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Abstract 

Background:  Drug resistance continues to be a major limiting factor across diverse anti-cancer therapies. Contrib‑
uting to the complexity of this challenge is cancer plasticity, in which one cancer subtype switches to another in 
response to treatment, for example, triple-negative breast cancer (TNBC) to Her2-positive breast cancer. For optimal 
treatment outcomes, accurate tumor diagnosis and subsequent therapeutic decisions are vital. This study assessed 
a novel approach to characterize treatment-induced evolutionary changes of distinct tumor cell subpopulations to 
identify and therapeutically exploit anticancer drug resistance.

Methods:  In this research, an information-theoretic single-cell quantification strategy was developed to provide a 
high-resolution and individualized assessment of tumor composition for a customized treatment approach.

Briefly, this single-cell quantification strategy computes cell barcodes based on at least 100,000 tumor cells from each 
experiment and reveals a cell-specific signaling signature (CSSS) composed of a set of ongoing processes in each cell.

Results:  Using these CSSS-based barcodes, distinct subpopulations evolving within the tumor in response to an 
outside influence, like anticancer treatments, were revealed and mapped. Barcodes were further applied to assign 
targeted drug combinations to each individual tumor to optimize tumor response to therapy.

The strategy was validated using TNBC models and patient-derived tumors known to switch phenotypes in response 
to radiotherapy (RT).
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Background
Drug resistance and cancer cell plasticity are principal 
contributors to therapeutic failure [1, 2]. Discovering a 
strategy with the ability to transform the potential evo-
lution of certain intra-tumor subpopulations within 
treated/irradiated tumors into a therapeutic advan-
tage, is an unmet need in cancer research and clinical 
practice [2].

We propose a novel approach where cancer treat-
ment can be designed based on the changes occurring in 
patient-specific intra-tumor subpopulations in response 
to radiotherapy (RT) or cytotoxic treatment. In this 
study, this approach was assessed using a triple-negative 
breast cancer (TNBC) model and patient-derived TNBC 
samples treated with RT.

Recent studies have shown that although being an 
established and effective anti-cancer treatment, radia-
tion may promote anti-apoptotic and pro-proliferative 
responses that often result in tumor regrowth [3, 4]. This 
has initiated numerous attempts to characterize tumor 
molecular phenotypes expressed in response to RT to 
identify new potential drug targets and strategies for 
anti-cancer treatment enhancement [5–10].

TNBC is a clinically unique, aggressive, and highly 
heterogeneous subtype of breast cancer that does not 
express estrogen receptors, progesterone receptors, 
or human epidermal growth factor receptor-2 (Her2), 
and for which no targeted therapy exists. Chemo-
therapy (CT) and RT have remained the standardized 
treatment options for the past 20 years [11, 12]. While 
TNBC may be sensitive to RT initially, resistance often 
develops at later stages [12] due to significant intra-
tumor cell heterogeneity [13, 14] and potential phe-
notypic switching due to cellular plasticity (e.g., from 
Her2- to Her2+) [15].

This study proposes an information theoretic 
approach utilizing thermodynamic-based surprisal 
analysis (SA) [16] in single cells to elucidate TNBC 
cellular subpopulations at a high resolution. We 
quantify evolving subpopulations in response to RT 
through single-cell barcoding of ongoing processes in 
TNBC tumor cells. Thermodynamic-based informa-
tion theory is implemented to identify ongoing pro-
cesses within each cell. Tumors may be considered as 

homeostatically disturbed entities that have deviated 
from a balanced state due to various constraints (e.g., 
mutational stress and drug treatment) [16]. Each con-
straint creates a deviation in the expression levels of a 
subset of proteins in the tumor. In doing so, an ongo-
ing (unbalanced) process in the tumor, consisting of 
the group of proteins that were altered by the con-
straint, becomes active. SA identifies the constraints 
operating in a system as well as the proteins affected 
by each constraint.

We have previously demonstrated that accurate iden-
tification of unbalanced processes in human cells using 
bulk SA can anticipate the effect of protein inhibitors 
on protein co-expression network structures [17]. SA of 
cell-cell signaling in brain tumors has also been shown 
to predict cellular spatial distributions and the direc-
tion of cell-cell movement [18]. Additionally, we have 
applied SA to large-scale proteomic datasets for the 
prediction of efficient patient-specific targeted combi-
nation therapies [19–21].

In this study, SA is extended to identify cell-specific 
signaling signatures (CSSSs), consisting of a unique set of 
ongoing processes that have emerged within the individ-
ual cell. Each CSSS is converted into a cell-specific bar-
code. An intra-tumor subpopulation is then defined to 
be a group of cells harboring the exact same CSSS-based 
barcode and these cells are expected to respond similarly 
to treatment.

The final result of such an analysis is a high-resolu-
tion intra-tumoral map of the different subpopulations 
within a tumor and the CSSS that characterizes every 
subpopulation. Such a robust and comprehensive map 
provides guidance on the accurate determination of 
drug combinations to effectively target evolving sub-
populations within the tumor to bring about a potent 
therapeutic effect.

Methods
Computational methods
Single‑cell computational data analysis
Surprisal analysis (SA) was applied on the single-cell 
level so that each cell could be plotted according to 
its molecular aberrations and network reorganization 
(Figs. 1 and 2).

Conclusions:  We show that a barcode-guided targeted drug cocktail significantly enhances tumor response to RT 
and prevents regrowth of once-resistant tumors. The strategy presented herein shows promise in preventing cancer 
treatment resistance, with significant applicability in clinical use.

Keywords:  Cancer resistance, Intra-tumor heterogeneity, Tumor plasticity, Information-theoretic single-cell analysis, 
Individualized targeted therapy, Radiation oncology, Triple-negative breast cancer



Page 3 of 17Alkhatib et al. Genome Medicine          (2022) 14:120 	

Fig. 1  Study scheme. A A literature search was used to compose a list of oncomarkers for single-cell quantification (left panel). Selected cell-surface 
oncoproteins were quantified using multicolor FACS (right panel). B SA was extended to single cells to identify distinct subpopulations based on 
sets of unbalanced processes (cell-specific signaling signatures, CSSS, right panel). C To validate the hypothesis that targeting evolving cellular 
subpopulations in response to RT would enhance TNBC RT sensitization, a series of in vitro and in vivo experiments, using TNBC patient-derived and 
mice models, were performed
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Surprisal analysis
SA is a thermodynamic-based information-theoretic 
approach [22–24] which has recently been imple-
mented to analyze bulk [16, 19, 20, 25] and single-
cell biological data [25, 26]. The analysis is based on 
the premise that biological systems reach a balanced 
state when the system is free of constraints [27–29]. 
However, when under the influence of environmental 
(e.g., exposure to a drug) and/or genomic constraints 
(genomic mutations that affect transcript/protein 
expression and function), the system is prevented from 
reaching a state of minimal free energy, and instead 
reaches a state of higher free energy—a constrained 
state [16].

