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ABSTRACT: Microbial pesticide degraders are heterogeneously
distributed in soil. Their spatial aggregation at the millimeter scale
reduces the frequency of degrader−pesticide encounter and can
introduce transport limitations to pesticide degradation. We
simulated reactive pesticide transport in soil to investigate the
fate of the widely used herbicide 4-chloro-2-methylphenoxyacetic
acid (MCPA) in response to differently aggregated distributions of
degrading microbes. Four scenarios were defined covering
millimeter scale heterogeneity from homogeneous (pseudo-1D)
to extremely heterogeneous degrader distributions and two
precipitation scenarios with either continuous light rain or heavy
rain events. Leaching from subsoils did not occur in any scenario.
Within the topsoil, increasing spatial heterogeneity of microbial degraders reduced macroscopic degradation rates, increased MCPA
leaching, and prolonged the persistence of residual MCPA. In heterogeneous scenarios, pesticide degradation was limited by the
spatial separation of degrader and pesticide, which was quantified by the spatial covariance between MCPA and degraders. Heavy
rain events temporarily lifted these transport constraints in heterogeneous scenarios and increased degradation rates. Our results
indicate that the mild millimeter scale spatial heterogeneity of degraders typical for arable topsoil will have negligible consequences
for the fate of MCPA, but strong clustering of degraders can delay pesticide degradation.
KEYWORDS: small-scale heterogeneity, pesticide fate, reactive transport modeling, scale transition theory, spatial moment analysis

■ INTRODUCTION
Pesticides are intensively used in agriculture to sustain high
yields in crop production. Their toxic nature and widespread
application make them diffuse environmental pollutants that
can endanger nontarget organisms and contaminate soils, air,
and water.1−4 Residual pesticides can be found in most
European agricultural soils,5 where they might harm beneficial
soil organisms.4,6−8 Contamination of drinking water supplies
is of special concern to human health, but despite legislative
efforts pesticides are frequently found in European ground-
and surface waters affecting drinking water safety.2,9−11 To
assess pesticides’ effects on soils and water resources, their fate
in soils must be quantified. Pesticides are subject to complex
transport, retention, and degradation processes, making it
challenging to determine whether they are dissipated, remain
in the soil, or are exported into adjacent environmental
compartments.1,12−15

Microbial degradation is the most relevant process
decreasing pesticide loads in soils. Its basic prerequisite is
the spatial encounter of a (bioavailable) pesticide and a
competent degrader (i.e., a metabolically active microorganism
able to produce a specific catalytic enzyme). In laboratory
experiments spatial encounter is strongly facilitated by

homogenization of soil samples. In undisturbed soils, however,
pesticide degrading microorganisms are unevenly distributed
and spatially aggregated at the millimeter- to centimeter-
scale,16−21 which reduces the frequency of degrader−pesticide
encounter.22,23 Spatial aggregation of degraders might thus
impede pesticide degradation, especially considering that
specific pesticide degrader microhabitats might occupy as little
as 1% of the total soil volume.23

Small scale spatial degrader heterogeneity and its upscaled
consequences for pesticide fate have so far received little
attention,18,24 possibly because assessing the spatial variation of
pesticide mineralization rates at a millimeter to centimeter
scale is experimentally challenging.18 Only few studies have
operated at these scales, mainly focusing on the phenoxy
herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-
methyl-4-chlorophenoxyacetic acid (MCPA).16−21,23 For in-
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stance, Vieuble ́ Gonod et al.,20,21 and Monard et al.19 dissected
soil core slices into 6 mm × 6 mm × 6 mm cubes and found
the degradation potential of 2,4-D to be aggregated in ca. 2 cm
sized hotspots (which was confirmed only under wet
conditions by Monard et al.19). The spatial discontinuity also
prevails at submillimeter scales, where less than 10% of 125−
500 μm sized aggregates may be colonized by 2,4-D degrading
microorganisms.23 For MCPA, Badawi et al.16 found patchy,
spatially variable mineralization potentials below the plow layer
and identified biopores as hotspots for MCPA degradation
in another study.17 The magnitude of spatial variation is
commonly repor ted as coefficient o f va r i a t ion

= ·(CV / 100%, where χ is a measure of mineralization
potential, χ̅ is its spatial mean, and σχ is its spatial standard
deviation). Observed values for small-scale variations in
phenoxy herbicide mineralization potential range from CV =
16% to 161%.18,20,21

How small scale spatial degrader heterogeneities could affect
pesticide fate was conceptually illustrated by Vieuble ́ Gonod et
al.,21 who estimated that either 2 or 75% of 2,4-D would be
degraded within a 3-day incubation period, depending on
whether the pesticide would be introduced to part of the soil
with a low or high degradation potential. The degradation
potential in soil varies along a continuum, and zones with
contrasting potentials are connected by the variably saturated
pore network. Driven by diffusive and convective transport,
pesticides can migrate from zones of low degrader abundance
to degrader hotspots. In heterogeneous soil systems, where
pesticides and degraders can either be initially separated25,26 or
pesticides become locally depleted by fast degradation at
hotspots,27,28 diffusive transport to degrader hotspots often
becomes rate limiting.27−29 Dechesne et al.,27 for instance,
observed for benzoate degradation in microcosms that diffusive
mass transport was slower than reaction in degrader hotspots
and thus degradation rates decreased with increasing
aggregation of degraders. This result brings to mind that
spatially averaged reaction rates in heterogeneous systems
differ from the rates calculated at the spatially averaged
degrader abundance and substrate concentration.30 This effect
is due to the nonlinear nature of the rate-concentration
relation.
Chakrawal et al.30 and Wilson and Gerber31 recently applied

scale transition theory to soil C cycling to describe emerging
reaction rates as the sum of the mean field approximation
(rates calculated from spatially averaged quantities) and
additional terms considering spatial moments of substrate
and degrader distributions. Both their upscaling approaches
were limited to an idealized system without water flow. Lifting
this restriction is crucial because advective flow can effectively
alleviate transport limitation and enhance pesticide degrada-
tion.26,29 While typically considered as drivers of pesticide
leaching,32,33 precipitation events could also facilitate bio-
degradation by increasing the contact probability between
pesticide and degrading microorganisms in heterogeneous
soils.26 Moreover, the intensity of precipitation events is
important, as heavy rain can promote faster contaminant
transport and reach deeper soil layers compared to low-
intensity rainfall, potentially causing higher leaching than low-
intensity precipitation.32,34

