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ABSTRACT There is a growing awareness of the importance of sex and gender in medi-
cine and research. Women typically have stronger immune responses to self and foreign
antigens than men, resulting in sex-based differences in autoimmunity and infectious dis-
eases. In both animals and humans, males are generally more susceptible than females to
bacterial infections. At the same time, gender differences in health-seeking behavior, qual-
ity of health care, and adherence to treatment recommendations have been reported.
This review explores our current understanding of differences between males and females
in bacterial diseases. We describe how genetic, immunological, hormonal, and anatomical
factors interact to influence sex-based differences in pathophysiology, epidemiology, clini-
cal presentation, disease severity, and prognosis, and how gender roles affect the behav-
ior of patients and providers in the health care system.
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Patient sex is an important determinant in health and disease, and infectious dis-
eases are no exception. Biological sex (defined by sex chromosome complement,

sex steroid hormones, and reproductive organs) has been shown to influence suscepti-
bility to infection, pathophysiology, immune responses, clinical presentation, disease
severity, and response to treatment and vaccination (1). On the other hand, gender
roles (referring to characteristics that are socially constructed) and social norms can
influence risk factors and exposure to infection, determine health-seeking behaviors,
and impact therapeutic decisions (2). Fig. 1 describes how sex and gender interact to
influence differences in bacterial infections.

In this review, we discuss the current knowledge on sex-based differences in bacterial
infections, focusing on genetic, anatomical, immunological, hormonal, and behavioral influ-
ences and on the epidemiology, pathophysiology, clinical presentation, resolution, and
prognosis of selected bacterial diseases.

GENETIC FACTORS

Sex differences begin at conception, with the formation of an embryo carrying XX
or XY chromosomes. This establishes a lifelong inequality between male and female
cells in the expression of genes encoded in the X and Y chromosomes.

The X chromosome is home to around 1,100 genes and harbors several genes
which regulate immune function, such as interleukin-1 (IL-1) receptor-associated kinase
1 (IRAK1), IL-2 receptor-g chain, IL-3 receptor-a chain, IL-9 receptor, Toll-like receptor 7
(TLR7) and 8, and FOXP3 (3).

Females have two X chromosomes, one of which is randomly silenced in each cell to
avoid gene overdosage (4). However, this X chromosome inactivation is only partial, with
up to one-third of genes escaping silencing (4). These are often expressed at higher levels
in females and can be associated with sex-specific susceptibility to infection and autoim-
munity. For example, TLR7 has been shown to escape chromosome X inactivation in
immune cells, increasing the risk of autoimmune disease (5).
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Furthermore, because the same chromosome is not expressed in each cell, random
inactivation leads to female cell mosaicism, which also provides a survival advantage
(6). Males, on the contrary, have only a single copy of each of their X chromosome
genes, making them vulnerable to X-linked mutations. This is exemplified by X-linked
primary immunodeficiencies, which make affected males susceptible to recurrent bac-
terial, fungal, and viral infections (7).

In addition to evading the harmful effects of these mutations, females benefit from
the added diversity when facing new immune challenges, such as invading pathogens
(8). The X chromosome is also richer in microRNAs (miRNAs) compared to the Y chro-
mosome, many of which are known to affect immunity (9). For example, miRNA-223,
located in the X chromosome, controls susceptibility to tuberculosis (TB) by regulating
lung neutrophil recruitment, and its deletion renders mice highly susceptible to infec-
tion (10).

The Y chromosome has the lowest number of genes out of all nuclear chromosomes,
and it is significantly shorter than the X chromosome. The notion that its function is re-
stricted to sex determination and spermatogenesis has recently been challenged by the dis-
covery of multiple genes with extragonadal expression, with evidence suggesting that the Y
chromosome influences immune responses in males (11). For instance, a murine Y chromo-
some long-arm deletion is associated with deficiencies in B cell and natural killer (NK) cell
development, although the precise molecular mechanisms behind this are unclear (12).

IMMUNE RESPONSE

In general, females have stronger innate and adaptive immune responses than
males (Fig. 2) (13). These allow better pathogen clearance and response to vaccination,
but also make females more prone to inflammatory and autoimmune diseases.

The innate immune system is the first line of immunological defense. There are sex-spe-
cific differences in the number and relative distribution of innate immune cells. Males have
higher proportions of circulating monocytes (14) and NK cell counts (15), whereas females
have higher neutrophil counts in the peripheral blood (16). Antigen-presenting cells (APCs)
from females are more efficient in initiating a secondary response from primed lympho-
cytes compared to APCs from males, and the responsiveness of female cells to alloantigens
is superior to that of males (17).