Expression levels of various macromolecules, e.g., 
transcripts or proteins are used as an input for SA. 
Since the varying constraints that act upon living cells 
ultimately manifest as alterations in the cellular protein/

gene expression network, they are viewed as emerging 
unbalanced molecular processes [19, 30]. Recent exam-
ples of SA implementation in biology include the char-
acterization of bulk proteomic changes in large datasets, 
including multiple patient tissues and cancer cell lines, 
to predict a change in the behavior of systems [17, 18] 
or to design individualized drug therapies [19–21].

In this study, we analyzed protein expression data 
obtained from multicolor FACS in which each cell 
was labeled with a mixture of 11 fluorescently tagged 
antibodies. Additional file  1 provides the details for 
the models and single-cell analyses used in the study. 
It is important to note that this methodology may be 
applied to any single-cell proteomics data. The data 
matrix obtained from the flow cytometry analysis 
(~100,000–500,000 cells), in which columns are protein 
expression levels and rows are single cells, was used as 
an input for surprisal analysis. RT treatment imposes a 

Fig. 2  Schematic of the application of the surprisal analysis algorithm. A Preparation of fluorescently-tagged single-cell suspensions from different 
sample sources (control and post-RT) for multicolor FACS analysis. Each cell was labeled with a mixture of 11 fluorescently tagged antibodies. B 
Surprisal analysis reveals protein expression level distributions at the reference (steady) state and the deviations thereof due to constraints in the 
system (e.g., irradiation). An example for calculated distribution of the expression levels at the reference state and deviations thereof is presented 
for Her2, initially quantified by FACS and analyzed by SA, in 4T1 mice model of TNBC. C Proteins deviating from the steady state in a coordinated 
manner are grouped into altered subnetworks referred to as “unbalanced processes.” For example, in one 4T1 cell, the levels of Her2 and EGFR 
deviate significantly (upregulated) from the steady state and in the other cells, cMet levels deviate significantly (upregulated as well). Thus, the 
two cells are defined by the analysis as possessing different processes. D The unbalanced processes in each cell provide a cell-specific signaling 
signature (CSSS). Each CSSS is schematically transformed into a cell-specific barcode, indicating active and inactive processes. E Cells sharing the 
same barcode are organized into distinct subpopulations. F Tumor-specific targeted therapy combinations are tailored against the subpopulations 
expanding in response to RT
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constraint, but more than one constraint may be identi-
fied in the system.

Equation  1 was used to identify different constraints 
within tumor cells:

Here, Xo
i
(cell) is the expected expression level of protein 

i at the reference state in a measured cell. The exponential 
term in Eq. (1) represents the deviation from the reference 
value due to the constraints, including those imposed by 
irradiation.  Giα are weights (the degree of participation) 
of a protein i in the unbalanced processes α = 1, 2...  Pro-
teins deviating in a similar manner from the steady state 
are grouped into unbalanced processes (see examples for 2 
cells quantified in the 4T1 TNBC model in Fig. 2C). λα(cell) 
is the amplitude of an unbalanced process α = 1, 2. . in each 
tested cell. For example, Additional file 2: Fig. S2 presents 
λα(cell) values for process 8 (the network representing pro-
cess 8 is shown in Fig. 3F and generated as explained below) 
in untreated and irradiated cells (6 days post-RT) in the 4T1 
in-vitro model. Negative/positive amplitude denotes how 
the cells are correlated with respect to a particular process. 
The processes are indexed α = 1, 2, 3… so that the signifi-
cance of the process decreases with an increasing index, 
i.e., unbalanced process 1 appears in a higher number of 
cells than unbalanced processes 2, 3, etc. Several unbal-
anced processes may be found in a system, however not all 
processes are active in all cells (see in the sections below 
how we define whether a particular process is active in a 
tested cell). ∑α = 1Giαλα(cell) represents the amount of infor-
mation we have about each protein i. The partial deviations 
in the expression level of protein i due to the different con-
straints add up to the total change in expression level. A 
protein that is influenced by constraints, i.e., is influenced 
by one or more unbalanced processes, cannot take on any 
possible expression level. Its expression level is affected by 
the expression levels of other proteins in the unbalanced 
process in the cell.

Calculation of λα(cell) and Giα  We fit the main Eq. (1), 
to the logarithm of the measured expression level of 
protein i in each cell using singular value decomposi-
tion (SVD). In practical terms, a matrix is constructed, 
containing the natural logarithm of protein expression 
levels in the different cells [26]. The procedure then uti-
lizes SVD as an intermediate step, which calls for the 
construction of two square (and symmetric) co-variance 
matrices. One is smaller with a maximal rank of 11 (as 

(1)
Xi(cell)

experimental
level of protein i

= X
o
i (cell)

level of protein i

in the reference state

exp −

α=1
Giα�α(cell)

changes in protein levels
due to the constraints α = 1, 2, ..

the number of the proteins) and the second is bigger 
(depends on the number of cells, in this case at least 
100,000). These matrices are diagonalized to calculate 
eigenvectors and eigenvalues. SVD and all other math-

ematical calculations described here were implemented 
using Matlab. Codes can be found in Github [31]. Eigen-
vectors and eigenvalues are further used by SA to calcu-
late the amplitudes of the processes: λα(cell) for each cell 
if we use single-cell data, λα(k) for each sample k if we use 
bulk data [19, 20, 30], and Giα values, which are weights 
of the proteins in each process α. A detailed, step-by-step 
description of the mathematical procedure, namely how 
the eigenvectors and eigenvalues are used to calculate the 
amplitudes (λα(cell) or λα(k)) and Giα values, is described 
in the Supplementary Information of reference [16]). Any 
additional information regarding the mathematical pro-
cedures/codes can be provided upon request.

The number of calculated constraints is limited by the 
smaller dimension of the input matrix. In this case, it 
was limited to 11 (the number of measured proteins) 
and therefore a maximum of 10 constraints or unbal-
anced processes  (10 constraints plus steady state) could 
be found. Calculations of the parameters using a smaller 
matrix (detailed in [16]) allow for the fast and efficient 
data processing of hundreds of thousands of cells. The 
number of proteins quantified in each cell can be signifi-
cantly expanded (hundreds or thousands) without signifi-
cantly increasing the data processing time.