Experimental evaluation of these complex interactions and
their relevance for pesticide risk assessment is challenging.18

This study therefore relies on reactive transport modeling as an

established and powerful tool to analyze biodegradation
processes and physicochemical controls.35,36 Using a new
pesticide reactive transport model, we investigated: (i) how
does spatial aggregation of microbial pesticide degraders affect
pesticide dynamics? and (ii) how does the intensity of
precipitation (continuous light rain vs heavy rain events)
affect the degradation dynamics?
To address these questions, we simulated pesticide fate

following a single application of MCPA to a soil where
degraders were heterogeneously distributed to various extents.
From these simulations we assessed the relevance of milliliter
to centimeter scale aggregation of microbial pesticide
degradation for pesticide fate at the soil column scale under
unsaturated conditions. Using results from scale transition
theory,30 we analyzed the establishment and alleviation of
transport limitation under contrasting heterogeneity and
precipitation scenarios.

■ MATERIALS AND METHODS
Conceptual Setup. We simulated reactive pesticide

transport in a soil column of 0.3 m width and 0.9 m depth
(xy-plane) to assess the impact of spatial heterogeneity of
microbial degrader distributions on pesticide degradation. Soil
characteristics represented an arable Luvisol, based on a
reference soil in the Ammer catchment between Tübingen and
Herrenberg (Germany; 48°33′24.664″, 8°52′31.259”; see
Wirsching et al.37 for further details). Hydraulic and
degradation parameters were obtained from measured soil
moisture characteristics and degradation kinetics from the
same soil (Supporting Information 1 (SI1), sections 3−5). We
distinguish three soil layers (0−30 cm, 30−60 cm, and 60−90
cm) by their characteristic soil hydraulic properties and refer to
them as topsoil (0−30 cm) and subsoil (30−60 cm and 60−
90 cm combined), respectively.
The well-studied and widely used phenoxy acid herbicide 2-

methyl-4-chlorophenoxyacetic acid (MCPA) was used as a
model compound. Most data on millimeter scale degradation
heterogeneity is available for this pesticide and the structurally
similar 2,4-dichlorophenoxyacetic acid (2,4-D).16−21,23 Addi-
tionally, MCPA degradation kinetics were recently analyzed in
the topsoil of the reference soil.37 We simulated the
recommended MCPA application rate (2 kg/ha). MCPA was
subject to reactive transport in the soil column and only
dissipated by biodegradation. Compared to native soil organic
carbon (C) stocks, little C was added through the pesticide
application (ca. 1.7 mg/kg C from MCPA in relation to 18.4 g/
kg organic C in the top 5 cm37). In a previous batch
experiment,37 growth of MCPA degraders in the reference
soil was observed at an initial MCPA concentration of 20 mg/
kg, but not at 5 mg/kg. In this simulation study, local MCPA
concentration was much lower than 20 mg/kg. The initial
MCPA concentration reached up to 9.1 mg/kg and was
strongly diluted within the first day due to the applied
precipitation scenarios. To keep the model parsimonious, we
assumed that the MCPA degrader population was in
equilibrium.
The soil was initially unsaturated and two contrasting

precipitation scenarios were implemented. Seasonal variations
in precipitation and evaporation were neglected, and the
measured average daily net infiltration rate of 0.56 mm/d38 was
used as a reference for precipitation scenarios.
Simulations were set up in COMSOL Multiphysics 5.5 using

LiveLink for MATLAB. Values for all parameters are given in
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Table 1. The COMSOL model was set up in micromolar units
of C. All units were transformed to more meaningful mass-
based concentrations in the Results and Discussion section by
accounting for MCPA’s molar mass nmol [g/mol] and the
number of C atoms per MCPA molecule nC [1]. Biomass
concentration was expressed in gene/g, corresponding to the
experimental measure, using a conversion factor fm/g [μmol C/
gene].39 Rates were transformed to the daily time scale.
Governing Equations. Soil Hydraulic Properties and

Functions. Variably saturated water flow was simulated using
COMSOL’s Richards’ Equation module using the Mualem-van
Genuchten formulation to describe soil hydraulic properties
(SI1, eqs S2,S3). Soil bulk density ρB [kg/m3], saturated
volumetric water content θs [1], and saturated hydraulic
conductivity KS [m/s] were measured (separately for 0−30 cm,
30−60 cm, and 60−90 cm, see SI1, section 3). The remaining
van Genuchten parameters (residual volumetric water content
θr [1], αVG [1/m], and nVG [1]) were estimated separately for
each of the three layers (0−30 cm, 30−60 cm, and 60−90 cm)
from fitting the van-Genuchten model of respective soil water
retention curves using a hybrid (global-local) optimization
algorithm (SI1, section 4). Hydraulic properties were kept
uniform within each layer. Precipitation events were initiated
using COMSOL’s Events module.
Reactive Transport. The advection−diffusion equation

(ADE) was defined via the Transport of Diluted Species in
Porous Media module as

+ ·[ + ] + · =C
t

C
t

D D C q C R( ) w
L

B
S

D s L L

(1)

where R [μmol C/m3/s] is the pesticide degradation rate, CL
[μmol C/m3] and CS [μmol C/kg] are the dissolved phase and
sorbed phase concentrations of MCPA, respectively; θ [1] is

the volumetric water content and =q
q
q

x
yw

w,
w,
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jjj y

{
zzz [m/s] is the

water flow velocity; DD [m2/s] is the dispersion tensor and Ds
[m2/s] is the soil diffusivity. θ [1] and qw were obtained from
the Richards’ Equation module.
The relation between CL and CS was described by a

