both LUSC 
tissues and normal tissues, while ZC3H13 overexpressed in LUAD, LUSC and nor-
mal tissues (Fig. 7A–C). And the overall survival analysis of HPA suggested that low 
expression of CBLL1 had a strong relationship with a poor prognosis in LC patients 
(Additional file 10: Figure S8A), but the other three genes had no statistical signifi-
cant correlation. Then, we utilized GEPIA website to validate the expression of these 
4 selected hub genes. The results demonstrated that CBLL1, ELAVL1 and YTHDF1 
expressed more in tumor samples than in normal samples of LUAD and LUSC 
patients, while the expression level of ZC3H13 in tumor samples is lower than in 
normal samples of LUAD and LUSC patients (Additional file 10: Figure S8B–C).

Fig. 6  Gene expression, correlation between m6A-related genes and drug resistance in LUAD and LUSC. A 
Correlation between m6A-related genes and drug sensitivity in CTRP database. p value or FDR < 0.05 was 
considered as significant. B FDR of 10 DEMGs in LUAD and LUSC. C Effect of high expression on survival risk of 
10 DEMGs in LUAD. D Correlation between m6A-related genes and drug sensitivity in GDSC database. p value 
or FDR < 0.05 was considered as significant. E Differential expression of 10 DEMGs in LC subtypes. F CARE 
score of CBLL1 in CCLE, CGP and CTRP database
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Discussion
In our study, we aimed to analyze the prognosis, tumor microenvironment and drug 
resistance of m6A-related genes in LC. We developed a risk prognostic signature con-
sisting of ZC3H13, CBLL1, ELAVL1 and YTHDF1 in 1039 LC patients from TCGA 
dataset as the training set by Lasso cox analysis and GEO dataset as the verified set. 
Through OS analysis and ROC analysis, we validated the sensitivity and specificity of 
this gene signature.

YTHDF1 was recognized as ‘m6A reader’ and could identify m6A marks and mediate 
m6A functions. The expression levels of YTHDF1 had a tight correlation with cancers 
proved by many researches, such as LC, hepatocellular carcinoma (HCC), and colo-
rectal cancer (CRC) [33, 34]. Studies [35] have discovered that YTHDF1 could regulate 
durable neoantigen-specific immunity, which suggested that YTHDF1 may acted as a 
potentially therapeutic target in the aspect of immunotherapy. Shi et al. [34] found that 
YTHDF1 expressed lower in normal samples than in tumor ones. The knockdown of 
YTHDF1 inhibited cell proliferation of NSCLC by managing the translational effi-
ciency of cyclin D1 (CCND1), cyclin-dependent kinase 2 (CDK2) and cyclin-dependent 
kinase 4 (CDK4). Their studies also suggested the abilities of YTHDF1 included regu-
lating cell responses to cisplatin-dependent chemotherapy, which impacted the treat-
ment and prognosis. Jin et al. [36] found that YTHDF1 accelerated YAP translation and 
then enhanced the growth, invasion, and EMT of NSCLC cells. Sheng et al. [37] found 
that YTHDF1 took part in maintaining LC cell metabolism and development. Studies 
about YTHDF1 and LC are rather abundant, while further researches on mechanism of 
YTHDF1 and LCs need to be considered.

ZC3H13, a zinc finger protein, was recognized as ‘m6A writer’ and could install m6A 
methylation transcriptionally on RNA. Previous studies have discovered that ZC3H13 
had a somatic frame-shift mutation in CRC. In Zhu’s study [38], the results suggested 
that ZC3H13 may play the role of regulating upstream of RAS-ERK signaling pathway, 

Fig. 7  Expression of 4 selected hub DEMGs in LUAD and LUSC samples. A–C The immunohistochemical data 
were obtained from the Human Protein Atlas (HPA). Except for YTHDF1, expression profiles of the ELAVL1, 
CBLL1 and ZC3H13 in normal, LUAD and LUSC clinical samples are shown