Generation of protein‑protein networks representing unbal‑
anced processes  Additional file  2: Fig. S1 complements 
Fig. 3F and shows additional unbalanced processes active in 
the 4T1 system. The goal was to generate unbalanced pro-
cesses composed of proteins with significant Giα values. Giα 
sign indicates the correlation or anti-correlation between 
proteins in the same process (Additional file 3). Upregulation 
or downregulation due to process α can be defined further 
using a product Giαλα(cell) for each protein in every cell in 
each experimental condition/time point: e.g., proteins with 
positive λα(cell) and positive Giα will be upregulated due to 
process α, since the product Giαλα(cell), which represents a 
deviation from the steady state due to process α, will be posi-
tive. Protein-protein interactions in each unbalanced process 
are based on the STRING database [32]. The radius of each 
circle in the map corresponds to the Giα value (Fig. 3F).
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Calculation of cell‑specific barcodes based on CSSS  It is 
important to note that not all processes are active in all 
cells. The term λα(cell) represents the importance of the 
unbalanced process α in the cell. Its sign indicates the cor-
relation or anti-correlation between the same processes 

in different cells. To further map distinct subpopulations 
within the entire cellular population, we grouped cells 
sharing the same set of unbalanced processes, indicated 
by the cell-specific signaling signatures (CSSS), into dis-
tinct subpopulations (Figs.  1 and 2). Only unbalanced 

Fig. 3  Resolving expanded 4T1 cellular subpopulations post-RT. A FACS expression levels of Her2 and cMet following RT. B–D Correlation plots 
between Her2 and cMet (B), Her2 and EGFR (C), and MUC1 and cMet (D) in irradiated cells. E Correlation plot between Her2 and EGFR levels 
expressed in the cells found to harbor process 3 (only cells with significant amplitudes (λ3(cell) values) were included in this plot, also see the 
“Methods” section). F Protein–protein networks were generated using single-cell SA analysis and STRING to assign the functional connections. To 
determine the direction of change in every protein (i.e., upregulation or downregulation) a sign of the amplitude in a process α in each cell was 
considered. Four unbalanced subnetworks (processes) out of 10 resolved in 4T1 (Additional file 3) are shown. G Each cell was assigned a barcode 
representing a cell-specific signature (CSSS). The most abundant (>1%) subpopulations are presented. H Based on these CSSSs the tumor was 
divided into distinct subpopulations. Quantification of subpopulations was performed using at least ~30,000 cells from each condition, which were 
obtained from at least three flasks and from at least three independent experiments for each time point. For A: statistically significant differences 
between control and 5 Gy; control and 15 Gy; and 5 Gy and 15 Gy were determined using a two-tailed Student’s t test (*P < 0.01)



Page 7 of 17Alkhatib et al. Genome Medicine          (2022) 14:120 	

processes with significant amplitudes were included in the 
CSSS of each individual cell as follows:

To determine threshold limits for λα(cell) values, 
λα(cell) values were sorted and plotted as sigmoid plots 
in each process. Only λα(cell) values located on the tails 
of the sorted distributions were considered and used 
further for the barcode calculations (Additional file  2: 
Fig. S2).

The combinations of unbalanced processes (CSSS) 
for each cell were generated using λα(cell)  values that 

exceeded threshold limits. In this way, CSSSs were 
assigned to each cell and were converted into cell-
specific barcodes for simple representation. Additional 
file 3-Additional file 8 include the input FACS data and 
the output parameters obtained using CSSS analysis 
(λα(cell) and Giα, and barcodes denoting subpopula-
tions) for the major cancer systems, 4T1 and BR45, 
which have been tested in  vitro and in  vivo. Based on 
these cell-specific barcodes, distinct subpopulations 
were determined in the tumor (Fig. 3G, H). Subpopula-
tions b and f (Fig. 4A) expanded significantly as detailed 
in the main text.

Fig. 4  Two distinct subpopulations expand and show proliferative properties in response to RT. A Very small subpopulations (<1%), represented 
by barcodes b and f, expanded significantly following RT (fold change in % of cells relative to the control of each time point). B–G 4T1 cells were 
irradiated with 15Gy. 6 days post-RT, cells were incubated with antibodies against Ki67, cMet, and Her2 and nuclei were stained with DAPI (fluorogel 
II). B, E 40× lens; scale bar represents 50 μm. C, F Sum intensities of Ki67 (C, left panel); Her2 (C, right panel); Ki67 (F, left panel); and cMet (F, right 
panel) were calculated from 8 to 10 fields using the NIS-Elements software (Nikon). D, G Correlation plots between D Ki67 and Her2 and G Ki67 and 
cMet were generated for each indicated condition to test co-activation represented in C, F. R values indicating the degree of correlation between 
Ki67 and Her2 (D) and Ki67 and cMet (G) were calculated before and after RT. H Survival rates of 4T1 cells in response to Trastuzumab (T), Crizotinib 
(C), RT, RT+C, RT+T, and RT+T+C as detected by MB survival assays 6 days post RT (upper panel), and cell viability as measured by the MTT assay 
(lower panel). Drugs were added from 3 days prior to RT until the end of the experiment. I Key downstream to Her2 and cMet signaling proteins 
are shown following different treatments. The predicted combination induced high levels of cleaved caspase-3 compared to radiation alone, 
irradiation+T, and irradiation+C. Downregulation of pAKT, pERK, and p-S6 was detected when T+C was applied prior to RT. For A: quantification 
of subpopulations was performed using at least ~30,000 cells from each condition, which were obtained from at least three flasks and from at least 
three independent experiments for each time point. For C and F, statistically significant differences between all presented conditions and the cells 
treated with RT+T+C were determined using a two-tailed Student’s t test (*P < 0.05); for H, upper and lower panels *P < 0.01
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CSSS vs PCA and tSNE  Several dimensionality reduc-
tion algorithms have been developed to interpret single-
cell variations (e.g., variations in protein or gene expres-
sion levels), such as clustering-based t-SNE analysis [33] 
or principal component analysis (PCA) [34–36]. These 
methods are very useful in the statistical determination 
of dominant expression patterns but are limited when a 
more deterministic partitioning of a tumor mass into cel-
lular subpopulations, based on cell-specific sets of altered 
molecular processes, is required. For example, t-SNE is a 
non-deterministic method (e.g., different runs with the 
same hyperparameters may produce different results) and 
is unable to assign a certain protein to several processes, 
or to determine which processes are active in every cell 
(Additional file  2: Fig. S3). Therefore t-SNE will be less 
efficient when the determination of robust cell-specific 
signaling signatures is required (e.g., for drug combination 
design). Similarly, PCA focuses mainly on the most domi-
nant patterns obtained from proteins with the highest 
variability in the population, rather than on cell-specific 
sets of altered processes [30, 37]. Additional file 2: Fig. S3 
and Fig. S4 show separation of the 4T1 single-cell data, 
obtained using either t-SNE or PCA analysis (performed 
using Python), using 2 main principal components. 
Minority separation between control and RT-treated cells 
and within RT-treated cells can be observed and therefore 
CSSS analysis was vital in identifying the two separate sub-
populations, b and f, that expanded in response to RT, and 
were mapped and quantified (Additional file 2: Fig. S3 and 
Fig. S4, see also Figs. 3-4 and main text for more details).