Freundlich sorption isotherm

=C K C( )n
S F L

F (2)

with the Freundlich sorption coefficient KF [μmol C/kg (μmol
C/m3)−nF] and exponent nF [1].
Soil structural heterogeneity, i.e., the spatial distribution of

soil properties governing solute transport (e.g., porosity and
permeability), was not considered explicitly in the simulations.
Soil properties varied between the three soil depths’ layers
(Table 1), but were homogeneous (uniformly distributed)
within each depth layer. The macroscopic effect of smaller
scale soil structural heterogeneity on solute transport was
implicitly accounted for by assigning longitudinal and trans-
versal dispersivities (λL [m] and λT [m], respectively) to DD

Table 1. Parameter Values Used in Reactive Transport Simulationsa

symbol parameter unit valuesb ref

Soil Hydraulic Functions
θs saturated volumetric water content 1 0.49; 0.46; 0.43 measured
θr residual volumetric water content 1 0.00; 0.15; 0.00 calibrated
αVG inverse of air entry value 1/m 12.30; 13.40; 3.63 calibrated
nVG measure of pore size distribution 1 1.10; 1.12; 1.12 calibrated
lVG 1 0.5 41
Ks saturated conductivity 10−5 m/s 1.85; 24.00; 2.31 measured

Reactive Transport
Dm MCPA molecular diffusion coefficient in water m2/s 6.33 × 10−10 computed42

KF MCPA Freundlich coefficient μmol C/kg·(m3/μmol C)nF 1.79 × 10−3 43c

nF MCPA Freundlich exponent 1 0.86 43c

λL longitudinal dispersivity m 0.03 assumed44

λT transversal dispersivity m 0.01 assumed
Microbial Degradation

BTS topsoil tfdA gene abundance μmol C/kg 12.21 37
fm/g conversion factor mol C/gene μmol C/gene 1.10 × 10−7 39
γ depth constant 1/m 3 45
μmax maximal growth rate 1/s 2.94 × 10−4 calibrated
KM monod constant μmol C/m3 1.93 × 106 calibrated

Material and Chemical Properties, Global Parameters
ρF water density kg/m3 1.00 × 103

ρB soil bulk density 103 kg/m3 1.24; 1.32; 1.46 measured
g gravitational acceleration constant m/s2 9.81
nmol MCPA molecular weight g/mol 200.62
nC C atoms per MCPA molecule 1 9

Geometric Variables
dTS topsoil depth m 0.3 assumed
dz virtual soil column thickness m 0.1 assumed
dv,STS virtual soil thin section thickness m 0.05 × 10−3 assumed

aMethods used to obtain measured and calibrated values are detailed in SI1. bWhere three values are given, these correspond to the 0−30 cm, 30−
60 cm, and 60−90 cm soil layers, respectively. The latter values were also used for the additional 1.1 m zone. cMeasured for 2,4-D on an Orthic
Luvisol.
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(SI1, section 1b). Ds accounts for reduced diffusivity in
unsaturated soil using the Millington and Quirk40 model (SI1,
eq S6).
Microbial pesticide degradation was described by the

Monod-type reaction rate R

=
+

R
C

K C
Bmax

L

M L
B (3)

with the maximum reaction rate coefficient μmax [1/s] and the
Monod constant KM [μmol C/m3]. Following Chavez
Rodriguez et al.,39 the abundance of the functional tfdA gene
was used as a proxy for microbial MCPA degradation potential.
Measured tfdA gene abundance in the reference soil37 was
converted into microbial biomass B [μmol C/kg] using the
conversion factor fm/g [μmol C/gene] as calibrated by Chavez
Rodriguez et al.39 Microbes were considered to be immobile,
and their distributions were assigned using COMSOL’s
Domain ODEs and ADEs module.
Initial and Boundary Conditions. Water Flow. Water

inflow was assigned at the upper boundary of the soil column
(y = 0 m). The 0.9 m soil column was extended by an
additional 1.1 m in the vertical y-direction to reduce effects
from the outflow boundary. This additional zone was
parametrized by the same hydraulic properties as the 60−90
cm layer. We assumed free drainage for water flow across the
lower boundary (zero pressure head gradient). Initial
conditions of the pressure field were obtained from spin-up
simulations where the average net infiltration rate of 0.56 mm/
d was set as a constant inflow boundary condition. Spin-up
simulations were run until the pressure field converged to a
steady state (matric potential of −0.005 MPa, corresponding to
ca. 80% saturation, in the topsoil). The resulting pressure field
was then applied as an initial condition in the transient
simulations.
Pesticide Concentration. MCPA was applied at a rate of 2

kg/ha. As an initial condition this pesticide load was assigned
to the upper 1.5 cm (equally distributed in horizontal
direction, with a steep gradient in y-direction). No-flow
conditions for the contaminant were assigned to all boundaries
except the lower boundary where + =D D C( ) 0D s L was
assigned normal to the boundary.
Numerical Simulations. Backward differential formula

time stepping with variable order of 1−5 was used to
numerically solve the equations in COMSOL. A segregated
solver was used for successively solving for (i) the discrete
events, (ii) the pressure field, and (iii) all concentration
species. The automatic Newton method was used for solving of
the equations. The soil column was resolved with a 5 mm × 5
mm finite element mesh in the top 1 m. The adjacent soil
column down to a depth of 2 m was resolved more coarsely
with a 5 mm × 50 mm (vertical × horizontal) finite element
mesh. The vertical resolution of the finite element mesh
directly underneath the inflow boundary was refined by adding
15 additional horizontal element layers using COMSOL’s
boundary layer function to minimize numerical errors where
concentration gradients were steep. Linear elements were used
for all modules. Initial conditions of MCPA, degraders, and the
pressure field were loaded from gridded data files and assigned
to the finite element mesh using linear interpolation. Topsoil
concentrations of degrader abundances were normalized to the
default value of BTS to minimize interpolation errors.