FIG 1 Interaction between sex and gender in bacterial diseases.
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In an ex vivo study, males had a stronger monocyte-derived cytokine response,
including IL-1b , tumor necrosis factor alpha (TNF-a), and IL-6 production in response
to lipopolysaccharide (LPS), although these differences disappeared after accounting
for differences in monocyte concentration (18). Conversely, genes in the type I inter-
feron (IFN) pathway are upregulated in females compared to males, which promotes
enhanced responses to TLR agonists (19).

Furthermore, there are sex differences in the ability to detect pathogens, as females
have higher expression of pathogen-associated molecular pattern receptors compared
to males (20). Compared to male-derived cells, female rodent-derived resident macro-
phages express higher TLR2 and TLR3 levels and are more efficient at phagocytosis
and bacterial killing, while also limiting excessive cytokine production and neutrophil
recruitment (21). Bone marrow-derived macrophages from female mice have a signifi-
cant increase in TLR8 expression compared to male-derived cells. In addition, TLR7
expression is higher in leukocytes from women (5). On the other hand, neutrophils
from human males express higher levels of TLR4 and these are increased following
activation with LPS, resulting in greater pro-inflammatory cytokine production, which
may underlie increased susceptibility to endotoxic shock (22).

Sex also impacts lymphocyte subset distribution. Females have higher absolute and
relative CD41 T cell numbers and higher CD4/CD8 ratios than males, while males have
a higher percentage of CD81 T cells (23). Sex also influences the development of regu-
latory T (Treg) cells, which are higher in the peripheral blood of males (24). In addition,
there are sex differences in humoral immunity. Adult females have greater antibody
responses, higher B cell numbers (15), higher IgM and IgG levels, and lower IgA levels
compared with males (25, 26). In children, B cell numbers and IgG and IgM levels are
comparable between sexes, but females have lower IgA levels (25).

SEX STEROID HORMONES

Sex steroid hormones have immunomodulatory properties, and changes in their
levels over the lifespan influence susceptibility and response to infectious diseases.
These differences begin in utero with the formation of the testes in male embryos.
Once formed, they begin to secrete androgens that cause masculinization and lead to
the early development of androgen-dependent sex differences in immunity (27–29).
After puberty, concentrations of estrogens and progesterone (P4) in females and
androgens in males rise significantly. During this period, there is generally a male bias
in infectious diseases, with males being more frequently and more severely affected by
bacterial, viral, and parasitic infections, whereas females are more affected by autoim-
mune disease (30). Differences are also evident during pregnancy, when an increase in
the levels of estrogen and, in particular, P4 promote a state of immune tolerance,

FIG 2 Sex differences in immune responses associated with bacterial infection. Ig, immunoglobulin; PAMP, pathogen-
associated molecular patterns; TLR, Toll-like receptor.
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making pregnant women more susceptible to many infectious diseases (31). During
menopause, estrogen and P4 levels drop rapidly in women, while a gradual decline in
androgen levels is observed in aging males (1).

Sex steroids can influence immune responses by binding to specific receptors
expressed in immune cells, including lymphocytes, macrophages, and dendritic cells
(DCs) (13), and can also have a direct effect over bacterial metabolism, growth, and
expression of virulence factors (32).

Estrogen. Estrogens are present in both sexes, but levels are highest in females of
reproductive age. The principal endogenous biologically active estrogens are estrone (E1),
estradiol (E2), and estriol (E3), the last of these being the main pregnancy estrogen (33). In
females, levels vary during the menstrual cycle. They are low before puberty and after
menopause and high during pregnancy.

Estrogen receptors (ERs) are ubiquitous in the immune system, and estrogen signals
through two different nuclear receptors: ER alpha (ERa) and ER beta (ERb) (34). Expression of
ERs is influenced by age and sex. Monocytes from premenopausal women express ERa at
lower levels than monocytes from men and postmenopausal women, whereas no difference
was found in ERb (35). Furthermore, monocytes frommen and postmenopausal women con-
tain significantly more ERa than ERb , suggesting that monocytes from these two groups
respond similarly to estrogens (35). On the other hand, ER expression is similar in T or B cells
and in plasmacytoid DCs from both sexes (35, 36). In vitro, ERa signaling stimulates differentia-
tion of DCs from monocytes, which produce pro-inflammatory cytokines in response to TLR
stimulation. ER signaling also promotes the TLR-driven production of type I interferons (IFNs)
in mouse plasmacytoid DCs in vivo (37). In humans, treatment of postmenopausal women
with E2 markedly enhances production of IFN-a by plasmacytoid DCs (38).