Page 16 of 23Yang et al. BMC Bioinformatics          (2022) 23:437 

which led to inhibit cell proliferation and invasion in CRC. Moreover, they found that the 
decreasing level of ZC3H13 was correlated with advanced TNM stage, positive regional 
lymph node metastasis. Gong et al. [39] suggested that ZC3H13 expressed less in breast 
cancer cell patients, and when METTL4 and ZC3H13 expressed particularly low, the 
prognosis tended to be unfavorable in four breast cancer subtypes through survival out-
come analysis. In addition, their down-regulation had a correlation with tumor progres-
sion of triple-negative breast cancer patients. ZC3H13 and METTL14 were strongly 
related to APC (an antagonist of the Wnt signaling pathway), meaning that ZC3H13 
and METTL14 are involved in the regulation of invasion, proliferation, and metasta-
sis of tumor cells. Immune infiltration analysis indicated that METTL14 and ZC3H13 
could facilitate breast cancer invasion by influencing immunosuppression-related path-
ways. Studies about ZC3H13 were limited in the researches of insects, colorectal cancer 
and breast cancer. However, there was no studies involving in ZC3H13 and LC, which 
needed further experiments and analyses.

CBLL1 was recognized as one of m6A-related genes. Hui et al. [40] found that CBLL1 
expressed lower in adjacent non-tumor tissues than in NSCLC tissues. Previous studies 
have discovered that CBLL1 could accelerate the proliferation and invasion of A549 and 
H460 cells. And CBLL1 promoted G1/S cell cycle transition, resulting in the prolifera-
tion of NSCLC cells. In terms of lncRNA regulation, through miR-212-3p/CBLL1 axis, 
the knockdown of XIST suppressed the proliferation, migration, invasion and EMT of 
NSCLC cells [41]. In conclusion, CBLL1 may be used as a tumorigenic marker in the 
progression of NSCLC. Further studies may pay more attention to other biological func-
tions of CBLL1 and potential target treatment of CBLL1 in LC patients.

ELAVL1/HuR (embryonic lethal abnormal vision like 1/human antigen R) was also 
recognized as ‘m6A reader’ and participated in cell differentiation and stress response 
[42]. ELAVL1 could promote the proliferation of tumor cells by directly binding ER or 
regulating epidermal growth factor receptor-2 (ERBB2), cyclooxygenase-2 (COX-2) and 
VEGF-A through a series of signal transduction pathways [43]. Overexpression of snail 
downregulated cadherin expression through Snail-ETV7-SERPINE1 pathway, promot-
ing EMT and enhancing tumor cell invasion and metastasis [44]. In addition, ELAVL1 
protein recognized and bound to Scribble mRNA 3’-UTR, increasing the transcrip-
tion level of scribble. As an agonist of p38 MAPK pathway, scribble promoted ELAVL1 
nuclear shuttle, indirectly promoting Snail transcription level, and accelerating EMT 
process [45]. In conclusion, studies about ELAVL1 have involved the mechanism and 
functions in tumors. However, few studies about ELAVL1 and LC have been explored 
and other ELAVL family protein have not been investigated about their mechanism and 
cell functions. Hence, to solve these problems, further experiments and analyses were 
needed.

Here, we have to recognize that single m6A-related gene does not make sense about 
predicting the prognosis of LC because cancer is complicated [46]. The hub-gene sig-
nature was established to evaluate the cancer survival situation, which benefited patient 
prognostic prediction, drug resistance and treatment. In our study, the four DEMGs-sig-
nature (ZC3H13, CBLL1, ELAVL1 and YTHDF1) was validated to have significant rela-
tionship with clinical characteristics by univariate and multivariate cox analysis, which 
suggested their potential usage of forecasting the prognosis of LC. In addition, TME and 
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drug resistance of the four DEMGs-signature were analyzed, which demonstrated the 
clinical value of novel immunotherapy and solutions of drug resistance in chemotherapy 
of LC.