Microbial Distributions. A vertical profile was defined
for the horizontally averaged degrader abundance B y( ) =

= B
N i

N
i y

1
1 ,

x

x [μmol C/kg], where the index i identifies one of

the Nx grid cells in the horizontal direction. Following Jury et
al.,45 B y( ) was assumed to be constant throughout the topsoil
to a depth dTS = 0.3m and to exponentially decrease with depth
below dTS with a factor γ [1/m]

= [ · ]B y B y d( ) exp max( , 0)TS TS (4)

where BTS [μmol C/kg] is the average tfdA gene abundance in
the topsoil of the reference soil (1.11 × 108 genes/kg soil,37

converted with the factor fm/g [μmol C/gene]), taken as proxy
for the degrader abundance. Note that the depth y is 0 m at the
surface and is taken positively downward.
Heterogeneous degrader distributions in the horizontal

plane were created using a log-Gaussian Cox process46,47

(LGCP). A LGCP is a stochastic process to generate random
point patterns with different degrees of clustering. Each
generated point represents one degrader (one tfdA gene). A
LGCP’s mean μ [1] is given as a function of y as

=y
y

f
( ) log

( )
2S

2
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (5)

where the y -dependent average intensi ty =y( )
B y f d( ) m/g

1
B v,STS [genes/m

2] is obtained from B y( ) by
accounting for the thickness of a virtual soil thin section
dv,STS [m] and f S [genes/m2] is a scaling factor set to unity to
obtain the nondimensional LGCP parameters. Following
Raynaud and Nunan,47 we described the LGCP’s covariance
function r( ) using an exponential pair correlation function46

between two points with a separation distance r [m] as

=r
r

( ) exp2 i
k
jjjj

y
{
zzzz

(6)

The LGCP can be completely defined with the intensity,
variance σ2 [1] and scale parameter β [m].46,47 LGCPs were
previously used to study the spatial ecology of soil microbes by
Raynaud and Nunan47 who could successfully represent
aggregated distributions of bacteria with LGCPs. Recently,
Pagel et al.48 used spatially continuous distributions generated
from LGCPs and discretized them on a 1 mm × 1 mm mesh to
study the spatial control of organic C dynamics in soils.
Following Pagel et al.,48 spatially continuous point distribu-
tions were aggregated to meet the spatial resolution of the
finite element mesh used for reactive transport simulations.
Spatial heterogeneity at scales smaller than the 5 mm × 5 mm
mesh resolution23,47 was thus not taken into account. LGCPs
were implemented in the R environment49 using the spatstat50

package. The parameters σ2 and β were manually adapted to
meet published distribution metrics of phenoxy acid herbicide
degradation at the millimeter scale as described in the
following section. y( ) was obtained via eq 4 and the tfdA
gene abundance in the topsoil of the reference soil.37 dv,STS was
adjusted to a value of 0.05 × 10−3 m to ensure that a realistic
portion of mesh elements were colonized by MCPA degraders.
Therefore, element-wise colonization ratios (CR [%]) were
computed by applying a threshold of 100 genes/g soil (1/10th
of the quantification limit of tfdA gene abundances reported in
Wirsching et al.37) for an element to be considered as
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colonized. CR values were compared to percentages of
microsamples colonized by phenoxy herbicide degraders
observed in agricultural soils by Pallud et al.23

Scenario Definition. Spatial Heterogeneity. Four levels
of spatial heterogeneity of pesticide degraders were defined,
corresponding to homogeneous (pseudo-1D) conditions
(HOM), the lowest (LOW, CV = 16%),20 and highest
(HIGH, CV = 161%)21 levels of spatial variability reported in
literature; and an extreme case (EXTR, CV = 400%). Inclusion
of the extreme scenario was motivated by the small number of
studies on millimeter scale heterogeneity of microbial pesticide
degraders. The available data are limited to established
agricultural soils with previous or unclear exposure to
pesticides (though only one study reported previous phenoxy
herbicide usage).16,19−21 We expect that spatial heterogeneity
of microbial pesticide degraders might be considerably larger
in soils that were only recently converted to arable fields and
received pesticides for the first time.23

For each scenario, 100 stochastic spatial distributions were
created using characteristic σ2- and β-values. Their values were
manually adapted to yield ensemble means of the 100
stochastic distributions close to the CV values specified for
each scenario (defined for the degrader distributions B;

= ·BCV / 100B %). σ2 and β were further chosen in a way
that the practical range (3 × the fitted range) of an exponential
semivariogram fitted to the experimental semivariogram was
within ±2 mm of the ≈27 mm reported by Vieuble ́ Gonod et
al.21 Semivariograms were produced and fitted using the
gstat51,52 R-package (isotropic with 3.3 mm bin width and 50
mm cutoff). For each simulated scenario, fixed σ2- and β-values
were used uniformly throughout the soil column. Individual
distributions were accepted at the following limits (for topsoils,
0−30 cm)

= = ×

= = ×

= = ×

LOW:

( 0.05, 7.5 10 m): CV 25% and CR 99%

HIGH:

( 1.75, 7.5 10 m): 145% CV 175% and CR 98%

EXTR:

( 4.0, 12.5 10 m): 375% CV 425% and CR 95%

2 3

2 3

2 3

Precipitation. Two precipitation scenarios were defined:
continuous light rain (CLR) and heavy rain events (HRE). In
the CLR scenario, the measured net daily infiltration rate
(0.56 mm/d38) was continuously applied throughout the one-
year simulation period. HRE scenarios were initiated at the
same infiltration rate for 2 days. After that, two day-long heavy
rain events with an infiltration rate of 40 mm/d each were
assigned within the first week after MCPA application
(throughout day 3 and day 6). Each heavy rain event was
followed by 2 days without precipitation. A continuous
infiltration rate of 0.35 mm/d was applied in HRE from day
8 onward in order to achieve the same cumulative infiltration
as in CLR.
Scale Transition Theory. Upscaled effects of millimeter to

centimeter scale heterogeneity of microbial degrader distribu-
tions on pesticide degradation were analyzed using the scale
transition approach presented by Chakrawal et al.30 Their
approach was used for upscaling of micrometer to millimeter
scale heterogeneities in carbon cycling, but is also applicable to
the millimeter to centimeter scale problem posed here for
pesticide degradation. For Monod-type kinetics and biochem-
ical homogeneity (i.e., rate parameters are constant in space),

the scale transition approach provides a theoretic foundation to
evaluate upscaled reaction dynamics on the basis of the spatial
variance in substrate concentration Cvar( )L and spatial
covariance between substrate and biomass concentration