E2 can augment or dampen immune signaling pathways and enhances both cell-medi-
ated and humoral immunity in a concentration-dependent fashion. Low E2 concentrations
promote a Th1-type response, boost cell-mediated immunity, and stimulate type I IFN
responses and production of proinflammatory cytokines and chemokines, including IL-1b ,
IL-6, and TNF-a (39, 40). At high concentrations, E2 promotes Th2-type and humoral
responses, inhibits pro-inflammatory pathways, and promotes production of anti-inflam-
matory cytokines, such as IL-4 and IL-10 (39, 40). Numbers of antibody-secreting cells have
been reported to be significantly higher during the peri-ovulatory period in female rhesus
macaques (41). Treatment of mice with physiological levels of estrogen results in retention
of high-affinity autoreactive B cells, interfering with tolerance induction (42). On the other
hand, E2 increases immunoglobulin class-switch recombination and somatic hypermuta-
tion in germinal centers. These changes lead to improved responses to vaccination but
also increased propensity to autoimmune diseases in women (43).

E2 stimulates the expansion of Treg cells (44), which are higher during the follicular
phase of the menstrual cycle (45). Estrogens also reduce the proliferation of immature
T lymphocytes and induce thymic involution in mice (46).

Estrogen has been reported to have a protective effect in several infections, such as
Vibrio vulnificus, which mostly affects males. In a rat model, ovariectomy was associated
with increased mortality and estrogen replacement decreased mortality in both gonadec-
tomized sexes (47). In contrast, in females with cystic fibrosis, estrogen induces conversion
of Pseudomonas aeruginosa into the more virulent mucoid form, and the majority of infec-
tious exacerbations occur during high circulating E2 levels (48).

Progesterone. P4 is produced by the corpus luteum in the ovaries during the men-
strual cycle and by the placenta during pregnancy. Progesterone receptors are present
in a variety of cell types, including immune cells such as NK cells, macrophages, DCs,
and T cells (49). There are sex differences in PR expression, which can explain sex-based
disparities in immune responses. For instance, PR expression is higher in female DCs
than in male ones, which could justify the differential suppressive effect of progester-
one on these cells in female versus male rats (31, 50).

P4 modulates the immune system in order to achieve a successful pregnancy.
Increased maternal P4 levels promote a Th2-dominant cytokine phenotype (51, 52)
causing an increase in anti-inflammatory cytokines such as IL-4, IL-5, and IL-10 (53–55)
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and a decrease in proinflammatory cytokines such as TNF-a, IFN-g, and IL-1b (56, 57).
P4 also increases the number of Treg cells and inhibits Th17 cells (58, 59). P4 inhibits
DC maturation and DC-mediated proliferation of T cells, favoring immature DCs which
have a tolerogenic phenotype (56). This state of immune tolerance, while preventing
fetal rejection, increases the susceptibility to and severity of many infections during
pregnancy (31). Pregnant women are much more susceptible to Listeria monocytogenes
infection than similarly aged healthy adults (60), and P4 increases susceptibility to
Chlamydia trachomatis in female rats (61). In contrast, P4 at high doses inhibits the
growth of Neisseria gonorrhoeae and N. meningitidis (62) and the germination of
Clostridioides difficile spores (63).

Androgens. Androgens occur in higher concentrations in post-pubertal males than
in females (13). Testosterone is the principal androgen, secreted from the testes in
males and in small quantities from the ovaries in females. The androgen receptor
works as a steroid hormone-activated transcription factor which signals through
ligand-dependent and independent signaling pathways (64). Both testosterone and its
metabolite, dihydrotestosterone (DHT), generally have suppressive effects on both hu-
moral and cellular immune responses, leading to decreased T and B cell proliferation
and decreased immunoglobulin and cytokine production (3).

DHT-treated female mice produce more IL-10 and less IL-12 than untreated female mice,
and DHT can act on CD41 T lymphocytes to increase IL-10 gene expression via androgen re-
ceptor signaling (65), thereby promoting an anti-inflammatory response. Treatment of lipo-
polysaccharide or TNF-a-stimulated human endothelial cells with testosterone controls the
inflammatory response mediated by NF-kB (66). In males with symptomatic androgen defi-
ciencies, treatment with testosterone lowers proinflammatory cytokines (such as TNF-a, IL-
1b , and IL-6) and increases anti-inflammatory cytokines (such as IL-10) (67). Testosterone
deficiency in males is associated with increased CD41 counts and CD4/CD8 ratios, higher im-
munoglobulin levels, and increased B cell counts compared with controls, and these changes
are reversed by hormonal replacement (68, 69).