Experimental methods
Patient‑derived tissue used to establish BR45 tumors
Patient-derived tumors were established from a female 
patient with triple-negative, invasive lobular breast can-
cer. The tissue was derived from the local chest wall 
recurrence, s\a mastectomy, chemotherapy, and radio-
therapy. When implanted into the NSG mice the tissue 
formed a tumor, and then was used for the in-vivo exper-
iments as described below.

Cell lines
Murine 4T1 cells were kindly provided by Dr. Zvika Granot. 
MDA-MB-468 and MDA-MB-231 cells were acquired from 
ATCC and authenticated by the Genomic Center of the 
Technion Institute (Haifa). BR45 PDX were obtained from 
the Oncology Department at Hadassah –Jerusalem Medi-
cal Center with prior written informed consent. The BR45-
derived and 4T1 cells were maintained and irradiated, after 
which flow cytometry was performed as indicated in Addi-
tional file 2: Supplementary Information file (SI).

Murine models

Syngeneic model  2.0×105 4T1 cells were inoculated 
subcutaneously into 6–7-week-old female BALB/c mice 
(ENVIGO).

Allogeneic model  BR45 tumors were induced in NSG 
(Jackson Laboratory) female mice either by injecting 
4.0×106 cells or by transplanting xenografts, orthotopically.

After reaching the initial volume 80–100 mm3, mice were 
randomly grouped to approximately 8–10 animals per cage, 
and treatment was initialized. Tumor sizes were routinely 
measured with an electronic caliper every two days and 
their volumes were obtained using the formula V = (W (2) 
× L)/2. All in  vivo experiments were performed with the 
approval of the Hebrew University of Jerusalem IACUC. 
See Additional file 2: SI Methods for more details.

In vivo treatments
High dose rate (HDR) brachytherapy (GammaMed™ 
HDR, Iridium 192) was performed as previously 
described [38]. 12 Gy was administered on two alterna-
tive days. Trastuzumab was purchased from Teva Phar-
maceutical Industries Ltd. Crizotinib (cMet inhibitor, 
#12087-50) and Erlotinib (EGFR inhibitor, #10483-1) 
were purchased from Cayman Chemical. (See Additional 
file 2: SI Methods for doses and regimens).

Cohort description for each type of in vivo experiment 
performed

4T1 In  vivo experiment  First experiment: 4T1 cells (2 
×105) were subcutaneously injected in female BALB/c mice.

Mice that reached a tumor volume of 80–100 mm3 were 
divided into two groups: control and irradiated. The irradi-
ated group was treated by brachytherapy on two alternate 
days (12 Gy/day). Each group had two exit points: 6 and 12 
days. Control samples n=12 (5 mice at day 6 post-RT and 7 
mice at day 12 post-RT); RT-treated samples n= 17 (9 mice 
at day 6 post-RT and 8 mice at day 12 post-RT).

At the end of each time point mice were terminally anes-
thetized with Ketamine-Xylazine (150 mg/kg/20 mg/kg) 
IP, after which mice were euthanized by cervical dislo-
cation. An incision was made and the tumor mass as a 
whole was gently separated from the conjunctive tis-
sue using a sharp blade. Six and 12 days post-RT, whole 
tumors were collected for FACS analysis after mechani-
cal cell dissociation. CSSS analysis was performed using 
FACS output.
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Second experiment: The setup and procedure of collect-
ing and analyzing the output was exactly as described in 
the first experiment. When tumors reached volumes of 
80–100 mm3, mice were divided into four groups: each 
group had two exit points  —  6 and 12 days. Mice were 
treated with 5 mg/kg Trastuzumab (T) and 25 mg/kg Cri-
zotinib (C) starting 3 days prior to brachytherapy until 
the end of the experiment (day 17). Control: n=12 (7 
mice at day 6 post-RT and 5 mice at day 12 post-RT), RT: 
n= 11 (5 mice at day 6 post-RT and 6 mice at day 12 post-
RT), RT+T+C: n= 7 (4 mice at day 6 post-RT and 3 mice 
at day 12 post-RT), T+C: n= 10 (5 mice at day 6 post-RT 
and 5 mice at day 12 post-RT), RT+T: n= 12 (6 mice at 
day 6 post-RT and 6 mice at day 12 post-RT). For more 
details see Additional file 1.

BR45 PDX in  vivo experiments  A small portion (~30 
mm3) of BR45 PDX was transplanted orthotopically into 
each NSG female mouse. When tumor volumes reached 
80–100 mm3, mice were divided into seven groups; each 
group had two exit points: 6 and 12 days. Mice were 
treated with 5 mg/kg Trastuzumab (T), 25 mg/kg Crizo-
tinib (C), and 12.5 mg/kg Erlotinib (E) starting 3 days prior 
to RT until the end of the experiment (day 17). Control: 
n=6 (3 mice at day 6 post-RT and 3 mice at day 12 post-
RT), RT: n= 5 (3 mice at day 6 post-RT and 3 mice at day 
12 post-RT), RT+T: n= 6 (3 mice at day 6 post-RT and 
3 mice at day 12 post-RT), RT+C: n= 6 (3 mice at day 6 
post-RT and 3 mice at day 12 post-RT), RT+T+C: n=6 
(3 mice at day 6 post-RT and 3 mice at day 12 post-RT), 
RT+T+C+E: n= 6 (3 mice at day 6 post-RT and 3 mice at 
day 12 post-RT), T+C: n= 7 (4 mice at day 6 post-RT and 
3 mice at day 12 post-RT). Mice were irradiated by brachy-
therapy on two alternate days with two doses (12 Gy and 
10 Gy). The setup procedure of collecting and analyzing 
the output data was exactly as described in the 4T1 model. 
For more details, see Additional file 1.