C Bcov( , )L . Wi th the spat i a l averag ing opera tor

= ·( )t x y t x y x y( ) ( , , ) d d d d
1
, the second-order

accurate macroscopic average reaction rate R C B( , )L [μmol C/
m3/s] is given from a Taylor series expansion aroundCL and B̅
as

=

+ + +

R C B R C B

R
C

C R
C B

C B

( , ) ( , )

1
2

var( ) cov( , ) HOT

L

Average Reaction Rate

L
Mean Field Approximation (MFA)

2

L
2 L

Variance Term (VAR)

2

L
L

Covariance Term (COV)

Ö́ÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖ

Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

(7)

where R C B( , )L [μmol C/m3/s] is the mean field approx-
imation (MFA), i.e., the reaction rate in a perfectly mixed
system, with R given by eq 3 and calculated at the spatial mean
values of CL and B. The partial derivatives on the right-hand
side of eq 7 were likewise calculated at average quantities
C BandL (SI1, eqs S10−S12). Note that the term related to

the spatial variance of B (i.e., Bvar( )R
B

1
2

2

2 ) is dropped because

= 0R
B

2

2 . We did not individually calculate the higher order
terms for our analyses, but show results including their sum
∑HOT given as residual between R C B( , )L and the second-
order accurate Taylor series expansion. The focus of our
analysis was on evaluating the deviation of the observed
macroscopic reaction rates between HOM and the heteroge-
neous scenarios that is explained by the spatial covariance term

C Bcov( , )R
C B L

L

2

(abbreviated COV in the following). This

choice is motivated by our interest in identifying the role of
microbial heterogeneous distribution, which, according to scale
transition theory (for Monod-type kinetics), is captured by the
covariance term.

■ RESULTS AND DISCUSSION
Comparison of Simulated Pesticide Degrader Dis-

tributions with Experimental Observations. Stochasti-
cally generated degrader distributions showed spatial metrics
(mean abundance, CV, CR) closely resembling reported
values,20,21,23,37 especially in topsoils (SI1, Figure S3A,B,C;
also see example distributions Figure S4). In the subsoil,
ensemble mean CV was larger and CR lower than in the
topsoil (SI1, Figure S3 D,E). While distributions were not
intentionally parametrized for this behavior, it is in line with
experimental observations of increased heterogeneity and
lower colonization ratios in subsoils.16

Influence of Hydrodynamic Dispersion on MCPA
Biodegradation. Besides pesticide degrader heterogeneity,
soil structural heterogeneity might be important for pesticide
fate.53 In our simulations, we did not explicitly consider this
type of heterogeneity at scales resolved by our spatial
discretization (i.e., soil structural and hydraulic parameters
were uniformly applied within each depth layer, Table 1).
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Figure 1. Time series of averaged residual MCPA concentrations in 10 cm depth intervals for continuous light rain (CLR; A−C) and heavy rain
events (HRE; D−F) scenarios. Lines represent the scenario means, and shaded areas mark their 99%-confidence intervals. Blue bars in panels D−F
indicate when heavy rain events occurred. Dotted black lines indicate a detection threshold of 3 μg/kg. Insets in panels D−F show details of days 0
to 20. MCPA concentrations below 30 cm were negligible (<3 μg/kg) and are not shown. Note that y-axis scales vary from panel to panel.

Figure 2. Time series of averaged MCPA leachate concentration (A,B) and cumulatively leached MCPA load (C,D) from the topsoil at 30 cm
depth in continuous light rain (CLR; A,C) and heavy rain events (HRE; B,D) scenarios. Lines represent scenario means and shaded areas mark
their 99%-confidence intervals. Blue bars in panels B and D indicate when heavy rain events occurred. Note that y-axis scales vary from panel to
panel.
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Instead, we assigned dispersivities (λL and λL) to the dispersion
tensor (SI1, eq S5) to capture the effective behavior of solute
transport emerging from the variance in local flow velocities
caused by smaller scale soil structural heterogeneities. In our
simulations λL and λT were kept constant throughout the entire
simulation domain and we tested how the choice of these
effective parameters affected simulation outcomes. Within the
tested range of 0.01 to 0.1 m for λL and for ratios of λL/λT of 3
and 10, the choice of dispersivity values had little effect on
MCPA biodegradation (quantified by comparing times needed
for 50% removal of pesticide (DT50) from soil, see SI1,
section 8), and the spread between individual realizations of
the distributions at default dispersivity values was much larger.
In all simulations, pesticide transport was moreover facilitated
by a continuously high water saturation (ca. 80% in CLR and
up to 98% in HRE during rain events).
Implications of Spatial Degrader Heterogeneity for