Our results indicated that the score of high-risk model was higher in stromal, immune 
and estimate than low-risk model, which was consistent with the overall survival. B cell 
memory, γδ T cell and activated mast cell infiltrated more in low-risk groups. T cell 
gamma delta can kill target cells by directly recognizing protein antigens [47], and can 
also mediate killing through TCR and NKG2D non-specifically, which gives itself the 
function of protective immune surveillance [48], leading to anti-tumor immunity. B cell 
memory could promote more mature B cells, resulting in the ability of tumor immu-
nology [49]. The mechanism of mast cell activated is still elusive in tumor immunology. 
Therefore, we suggested that the infiltration of three immune cells improved the ability 
of tumor immunology, as well as attenuated the incidence of LC.

We also found that ELAVL1 and ZC3H13 had positive correlations with almost 6 infil-
trate cells in LUAD and LUSC, while YTHDF1 correlated positively with CD4+ T cell 
and macrophage cells in LUSC. CBLL1 was positively associated with macrophage in 
LUSC, and CD8+ T cell, macrophage and neutrophil in LUAD. This may suggest that 
ELAVL1 and ZC3H13 have a better anti-tumor immunity, which was in accordance 
with previous studies [39, 44]. In DNA methylation analysis, our study found that the 
prognostic value of ELAVL1 and ZC3H13 in a single CpG were significant in LUAD 
development. We found prognostic significance of DNA methylation expression levels 
in cg01043729 from ELAVL1 and cg06720244 from ZC3H13. In our study, neutrophil, 
CD4+ T cell and dendritic cells were significantly affected by the CNV of DEMGs in 
both LUAD and LUSC, which proved that neutrophil, dendritic cell and CD4+ T cell 
were more sensitive in the immune microenvironment of LUAD and LUSC, in keeping 
with other researches [50]. Besides, our results suggested that mutation of m6A-related 
genes had little correlation with immune cells in both LUAD and LUSC patients, which 
may because of the limitation of samples. Besides, we validated the correlation of the 
other 6 DEMGs with immune cells, and found only HNRNPA2B1 had a positive correla-
tion with almost every 6 immune infiltration cells in LUAD and LUSC, which may sug-
gest a better anti-tumor immunity.

Moreover, in our study, the infiltration levels of B Cell had a positive correlation with 
the overall survival of LUAD patients, while the infiltration levels of DCs were negatively 
related to the overall survival of LUSC patients. Previous study [49] indicated that the 
infiltration of B Cell and the formation of tertiary lymphoid structures were positively 
correlated with the response to immunotherapy, which is in keeping with our findings. 
Dendritic cell is the most powerful APC (Antigen presenting cell), which could stimulate 
the proliferation of naive T cell, leading to kill tumors, and have a positive correlation 
with overall survival [50]. However, our finding was opposite to previous studies, which 
may due to individual differences. We analyzed the tumor immune microenvironment, 
correlation and immune infiltration levels based on the 4 DEMGs. Because of the limita-
tion of statistics, more researches and experiments need to be conducted to analyze the 
TME in a large cohort study, and explore immunotherapy of LC based on the 4 DEMGs.

Current first-line and second-line chemotherapy drugs include platinum drugs (car-
boplatin and cisplatin), paclitaxel, docetaxel, pemetrexed, gemcitabine, vinorelbine, 
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etoposide and so on. Targeted Drugs include Tyrosine kinase inhibitors (TKI) (such 
as crizotinib, afatinib, erlotinib, trametinib, brigatinib and gefitinib), VEGF or VEGFR 
inhibitors (such as bevacizumab and ramuciruma), cetuximab and so on. Drug resist-
ance is a key factor leading to the failure of tumor treatment. Therefore, studies in-depth 
of the molecular mechanism of drug resistance could provide basis theoretically for 
guiding potential drugs and overcoming drug resistance. The m6A-related genes also 
have a strong connection with drug resistance in LC.