Flow cytometry  Each sample was labeled with an 11 
fluorescently tagged antibody (Ab) mixture. In addition 
when analyzing tumors, an exclusion cocktail including 
anti-mouse CD45, CD31 and CD140 was used in in-vivo 
experiments to exclude adjacent stromal and immune 
cells (Additional file  2: Table  S8). A LSR-Fortessa Ana-
lyzer was utilized to measure all biomarkers simultane-
ously in each cell. See Additional file  2: SI Methods for 
more details.

Western blot analysis  Cell pellets were lysed with a 20% 
SDS buffer (targeted drugs were added 1 day prior to RT, 
which allowed to obtain enough protein concentration 
for WB). The protein content of each lysate was deter-
mined with a Pierce BCA Protein Assay Kit (#23225, 

ThermoFisher). Equal protein aliquots were subjected 
to SDS-PAGE (Criterion Stain Free, 4–15% acrylamide, 
Bio-Rad) under reducing conditions and proteins were 
transferred to a nitrocellulose membrane. (Millipore). 
Membranes were blocked with 5% non-fat milk for 1 
hour at R.T. and probed with the appropriate antibody 
(Additional file  2: SI Methods), followed by horseradish 
peroxidase-conjugated secondary antibody (#123449, 
Jackson ImmunoResearch) and a chemiluminescent sub-
strate (ECL #170-5061, Bio-Rad).

Survival assay  Cells were seeded at 70% confluency and 
treated as required for different time points. Cells were 
washed with PBS and fixed with 4% PFA for 10 min at 
R.T. The fixed cells were stained with methylene blue 
(MB) for 1 hour at R.T., washed and air dried overnight. 
The dye was extracted with 0.1M HCl for 1 hour at R.T. 
Absorbance was read at 630 nm.

MTT assay  Cells were seeded and treated as indicated 
in a 96-well plate for 6 days. Cell viability was determined 
using an MTT assay kit (#ab211091, Abcam). Equal vol-
umes of MTT solution and culture media were added to 
each well and incubated for 3 h at 37 °C. MTT solvent 
was added to each well, and the plate was then covered 
with aluminum foil and put on the orbital shaker for 15 
min. Absorbance was read at 590 nm after 1 h.

Immunofluorescence  Cells were grown on coverslips in 
six-well plates to reach 70% confluency by the next day, 
then fixed and permeabilized with cold absolute metha-
nol. Afterwards, they were blocked with CAS blocker 
(cat. no. ZY-008120) and washed 3 times for 5 min with 
PBS, then stained with the following primary antibod-
ies: Anti-mouse/human Ki-67 (BLG-151202), Rabbit 
Anti-Met (cMet) Polyclonal Antibody (BS-0668R), Neu 
(F-11) SC-7301. After washing 3 times with PBS for 5 
min, cells were stained with secondary antibodies for 1 
h at room temperature in the dark to visualize the afore-
mentioned primary antibodies. The secondary antibodies 
conjugated to fluorophores were as follows: Goat anti-rat 
IgG H&L conjugated with Alexa Fluor 647 (1:400) (cat. 
no. 712605153), Goat anti-mouse IgG (H+L) conju-
gated with Alexa Fluor 488 (1:150) (cat. no. 115545003), 
and Goat anti-Rabbit IgG (H+ L) conjugated with Alexa 
Fluor 488 (1:150) (cat. no. 111545003). All secondary 
antibodies were purchased from Jackson ImmunoRe-
search. After washing 3 times with PBS, cell slides were 
mounted using fluorogel III mixed with DAPI (EMS, cat. 
no. 17985-01) to stain the nuclei. A spinning disk confo-
cal microscope was used to visualize the expression of 
biomarkers of interest. The analysis was done using NIS-
Elements software (Nikon).
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Experimental statistical analysis  Significant differ-
ences between experimental conditions and experimen-
tal reproducibility were determined using the Student’s 
t-test (two tails, two samples equal variance); P values of 
≤0.05 were considered statistically significant. All data 
was represented as the mean ± S.E. (standard error of the 
mean) if not indicated otherwise. Quantification of sub-
populations was performed using a minimum of 30,000 
cells from each condition, which were obtained from at 
least three flasks and from at least three independent 
experiments for each time point/condition. All experi-
ments were performed minimally in biological triplicate 
if not indicated otherwise.

Code availability statement  All equations and math-
ematical procedures used in this article are detailed in 
the “Methods” section and/or referenced. The approach 
is covered by patent applications “A method for select-
ing patient specific therapy”, PCT/IL2019/050474, 
and “Methods of Determining Cancer Therapy,” PCT/
IB2021/056136. Any additional clarification/information 
regarding mathematical procedures/codes can be pro-
vided upon request. The codes for single-cell computa-
tional analysis are publicly available from Github [31].

Results
Study overview
To collect high-resolution data regarding the intra-
tumoral composition of TNBC tumors in response to 
RT, we employed the following computational-experi-
mental strategy: (1) A list of cell-surface oncomarkers 
for single-cell quantification and analysis (Methods) was 
determined using a literature search (Fig. 1A, left panel). 
(2) Single-cell suspensions from multiple sources (e.g., 
cell lines, tumors from mice, or patient-derived models) 
were labeled with fluorescently-labeled antibodies tar-
geting selected cell-surface oncoproteins and assayed by 
multicolor FACS to reveal oncoprotein expression levels 
in each cell (Fig. 1A, right panel). In every experimental 
condition, 30,000–50,000 single cells were profiled allow-
ing for the identification of different subpopulations, 
including very small subpopulations (comprising less 
than 1% of the total population) that have significantly 
limited detection rates when using standard pathological 
tests. (3) SA was extended to single cells (“Methods”) to 
identify sets of unbalanced processes (cell-specific sign-
aling signatures (CSSS)) in each cell, thereby identifying 
distinct cellular subtypes within the tumor (Fig. 1B). (4) 
We hypothesized that targeting evolving cellular sub-
populations in response to RT would enhance TNBC 
response to RT and inhibit RT resistance development. A 
series of in vitro and in vivo experiments were performed 

to validate this hypothesis (Fig.  1C) as detailed in the 
sections below (Additional file  1 includes the metadata 
describing all the TNBC models used in the study).

CSSS analysis
We selected 11 cell surface proteins for single-cell quan-
tification using an extensive literature search on relevant 
oncomarkers for breast cancer [39–45]. The list of onco-
markers included Her2, EGFR, EpCAM, CD44, CD24, 
PD-L1, cKit, CD133, E-Cadherin, cMet and MUC1.