Pesticide Fate. To elucidate the role of millimeter scale
spatial degrader heterogeneity on pesticide fate we evaluated
residual MCPA concentrations along the soil profile (Figure
1). Scenario outcomes were clearly distinct between the two
precipitation scenarios. In the CLR scenarios, MCPA
concentrations below 20 cm never exceeded the detection
threshold (3 μg/kg; set to the lower end of detection limits of
acidic herbicides in soil;54 Figure 1B,C). After heavy rain
events MCPA leached deeper and was detectable down to
depths of 30 cm (Figure 1F) but did not reach the subsoil
(data not shown).
Scenarios with low spatial heterogeneity of pesticide

degraders (Figure 1, green lines) were hardly distinguishable
from homogeneous simulations (dashed black lines). In turn,
high and extreme heterogeneity (blue and orange lines,
respectively) affected residual pesticide concentrations in
both precipitation scenarios and all soil depths. Degradation
in HIGH and EXTR generally proceeded slower than in HOM
and LOW, resulting in higher residual MCPA concentrations
at any given time. In HRE scenarios, this consistently led to
MCPA being detectable for longer periods (21, 21 ± 0, 36 ± 0,
and 103 ± 2 days [mean ± standard error of the mean] at a
depth of 20−30 cm for HOM, LOW, HIGH, and EXTR,
respectively). In CLR scenarios, only in extremely heteroge-
neous scenarios (EXTR) was MCPA detectable below the
uppermost 10 cm and remained detectable for 73 ± 4 days at a
depth of 10−20 cm.
MCPA leaching within the soil column was minimal and

only after heavy rain events notable amounts of MCPA
(concentration in the μg/L range) were leached from the
topsoil (Figure 2). At most, MCPA leaching amounted to
≈0.1% of the initial application rate of 2 kg/ha (Figure 2D). In
the subsoil MCPA leaching was all together untraceable (data
not shown).
The spatial heterogeneity of degraders had less impact on

MCPA dynamics than precipitation, but leaching of MCPA
and leachate concentrations consistently increased with
degrader heterogeneity within a given precipitation scenario.
This is in line with simulation results of microbial nutrient
cycling in spatially heterogeneous domains under fully
saturated conditions.55 In our study, with extreme spatial
heterogeneity of degraders, leaching from the topsoil was still
ongoing at the end of the one year simulation period, however,
only at low ng/L leachate concentrations (Figure 2A,B and
SI1, Figure S6). Despite these low concentrations, MCPA
persistence until the next cultivation cycle might pose the risk

of accumulation in the subsoil following several MCPA
applications. However, degradation of phenoxy herbicides in
soils generally occurs more rapidly after repeated applications
due to the enrichment and dispersal of a specific degrader
population.23,56,57 Neither of these processes was considered in
our model, so that no general conclusion regarding MCPA fate
after repeated applications can be drawn from this study.
A direct comparison of our simulation results to field studies

is difficult because of the lack of experimental data measuring
the impact of millimeter scale degrader heterogeneity on
pesticide fate at the soil column scale. With experimental data
we could test if the simplifications made in our model (e.g.,
preferential flow and surface runoff were neglected) affect
model performance. Compared to a previous modeling study
by Rosenbom et al.,24 our simulations predicted slightly higher
MCPA leaching. While in our simulations even in CLR we
observed leachate concentrations of up to 3 ng/L from 30 cm,
Rosenbom et al.24 observed leaching of MCPA (with
concentrations ≥ 1 ng/L) by matrix flow only if biodegrada-
tion was neglected, and only at a depth of 24 cm and no longer
at 31 cm. In their simulations, soil was initially less saturated
and precipitation events were taken from field observations,
where no considerable rain events occurred within 2 weeks
after the simulated MCPA application. Both aspects likely
resulted in MCPA being more mobile in our scenario
simulations, which promoted MCPA leaching.
Despite this discrepancy in precipitation scenarios, results of

heterogeneous degradation scenarios are comparable between
the two studies. Rosenbom et al.24 evaluated degradation
scenarios with spatially randomly distributed MCPA degrada-
tion potentials (note that this is not the same as the aggregated
distributions used for simulations here). They derived
heterogeneous degrader distributions from the experimental
data of Badawi et al.,16 who reported a homogeneously
distributed degradation potential in the topsoil (8 cm depth)
and an increased spatial heterogeneity with a CV above 50% in
the transition zone (28 cm depth).16 The heterogeneous
scenario of Rosenbom et al.24 is thus closest to our LOW
scenario. In line with their results, we found leachate
concentrations from 30 cm in LOW scenarios with CLR to
never exceed 1 ng/L (Figure 2A).
The combined evidence of these previous results and our

simulations exploring the full range of observed and expected
spatial heterogeneity suggests that spatial aggregation of
degraders is negligible in assessing MCPA leaching from the
subsurface. However, our results indicate that the patchy
distribution of degraders can modulate MCPA leaching within
the topsoil and substantially influence how long MCPA
remains detectable in soils and consequently how long soil
organisms might be exposed to the chemical. Though the
actual risk of exposure is also influenced for instance by abiotic
inactivation mechanisms such as sorption.
Little is known about the spatial distribution of degraders of

other pesticides. MCPA typically sorbs weakly and degrades
fast in soils. How spatial degrader heterogeneity affects the
reactive transport of more strongly sorbing compounds with
slower biodegradation half-lives needs further assessment. In
the absence of experimental evidence, our framework can be
used to explore expected and worst case scenarios for other
pesticides by altering the physicochemical parameters and
adapting application rates and expected degrees of aggregation
(i.e., by tuning the parameters of the LGCP).
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Spatial Heterogeneity Controls of Macroscopic
Reaction Rates. All else being equal, the degradation rates
in increasingly more heterogeneous scenarios decrease due to
transport limitation at small scale arising from the aggregation
of degraders.27 Transport limitation establishes if the transport
of a substrate to a location of high degradation potential
proceeds slower than its degradation at this location. In more
heterogeneous scenarios, degraders are concentrated in fewer
’hotspots’ leaving larger areas of the soil void of degradation
potential (statistically captured in the CV-value). On average,
the substrate thus needs to be transported over a longer
distance to arrive at a degrader hotspot. Transport to such
hotspots thus takes longer while degradation at hotspots
proceeds faster than in homogeneous scenarios. The extent of
transport limitation is eventually determined by the specific
parameter values assigned to transport and reaction processes,
but modulated by this characteristic transport distance.
With spatial heterogeneity, substrate concentrations rapidly

