Table 3.
Measures | Approaches | |||||
---|---|---|---|---|---|---|
Logistic regression | XGBoosting machine | Random forest | Gradient boosting machine | Neural network | Decision tree | |
Mean predicted | 0.488 | 0.487 | 0.486 | 0.487 | 0.461 | 0.487 |
Brier score | 0.171 | 0.169 | 0.178 | 0.169 | 0.171 | 0.175 |
Intercept | 0.05 | 0.06 | 0.05 | 0.06 | 0.23 | 0.05 |
Slope | 0.96 | 0.95 | 1.49 | 0.97 | 0.88 | 0.88 |
AUC (95%CI) | 0.815 (0.801–0.828) | 0.820 (0.807–0.833) | 0.811 (0.798–0.824) | 0.820 (0.807–0.833) | 0.818 (0.805–0.832) | 0.806 (0.792–0.820) |
Discrimination slope | 0.327 | 0.338 | 0.228 | 0.334 | 0.349 | 0.349 |
Specificity | 0.812 | 0.812 | 0.807 | 0.809 | 0.799 | 0.800 |
Sensitivity | 0.731 | 0.731 | 0.733 | 0.734 | 0.742 | 0.735 |
NPV | 0.754 | 0.754 | 0.755 | 0.756 | 0.759 | 0.754 |
PPV | 0.793 | 0.793 | 0.789 | 0.791 | 0.785 | 0.784 |
Precision | 0.793 | 0.793 | 0.789 | 0.791 | 0.785 | 0.784 |
Recall | 0.731 | 0.731 | 0.733 | 0.734 | 0.742 | 0.735 |
Youden | 1.543 | 1.543 | 1.541 | 1.543 | 1.542 | 1.536 |
Accuracy | 0.772 | 0.772 | 0.771 | 0.772 | 0.771 | 0.768 |
Threshold | 0.526 | 0.488 | 0.558 | 0.466 | 0.382 | 0.444 |
AUC, Are under the curve; CI, Confident interval; NPV, Negative predictive value; PPV, Positive predictive value; XGBooting, eXtreme Gradient Boosting.