These oncomarkers are known to be involved in breast 
cancer proliferation with an aggressive phenotype (EGFR, 
Her2, MUC1,cMet, and cKit) [46–51], cancer metastasis 
and invasion (EpCAM, E-Cadherin, CD133, MUC1,cMet 
and cKit) [50, 52–55], stem cell properties (CD44, CD24, 
CD133) [54, 56] and immune response (PD-L1) [45], and 
also represent potential drug targets for breast cancer 
therapy (Her2, cMet, EGFR, MUC1, cKit, PD-L1).

Protein expression levels of the surface oncomarkers 
were quantified in single cells (Fig. 2A) using multicolor 
FACS and analyzed via single-cell SA (“Methods”). Sin-
gle-cell protein expression levels were used to compute 
the steady state and deviations thereof due to unbalanced 
processes operating in the tumor. Proteins that deviated 
from the steady state (Fig. 2B) in a similar manner were 
grouped into unbalanced processes (Fig. 2C, “Methods”). 
Importantly, not all the processes identified by the analy-
sis were active in each cell. Only processes with signifi-
cant amplitudes were assigned to a cell to identify a set 
of cell-specific processes, which we termed “cell-specific 
signaling signature” (CSSS) (Fig.  2D). For simplicity of 
representation, each CSSS was converted into a cell-
specific barcode, graphically representing a set of active 
processes in a cell (Fig. 2D, active processes are labeled in 
red). Based on matching CSSS we identified distinct sub-
populations (Fig. 2E, “Methods”).

We suggest that the CSSS is what governs the opti-
mal therapeutic strategy. The in-depth data collected up 
to this point was utilized to devise a therapeutic strat-
egy that incorporated targeted therapies to aid RT. This 
was achieved by targeting dominant and RT-resistant 
subpopulations, to potentially achieve long-term tumor 
remission (Fig. 2F).

10 unbalanced processes give rise to the expression 
variations of 11 cell‑surface proteins in 4T1 mouse TNBC 
cells
The first TNBC model used in the study included 4T1 
cells, originally derived from a spontaneously arising 
mammary tumor in BALB/c mice and representing a 
model for stage IV TNBC [57]. The cells were irradiated 
at 5 Gy or 15 Gy and grown under standard conditions 
for 24h, 48h, and 6 days. Overall distribution of Her2 
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and cMet expression levels (Fig. 3A), as well as additional 
oncomarkers (Additional file  2: Fig. S5), were altered 
in response to RT. Two-dimensional correlation plots 
showed that although certain proteins, such as cMet and 
Her2, were upregulated in response to RT (Fig. 3A), their 
expression levels had poor correlation (Fig.  3B). EGFR 
and Her2 levels, however, demonstrated a strong correla-
tion (Fig. 3C), as did MUC1 and cMet (Fig. 3D).

To examine all possible protein-protein relationships 
we utilized single-cell surprisal analysis (SA, Methods). 
Single-cell SA allowed for the identification and map-
ping of the unbalanced processes operating in the cellular 
population as a whole as well as in each cell.

The analysis revealed 10 unbalanced processes in the 
cell population. Four of the processes, all appearing in at 
least 1% of the treated and/or untreated cells, are shown 
(Fig. 3F; other processes, quantified by SA, can be found 
in Additional file  2: Fig. S1). Processes 3 and 8 included 
co-expressed and induced Her2/EGFR and cMet/MUC1 
respectively (Fig.  3F, Additional file  3). Figure  3E exem-
plifies the procedure of mapping unbalanced processes 
within single cells – EGFR and Her2 show a higher cor-
relation in the subset of cells which are assigned process 3 
compared to all irradiated cells presented in Fig. 3C.

Expansion of Her+ and cMet+ distinct subpopulations are 
observed in response to RT
Due to the fact that more than one unbalanced process 
may operate in a single cell, the sets of unbalanced pro-
cesses (CSSS) in each cell were analyzed to reveal CSSS-
based subpopulations. Eight dominant subpopulations, 
each represented by a unique barcode consisting of pro-
cesses 1, 2, 3, and 8 (Fig. 3G), were found in the cell pop-
ulation before and/or after RT. Only CSSSs that appeared 
in at least 1% of the cells were considered.

When we examined the temporal behavior of the 
dominant subpopulations, we found that the majority 
of dominant subpopulations did not change or reduced 
in response to RT (Additional file  3). For example, sub-
population c comprised 9.9% of the cells before RT and 
decreased to 4.9%, 6 days post-RT. However two sub-
populations b and f expanded significantly 6 days post-
RT (Fig.  4A). Subpopulation b harbored only process 
3, in which Her2 and to a lesser extent EGFR (Fig.  3F), 
were induced. Strikingly, subpopulation b was induced 
~70-fold post-irradiation relative to non-irradiated 
cells, where an expansion from <1% of the population in 
untreated cells to ~19–25% of the population 6 days post-
RT occurred (Fig. 4A).

Subpopulation f harbored only process 8 (Fig.  3G), 
with induced cMet/MUC1 and reduced E-Cadherin. Sig-
nificant induction of subpopulation f was also observed, 
from undetectable levels to 1.5% 6 days post-RT 

(Fig.  4A). These results demonstrate an important con-
cept: although cMet and Her2 were both induced in 
response to RT (Fig.  3A), CSSS-based analysis revealed 
that these two proteins were expressed in distinct cellular 
subpopulations (processes 3 and 8 did not appear in the 
same cells; Fig. 3G). The development of such significant, 
distinct, and well-defined Her2+ and cMet+ subpopula-
tions post-RT suggests that Her2 and cMet signaling may 
play a significant role in 4T1 cell survival and resistance 
in response to irradiation.

To characterize proliferative properties of the expanded 
Her2+ and cMet+ subpopulations in response to RT, we 
co-stained the 4T1 cell population with anti-Ki67 (pro-
liferative biomarker), anti-cMet, and Her2 antibodies 
using immunofluorescent assays. Ki67, Her2, and cMet 
expression increased significantly in the cells surviving 
RT (Fig. 4B, C, E, and F). Moreover, this result was sup-
ported by enhanced coordinated expression of Her2 and 
Ki67 (Fig. 4D) as well as cMet and Ki67 (Fig. 4G) proteins 
respectively, as represented by an increased correlation 
between Her2 and Ki67; and cMet and Ki67 proteins, 
post-RT. This enhanced correlation in protein expression 
reveals the increased proliferative properties of Her2 or 
cMet expressing cells.