deplete in degradation hotspots, but remain higher in spots
with low degradation potential.15 Consequently, reaction rates
computed from average biomass and substrate concentra-
tions−the mean field approximation (MFA)30 − overestimate
the macroscopic (i.e., spatially averaged) reaction rates in these
heterogeneous systems. A similar argument has also been
derived from experimental observations of atrazine degrada-
tion.28 Recently, Chakrawal et al.30 linked decreased reaction

rates in heterogeneous systems to spatial moments of degrader
and substrate distributions by a dynamic upscaling approach
derived from scale transition theory (eq 7). Expressed with this
framework, the preferential depletion of substrate at locations
of high degrader abundance manifests in a spatial anti-
correlation between biomass and substrate distributions. This
attribute is captured by a negative covariance term (COV) in
eq 7, explaining a slowing down of the overall reaction rate.
It is important to recall that our heterogeneity scenarios

differ only with respect to the microbial distribution. Our
’homogeneous’ HOM scenario does not represent a well-mixed
system as the MFA, because also in HOM MCPA varies
vertically; that is, the spatial variance of the substrate
distribution is nonzero. This effect is captured in the variance
term (VAR) of eq 7 (which also has a negative sign; see SI1,
Figure S7). In HOM, COV = 0 as there is no variance in the
spatial distribution of degraders. According to scale transition
theory (eq 7), the deviation of R̅−MFA from 0 is then
explained by the spatial variance in substrate distribution
(VAR) and higher order terms (∑HOT). The latter can be
calculated as ∑HOT = R̅−MFA − COV − VAR.
Figure 3 visualizes the contributions of the different terms in

eq 7. Results for LOW are not shown because they were
indistinguishable from HOM (compare the temporal evolution
of individual terms R̅, COV, and VAR in SI1, Figure S7). Thick
lines in Figure 3 represent, for each scenario, the difference

Figure 3. Temporal evolution of the difference between R̅ and MFA (R̅−MFA) in HOM, HIGH (A,B), and EXTR (C,D) in continuous light rain
(CLR; A,C) and heavy rain events (HRE; B,D) scenarios. The contribution of COV is represented by shaded areas, and the difference between
their top edge and the dashed lines represents the contribution of VAR (compare inset in panel A). The deviation of the dashed line from 0 is
explained by higher order terms (∑HOT, the remainder of eq 7). All measures represent ensemble means computed from simulation outputs.
Temporal dynamics and 99%-confidence intervals of R̅, COV, and VAR are presented in SI1, Figure S7. Blue bars indicate when precipitation
events occurred. Note that the x-axes is discontinued between day 20 and 95.
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between the macroscopic reaction rate R̅ in the topsoil and the
reaction rate predicted from averaged quantities, the MFA. In
line with theory and the previous observations, R̅−MFA was
more negative in more heterogeneous scenarios (in order
HOM < HIGH < EXTR, respectively, shown as black, blue,
and orange thick lines in Figure 3; also see SI1, Figure S8).
This result confirms that macroscopic rates were considerably
lower in more heterogeneous conditions (see also R̅ in SI1,
Figure S7). However, given the transient nature of our
simulations, it is not possible to derive a unique relationship
describing the deviation from the MFA as a function of the
spatial degrader variability CV alone (SI1 section 11 and SI1,
Figure S8B). It is important to note that the eventual
convergence to R̅−MFA = 0 is a result of the decline in
absolute values of rates (as MCPA is used up), while the effect
of heterogeneity remains up to the end of the simulations, as
illustrated by the dimensionless scale transition correction
((R̅−MFA)/MFA) (SI1, Figure S8) suggested by Wilson and
Gerber.31

In line with our prediction from scale transition theory,
differences between HOM and heterogeneous scenarios are
largely attributed to the covariance terms (shaded areas in
Figure 3). However, in the initial phase of the simulations also
VAR (areas between thin solid and thin dashed lines in Figure
3) and ∑HOT (thin dashed lines in Figure 3) effects are
important in all scenarios. As time progresses, VAR and
∑HOT effects decrease faster than COV effects. Markedly, in
HRE scenarios, heavy rain events promote further substrate
dispersion, resulting in even faster reductions of VAR as
MCPA is evenly distributed in the topsoil. Similarly, ∑HOT
are reduced because they as well depend on the local deviation
of MCPA concentrations from its macroscopic mean

=C C x y C( ( , ) )L L L . Moreover, as MCPA is degraded CL
becomes much smaller than KM leading to approximately
multiplicative degradation kinetics (i.e., CL/(KM + CL) ≈ CL/
KM in eq 3). As also shown by Chakrawal et al.,30 for
multiplicative kinetics VAR and ∑HOT terms vanish and all
deviation from the MFA is captured by the covariance term
alone. In all scenarios, the absolute values of the combined
COV and VAR terms are thereby at least five times as large as
∑HOT. These results demonstrate that COV well explains
deviations between reaction rates in HOM and heterogeneous
scenarios, but also that considering COV and VAR together
can reduce the error of estimating heterogeneous reaction rates
from the MFA.
Dynamics in HRE provide an interesting test case displaying

the relations between degradation, transport, and the emerging
covariance dynamics. Like in CLR, previous to heavy rain
events, R̅−MFA and COV in HIGH and EXTR become
drastically more negative as MCPA is preferentially depleted at
locations with high degrader density as diffusive transport fails
to supply sufficient amounts of MCPA from locations with
lower degrader density. In contrast, during heavy rain events
MCPA becomes rapidly redistributed, supplying degrader
hotspots again with higher substrate concentration (example
simulations in SI2, Figures S9−S12). This homogenization
manifests in a reduced magnitude of COV and consequently
R̅−MFA. The same cycle occurs once again as the first heavy
rain event ceases, and advective and dispersive transport of
MCPA stall.
The consistency with which the covariance term COV

explains decreased reaction rates in systems where degraders
are distributed heterogeneously (i.e., soils) compared to such

systems where degraders are distributed homogeneously (i.e.,
batch experiments) suggests that COV is an indirect metric of
transport limitation. Thus, COV can be used to more
accurately transfer degradation rates measured in homogenized
soil samples to naturally heterogeneous soils in the field. Even
though Chakrawal et al.30’s approach was originally developed
for systems with only negligible transport, we display in this
work that it also holds under reactive transport conditions.
However, empirical data on the magnitude of COV is limited,
and its determination outside of such idealized simulation
studies appears largely impractical. While studies carried out in
fully saturated conditions have indicated that using travel time
of solutes may close the gap on estimating bulk reaction
rates,55,58,59 the estimation of the same in unsaturated settings
remains elusive.
Pesticide Remobilization after Heavy Rain Events.