Our findings suggested that paclitaxel and docetaxel had negative correlations with 
ELAVL1, HNRNPC and RBM15B, which meant paclitaxel and docetaxel were sensi-
tive to ELAVL1, HNRNPC and RBM15B in LC. MONZO extracted DNA from the tis-
sues of 43 patients with NSCLC who received paclitaxel chemotherapy, and found that 
33% of the patients had mutations in the β-microfilament gene and its effective rate of 
chemotherapy is 0, which indicated that mutation of tubulin related to drug resistance 
[51]. For the reason that paclitaxel-induced apoptosis depends on Raf-1/Bcl-2, P28, cas-
pases-3 and other important apoptotic genes, defects of these genes and pathways will 
decrease the effectiveness of paclitaxel and docetaxel chemotherapy in LC patients [52, 
53]. Therefore, new paclitaxel and docetaxel chemotherapy based on ELAVL1, HNRNPC 
and RBM15B should be considered to attenuate drug resistance, resulting in enhancing 
the effectiveness of LC chemotherapy.

Etoposide was negatively correlated with ELAVL1, HNRNPC, RBM15B, YTHDF2 and 
CBLL1, which suggested that etoposide was sensitive to ELAVL1, HNRNPC, RBM15B, 
YTHDF2 and CBLL1 in LC. Etoposide, a Topoisomerase inhibitor, is the basis of chem-
otherapy to pulmonary neuroendocrine tumor [54]. Though the initial efficacy is well, 
the effective period is short and almost after 4–6 treatment cycles, drug resistance 
appears, tumors grow rapidly and begin metastasis and 2-year survival rate is less than 
10%. Therefore, reversing or decreasing drug resistance of etoposide becomes the most 
important part in curing pulmonary neuroendocrine tumor [55]. ELAVL1, HNRNPC, 
RBM15B, YTHDF2 and CBLL1 may be potential targets for etoposide to decrease drug 
resistance and prolong the action time to cure LC.

Crizotinib was negatively associated with ELAVL1, CBLL1, HNRNPC and RBM15B, 
which proved that crizotinib was sensitive to ELAVL1, CBLL1, HNRNPC and RBM15B.
With the fact that crizotinib is a kinase inhibitor targeting c-MET/ALK/ROS1, which 
is the fisrt-line chemical treatment to NSCLC with ALK mutations, most NSCLCs are 
resistant to crizotinib treatment without considering the overexpression of c-MET 
in about 35–72% NSCLC. In order to improve the sensitivity of criztinib treatment in 
NSCLCs, chidamide would downregulate the expression of mRNA m6A methylation 
regulators WTAP and METTL3, which decreased the expression of c-MET, resulting 
that crizotinib could sensitize more of NSCLC cells in a c-MET/HGF-dependent man-
ner [56]. Based on these findings, more experiments and researches need to be done to 
study whether crizotinib based on ELAVL1, CBLL1, HNRNPC and RBM15B sensitize 
more of NSCLC cells, thus attenuating drug resistance in LC.

Afatinib had a positive correlation with ELAVL1, which suggested that afatinib 
was resistant to ELAVL1 in LC. Recently, it was [57] deeply analyzed the relationship 
between m6A methylation and Alfatinib resistance in NSCLC. They took sensitive cell 
lines of afatinib as controls, and found that more genes were modified by m6A in afatinib 
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resistant groups, which resulted that there were changes in the overall gene expression 
profile. They speculated that genes modified by m6A methylation disrupted the normal 
cell cycle, leading to the development of afatinib resistance in NSCLC, based on the 
finding that differential expression genes were largely enriched in cell cycle through gene 
function analysis. Therefore, genes modified by m6A methylation, especially by ELAVL1 
tend to improve afatinib resistance and have a poor efficacy in NSCLC.