Simultaneous inhibition of Her2 and cMet sensitized 4T1 
TNBC model to RT treatment
We hypothesized that simultaneous inhibition of both 
proteins, and thus targeting of both subpopulations, may 
sensitize 4T1 cells to RT. Her2 and cMet represent good 
candidates for such a strategy, as they are both drugga-
ble oncoproteins against which FDA-approved drugs 
exist. To validate this hypothesis, we inhibited either each 
protein alone or in combination, beginning 3 days prior 
to RT until 6 days post-RT, after which cell survival was 
measured.

The Her2 inhibitor, Trastuzumab (T), and cMet inhibi-
tor, Crizotinib (C), showed a synergistic effect in sensitiz-
ing the cells to RT (Fig. 4H, upper and lower panels). The 
combination of both drugs with RT increased cell death 
and depleted downstream signaling to Her2 and cMet, as 
indicated by the low levels of downstream signaling pro-
teins pERK, pAkt, and pS6 and the enhanced cleavage of 
the apoptotic marker Casp3 (Fig. 4I).

To further validate our hypothesis, we implanted 4T1 
cells into immunocompetent BALB/c mice. The tumors 
were irradiated using brachytherapy-focused irradiation 
technology adapted for mice [38] by CT imaging and 
Monte-Carlo-based dosimetry (Fig.  5A). 4T1 tumors 
were then excised and single-cell suspensions were ana-
lyzed. CSSS-based analysis of the tumors 6 days post-
RT, when an initial shrinkage of tumors was observed 
(Fig.  5B), revealed an expansion of subpopulations b 
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and f (Fig. 5C). Moreover, 12 days post-RT, when tumor 
growth resumed (Fig.  5B), these expanded subpopu-
lations were still detected (Fig.  5C, Additional file  4, 
Additional file  5). Inhibition of both Her2 and cMet 
proteins (as detailed in Fig. 5D) significantly sensitized 
the tumors to RT (Fig.  5E). This combined treatment 
resulted in tumor shrinkage and prevented the devel-
opment of RT resistance (Fig. 5E). The effect of RT plus 

the combined targeted therapy was highly synergistic in 
contrast to the effect of the two targeted drugs without 
RT, or RT treatment alone. Furthermore, the addition 
of the targeted drug combination (T+C) prior to RT 
brought about a significant reduction in the size of sub-
populations b and f (Fig.  5F). No other subpopulation 
expanded following the treatment (Additional file  4, 
Additional file 5).

Fig. 5  Inhibition of RT-induced subpopulations sensitized tumor response to RT. A 6–7-week-old BALB/c female mice were subcutaneously 
injected with 4T1 cells. When tumor volumes reached 80–100 mm3, mice were treated with brachytherapy RT on two alternate days (12 Gy). 
B Tumor volumes in the control group (red) versus the RT group (black). *p < 0.01 and ±SD are shown. C Fold change in the abundancy of 
subpopulations b and f as compared to untreated tumors. A significant expansion due to RT in subpopulation b harboring Her2+/EGFR+ and 
subpopulation f harboring cMet+/MUC1+ is detected. D Mice were subcutaneously injected with 4T1 cells and treated with RT. Trastuzumab (T), 5 
mg/kg, and Crizotinib (C), 25 mg/kg, were administrated IP 2d/week and by gavage 5d/week respectively from d0 (3 days prior to RT) until the end 
of the experiment (d17). E C+T sensitized TNBC to RT in the 4T1 model, ± S.E., and *p < 0.01 are shown. F In vivo fold changes in subpopulations 
b and f showed optimal reduction when T and C were used in combination with RT. These results were consistent 6 and 12 days after RT. For 
C and F: quantification of subpopulations was performed using at least ~30,000 cells from each condition, which were obtained from at least 
three independent experiments for each time point, fold change is relative to control of each time point. For B, C mice used for each condition: 
control n=12, RT n= 11. On day 6 post-RT, we euthanized 7 control mice and 5 RT mice. On day 12 post-RT the experiment was completed and 
all remaining mice were euthanized. For E, F mice for each condition: control n= 12, RT n= 11, RT+T+C n= 7, T+C n= 10, RT+T n=12. On day 6 
post-RT, 7 control mice, 5 RT mice, 4 RT+T+C mice, 6 RT+T, and 5 T+C mice were euthanized. On day 12 post-RT, the experiment was completed 
and all remaining mice were euthanized. For B, E, and F, statistically significant differences compared to cells treated with RT (B) and cells treated 
with RT+T+C (E, F) were determined using a two-tailed Student’s t test (*P < 0.01)
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Targeting Her2 and cMet to sensitize human cell lines 
and patient‑derived TNBC to RT
To ensure that the expansion of Her2+ and cMet+ cellu-
lar subpopulations was not limited to TNBC mouse mod-
els, we tested TNBC MDA-MB-231 and MDA-MB-468 
human-derived cell lines, and TNBC patient-derived cells 
(BR45). Inhibition of cell growth, observed in all cell types 
6 days post-RT, was followed by significant cell regrowth 
14 days post-RT (Fig. 6A). Subpopulations b and f, which 
expanded 6 days post-RT in all cell types, either main-
tained their size or expanded following cellular regrowth 
14 days post-RT (Fig. 6B). Combined anti-Her2 and anti-
cMet pretreatment sensitized all 3 types of human TNBC 
cells to RT (Fig. 6C). Each drug alone had a significantly 
smaller effect on cellular survival when compared to the 
combination of both drugs together with RT (Fig.  6C). 
Moreover, depletion of the downstream signaling path-
ways to Her2 and cMet as well as induction of cleaved 
caspase 3 were observed when the cells were pretreated 
with anti-Her2 and anti-cMet (Fig. 6D).

Using patient-derived TNBC BR45 cells grown in PDX 
models, we demonstrated that irradiated BR45 TNBC 
developed resistance to RT in a short period of time 
(tumor regrowth was detected 6 days post-RT; Fig.  6E, 
see black curve). Pretreatment of the mice with each drug 
alone prior to RT resulted in a small inhibitory effect on 
tumor growth (Fig.  6E). Pretreatment of the mice with 
the combination of both drugs, however, showed signifi-
cant synergistic effects with RT, bringing about significant 
shrinkage of the tumor and preventing the development 
of resistance (Fig. 6E, green curve, Additional file 6, Addi-
tional file 7 and Additional file 8).