Two counteracting effects of heavy rain events were observed
in this study. On the one hand, in heterogeneous scenarios
heavy rain events caused (minor) pesticide leaching to the
subsoil where degrader concentrations were lower. On the
other hand, heavy rain events temporarily alleviated transport
limitations, thereby increasing degradation rates in the topsoil
in heterogeneous (HIGH and EXTR) scenarios. To evaluate
the net effect of heavy rain events on pesticide fate in
homogeneous and heterogeneous scenarios, MCPA concen-
tration time series in the entire domain were analyzed (Figure
4).

A strongly diverging behavior was observed between HOM/
LOW and HIGH/EXTR. If degraders were distributed more
homogeneously, heavy rain events decreased pesticide
degradation compared to CLR and residual concentrations
were temporarily increased >C C( )T T

HRE CLR . Rather than
MCPA leaching, which was negligible, the more homogeneous
distribution of MCPA in the topsoil was largely responsible for
the slower degradation in HRE compared to CLR scenarios.
This effect is caused by two processes. First, dilution due to
higher saturation after rain lowers MCPA concentrations and

Figure 4. Time series of the difference in averaged residual MCPA
concentration in the entire simulation domain between heavy rain
events (HRE) and continuous light rain (CLR) scenarios. The
difference is computed as C CT T

HRE CLR and normalized by the initial
MCPA concentration CT(t = 0). Positive and negative values indicate
whether more MCPA remained in HRE or CLR scenarios,
respectively. Lines indicate heterogeneity scenario means and shaded
areas around them are 99%-confidence intervals. Blue bars mark times
during which heavy rain events in HRE scenarios occurred.
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thus reaction rates. Second, the applied Freundlich sorption
isotherm (eq 2) describes the relationship between sorbed
(CS) and the dissolved (CL) MCPA with a power law as
C C n

S L
F with the exponent 0 < nF ≤ 1. Consequently, as CL

decreases, proportionally more substrate is sorbed than at
higher values of CL. By distributing MCPA more equally within
the soil column, more MCPA becomes sorbed and inaccessible
to microbial degradation, thereby reducing degradation rates in
HRE scenarios.
These two processes were also active in the heterogeneous

scenarios; however, in HIGH and EXTR initially large negative
values <C C( )T T

HRE CLR were observed. In these scenarios,
heavy rain events strongly facilitated degradation, which is
especially effective in the EXTR scenario. Even after rain
events had ceased for 26 and 64 days in HIGH and EXTR,
concentrations remained lower than in CLR despite some
pesticide having leached to the subsoil. This sustained effect
might not only be due to the remobilization and mixing of
pesticide, but also to the rapidly increasing water content in the
soil column. While the soil was initially moist (83%
saturation), during heavy rain events almost full saturation
was reached (98%), facilitating solute diffusion (SI1, eq S640).
With the applied Millington and Quirk40 tortuosity model
(SI1, section 1b) and the defined parameter values, the
increase from 83 to 98% saturation increased the soil solute
diffusion coefficient by more than 70%. By removing transport
limitations in the heterogeneous scenarios, this moisture
increase thus promoted degradation. These results are in line
with experimental studies, as for example, Dechesne et al.27

observed a drastic reduction of benzoate degradation rates with
decreasing water content in artificial systems with heteroge-
neously distributed degraders and Monard et al.19 observed a
similar effect for 2,4-D degradation in soil.
Limitations and Implications. The macroscopic effects of

small scale spatial degrader heterogeneity on pesticide
degradation in soil has received little attention so far,18,24

and potential effect ranges have not been explored before. With
this study we contribute to closing this knowledge gap. In line
with a previous study,24 we found that degrader spatial
heterogeneity has negligible effects on MCPA leaching from
subsoil; however, heterogeneous degrader distributions can
slow down MCPA degradation within the topsoil, leading to
increased persistence. Our analysis was limited to a few
heterogeneity scenarios and a single pesticide (MCPA). The
abundance of the different levels of spatial degrader
aggregation in natural soils remains elusive, and even the
absolute ranges of heterogeneity measures (e.g., CV and
semivariogram ranges) have hardly been explored.18 Such
investigations would be particularly important across soil
management gradients, encompassing, for example, no-till
systems and extensively managed soils, as well as for pesticides
with physicochemical properties different from those of
MCPA. This might be achieved by extending existing sampling
methods (e.g., Badawi et al.16). Predicting the impact of
spatially variable degradation potentials combined with
different substrate transport regimes remains a challenge. We
approached it by analyzing spatial moments of substrate and
degrader distributions and found the covariance term derived
from scale transition theory to be an indirect metric of
transport limitation and a quantitative predictor of reduced
degradation rates in heterogeneous systems. Our analysis was
limited to Monod-type degradation kinetics that converged to

multiplicative degradation kinetics as substrate was consumed.
Modeling contaminant degradation with more general kinetic
equations, such as the equilibrium chemistry approximation,60

could yield additional insights on heterogeneity effects when
contaminant and biomass concentrations vary strongly through
time. Further developing these approaches will provide a way
forward to disentangle multiple nonlinear processes across
shifting system states. Linking the scale transition approach of
reaction kinetics with upscaling approaches for reactive
transport could lead to further progress in evaluating the
implications of small-scale variability of biodegradation in
heterogeneous soils on pesticide fate and management at the
field scale.
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