Erlotinib correlated positively with HNRNPC, which proved that erlotinib was resist-
ant to HNRNPC. Previous studies indicated that the resistance of erlotinib to NSCLC 
was mediated by two mechanisms [58–60]. One is the changes of EGFR conformation 
by acquiring secondary mutations, thus improving the resistance to erlotinib. The other 
is an alternative mechanism of activating development and proliferation, which includes 
activation oncoproteins such as MET, HER2, BRAF or PIK3CA, cellular transformation 
induction including epithelial to mesenchymal transition (EMT) or transformation from 
NSCLC to small cell lung cancer (SCLC). And some mechanisms of erlotinib resistance 
to NSCLC are still unknown [61]. Future studies may focus on the internal mechanism 
of m6A-related genes, especially HNRNPC and erlotinib, thus conducting a new erlo-
tinib therapeutic strategy based on HNRNPC to prevent drug resistance in LC.

Trametinib had a positive association with ELAVL1 and HNRNPC, which suggested 
that Trametinib was resistant to ELAVL1 and HNRNPC. A review [62] about trametinib 
proved that few basic experiments and clinical trials had been conducted to analyze 
trametinib resistance to LC. Therefore, researches based on ELAVL1 and HNRNPC and 
related analysis of trametinib resistance need to be done for providing a new therapeutic 
choice to decrease drug resistance in LC.

Cetuximab was associated with ELAVL1 positively, which proved that cetuximab was 
resistant to ELAVL1. Clinical trials [63] have shown that cetuximab could produce drug 
resistance in the treatment of NSCLC, which may be related to the disorder of multiple 
transmission pathways, including the activation of alternative signaling pathways, recep-
tor mutations, ligand autocrine/paracrine production, and the constitutive activation of 
downstream signaling proteins. Researches of cetuximab resistance based on ELAVL1 
may pay more attention to find out internal mechanisms of drug resistance and produce 
a new cetuximab therapy to increase the effectiveness of LC treatment.

Our study discovered that the 10 m6A-related genes expressed differently in LUAD 
and LUSC. Considering about the false discovering rate and the expression survival anal-
ysis, HNRNPC and HNRNPA2B1 also need to pay more attention and may be used as a 
target gene about the OS in LUAD and LUSC. Due to the functions of the 4 m6A-related 
gene signature described above, we assessed the drug resistance of these 4 hub genes in 
CARE dataset, and ultimately found that the CARE scores of CBLL1 were higher than 
0 in CCLE, CGP and CTRP, which indicated that CBLL1 may be a potential prognos-
tic target for reversing tumor progression in LC. Current studies have shown that there 
may be a tight correlation between m6A-related genes and drug sensitivity in LUAD and 
LUSC, but the specific mechanism is still elusive. Studying the correlation and interac-
tion between m6A-related genes and tumor drug resistance-related genes may be a new 
direction for future research on tumor drug resistance mechanisms in LUAD and LUSC.
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The advantage of our study is that it is the first time to analyze the prognosis, tumor 
microenvironment and drug resistance of m6A-related genes in LUAD and LUSC by 
performing integrated bioinformatics analyses. Second, we successfully established 
a risk prognostic signature consisting of 4 hub m6A-related genes (ZC3H13, CBLL1, 
ELAVL1 and YTHDF1) and verified the sensitivity and specificity of the gene signature 
in LC. Third, we made an analysis of the tumor immune microenvironment, correlation 
and immune infiltration levels based on the 4 DEMGs, which make benefits for immu-
notherapy in LC. Fourth, we analyzed correlation and interaction between m6A-related 
genes and tumor drug resistance, which could provide a new therapeutic choice to 
decrease drug resistance in LC. However, there are still several restrictions. First, due to 
limited statistics, optimized gene-signature model should be concerned in a large-scale 
clinical cohort study. Second, more in vivo or vitro experiments should be performed for 
further validation. Third, our study employed only m6A-relaataed genes to establish risk 
prognostic signature, which may exclude some hub biomarkers.

Conclusion
In conclusion, our study comprehensively analyzed expression, prognosis, TME, and 
drug sensitivity of m6A-related genes in LUAD and LUSC. The gene signature consisting 
of ZC3H13, CBLL1, ELAVL1 and YTHDF1, were validated with different analyses and 
from GEO dataset. In short, our study provided novel marker for predicting the prog-
nostic value as well as developed a novel direct based on m6A-related genes for revers-
ing tumor progression in LCs.
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