Adding erlotinib (an EGFR inhibitor), which accord-
ing to our algorithms was not expected to significantly 
improve the results of the Trastuzumab + Crizotinib + 
RT treatment (Fig.  6E), did not significantly change the 
results obtained using Trastuzumab + Crizotinib + RT. 
Erlotinib monotherapy improved the response of BR45 
to RT initially, albeit slightly, most likely due to the par-
ticipation of EGFR in very small subpopulations (Addi-
tional file  7). The tumor, however, regrew after 1 week 
(Additional file 2: Fig. S6). Subpopulations b and f were 
reduced when the targeted drug combination (T+C) was 
applied prior to RT (Fig.  6F, Additional file  2: Fig. S7). 
These results suggest that CSSS-based single-cell resolu-
tion of the plasticity of TNBC in response to RT provides 
guidance on how effective targeted drug combinations 
should be designed in order to overcome RT resistance.

Discussion
Integration of computational and biological knowledge into 
efficient cancer treatment design has become an emerging 
concept in recent years. Although the induction of tumor 

cell plasticity [2] in response to anti-cancer therapies has 
been previously detected [15], a strategy to exploit this plas-
ticity and provide successful treatment is still lacking.

In this study we provided a novel, single-cell framework 
for the improved resolution of intra-tumor cellular heter-
ogeneity, allowing for the identification of independently 
evolving subpopulations. High-throughput FACS data 
was analyzed using single-cell information-theoretic sur-
prisal analysis. The analysis resolved unbalanced protein 
subnetworks in the tumor  [17], which were further attrib-
uted to single cells. Each cell was assigned a cell-specific 
signaling signature (CSSS), composed of a set of altered 
subnetworks. Cells sharing the same CSSS were consid-
ered a subpopulation. This strategy not only resolved 
overexpressed biomarkers or altered protein-protein cor-
relation networks in response to RT treatment, but also 
mapped single-cell signaling signatures within the tumor 
tissue. This information enabled the resolution of distinct 
cellular subpopulations, information that is critical for 
accurate treatment design. Our analysis requires only one 
tissue/sample to elucidate the perturbed networks operat-
ing in each tumor, where the large number of single cells 
analyzed (>100,000/experiment) provides a high resolu-
tion of tumor heterogeneity. This is in contrast to bulk 
analysis which requires large datasets comparing multiple 
tissues in order to reveal high-resolution altered networks 
in each patient [19, 20, 30]. Furthermore, CSSS-based 
analysis efficiently identifies small cellular subpopulations, 
which are likely to be missed in bulk analyses.

Using the CSSS strategy, we revealed that two distinct 
cellular subpopulations harboring altered subnetworks 
with induced Her2 and cMet proteins, respectively, 
expanded in TNBC tumors in response to RT. Using 
in vitro and in vivo murine models, human cell lines, and 
patient-derived TNBC, we showed that efficient sensiti-
zation of aggressive TNBC to RT could be achieved only 
when Her2 and cMet proteins were inhibited simulta-
neously. Despite the fact that the in-vivo follow-up was 
only up to three weeks, the results demonstrated a sig-
nificant synergistic effect in tumor response to RT and 
combined targeted therapy, compared to RT alone. While 
RT-treated tumors developed resistance, the tumors pre-
treated with Her2 and cMet inhibitors exhibited dura-
ble remission. In an extended follow-up period, there is 
a chance that other minor sub-populations may arise, 
which were not seen during the three weeks. In a clinical 
setting, a longer patient-specific follow-up might provide 
additional data for a more accurate treatment plan.

Conclusions
In summary, we reveal a novel approach to resolve in-
depth intra-tumor heterogeneity at the single-cell level. 
This strategy provides an essential step towards the 
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accurate design of targeted drug combinations for evolv-
ing tumor resistance. We validate this strategy by elucida-
tion and detailed analysis of TNBC plasticity that allows 
for the sensitization of tumors to RT.

Importantly, this approach allows for the mapping of 
distinct cellular subpopulations in a single tumor, without 
the need to be compared to and analyzed relative to other 
tumors, such as in the case of bulk analyses. This strategy 

Fig. 6  Inhibition of expanded subpopulations sensitizes human TNBC cell lines and BR45 PDX to RT. A Survival assays show a ~ 30% cell survival 
rate 6 days post-RT, with TNBC regrowth to ~80–90% confluency 14 days post-RT. B Fold changes in the abundance of subpopulations b and f 
compared to untreated cells. These subpopulations either remained unchanged or expanded following cellular regrowth; fold change is relative to 
control of each time point. C Survival rates of BR45, MD-468, and MD-231 cells in response to Trastuzumab (T), Crizotinib (C), RT, RT+T, RT+C, and 
RT+T+C 6 days post-RT. Cellular drug treatment began 3 days prior to RT and was continued until the end of the experiment (d10). D Downstream 
to Her2 and cMet signaling was tested following different treatments. C+T combined with radiation-induced higher levels of cleaved caspase-3 
compared to irradiation alone and irradiation with either C or T alone or C+T. C+T administration prior to RT induced the downregulation of pAKT, 
pERK, and p-S6 levels. E C+T sensitized TNBC response to RT in BR45 PDX in vivo. BR45 tissues were transplanted orthotopically into NSG mice 
treated with brachytherapy on days 3 and 5 with 12 Gy and 10 Gy, respectively. Drugs were administrated from d0 (3 days prior to RT) until the 
end of the experiment (d17), ± S.E. are shown. F In vivo fold changes in the abundance of subpopulations b and f in response to T and C, which 
is relative to control of each time point. For A, B, C, and F, ± S.D. are shown. For B, quantification of subpopulations was performed using at least 
~30,000 cells from each condition, which were obtained from at least three flasks and from at least three independent experiments for each time 
point. For E, F, mice used for each condition: control n=6, RT n= 5, RT+T n=6, RT+C n= 6, RT+T+C n= 6, RT+T+C+E n= 6, and T+C n=7. On day 
6 post-RT, 3 control mice, 2 RT mice, 3 RT+T mice, 3 RT+C mice, 3 RT+T+C mice, 3 RT+T+C+E mice, and 4 T+C mice were euthanized. On day 12 
post-RT the experiment was completed and all remaining mice were euthanized. For A, C, E, and F statistically significant differences compared to 
cells treated with RT (A) and to cells treated with RT+T+C (C, E, F) were determined using a two-tailed Student’s t test (*P < 0.01; **P < 0.05; #P <0.3)
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can be universally applied to any cancer type and any 
treatment strategy by tailoring the panel of oncomark-
ers for a particular cancer type, where the computational 
approach would remain essentially the same. The value of 
this strategy will increase alongside the continued devel-
opment of single-cell and mass cytometry techniques, 
which will allow for the simultaneous detection of dozens 
[58–60], possibly even hundreds, of signaling proteins in 
statistically significant numbers (>50,000–1,000,000) of 
single cells obtained from a single tumor.
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