In mice, testosterone decreases the expression of TLR4 in macrophages (70).
Testosterone suppresses uropathogenic Escherichia coli (UPEC) invasion and coloniza-
tion by inhibiting the JAK/STAT1 signaling pathway in a prostatitis cell model (71, 72)
and also inhibits the expression of pro-inflammatory IL-1b , IL-6, and IL-8 cytokines
(72). Male patients with TB show impaired production of gonadal androgens, with
lower levels of testosterone compared to healthy controls (73).

GENDER

Gender-related occupational and recreational activities can affect exposure to patho-
gens. Women are more likely to assume caretaking roles, making them more exposed to
childhood diseases (74). On the other hand, men wash their hands less often than women
(75). Occupational exposure to animals plays a role in male bias in brucellosis (76) and Q
fever (77), while male-predominant mine-related silicosis is a risk factor for TB (78).

Access to care also differs between men and women. In some countries, there is a pa-
rental preference for boys over girls. Studies in Bangladesh have shown that parents are
more likely to bring their male children to the hospital for pneumonia or diarrhea than
their female counterparts, and girls have longer delays to diagnosis, more severe illness on
admission, and higher in-hospital mortality (79, 80). In adults, sociocultural and religious
norms can also constrain access to health care, and poverty and stigma are important fac-
tors in limiting access to care for women in low-income countries. Furthermore, men con-
sistently use more intensive care unit (ICU) resources and are more likely than women to
be admitted to an ICU and receive advanced life-supporting measures (81).

SEX AND GENDER DIFFERENCES IN BACTERIAL DISEASES

Many bacterial pathogens exhibit a sex preference, and most show a male bias
(Table 1). Fig. 3 summarizes differences in the incidence and severity of bacterial dis-
eases across different organ systems.
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Gastrointestinal tract infections. Bacterial gastrointestinal infections are a leading
cause of illness and death globally and are generally more common and more severe
in males (82). This is partly explained by behavioral differences, as men are more likely
than women to practice food-handling, preparation, and consumption behaviors that
carry a high risk of foodborne diseases (83). Furthermore, differences in the immune
response place males at a higher risk of poor outcomes, and sex hormones also play
an important role.

(i) Helicobacter pylori. Helicobacter pylori infection is highly prevalent worldwide
and is the strongest risk factor for stomach cancer (84). Infection has a slight male bias
(85, 86) and males exhibit more severe inflammation, atrophy, and intestinal metapla-
sia scores compared to females (87). Gastric cancer is twice as common in men as in
women (84).

Epidemiological evidence and animal studies suggest a protective effect of female
sex hormones, namely, estrogen. A longer fertility window and the use of oral contra-
ceptives or hormone replacement therapy are associated with a lower risk of gastric

TABLE 1 Sex bias by specific bacterial species

Bacterial species Bias Sex- and gender-based risk factors Reference(s)
Escherichia coli Female Food consumption and handling practices,

anatomical differences
245

Streptococcus pneumoniae Male Smoking, alcohol use 127
Legionella pneumophila Male Smoking, travel 131–134
Mycobacterium tuberculosis Male Occupational (e.g., mining), smoking, travel 141
Clostridioides difficile Female Antibiotic prescription, exposure to infants 95, 96, 99
Campylobacter spp. Male Food-handling practices 246, 247
Helicobacter pylori Male Smoking, low estrogen 85, 86
Listeria monocytogenes Young women, elderly men Pregnancy, waning cellular immunity 60, 107, 108
Leptospira spp. Male Working outdoors or with animals 248, 249
Francisella tularensis Male Outdoor activities, contact with animals 250
Borrelia burgdorferi Male predominance in the U.S., female in Europe Outdoor activities 220–223
Coxiella burnettii Male Contact with animals 77, 232, 233
Brucella spp. Male Contact with animals, food consumption habits 76, 251
Chlamydia trachomatis Female Screening bias 180, 181
Neisseria gonorrhea Male High-risk sexual behaviours 181, 189, 252
Treponema pallidum Male High-risk sexual behaviours 144, 252, 253

FIG 3 Sex and gender bias in bacterial infections. MSM, men who have sex with men; RTIs, respiratory tract infections;
STIs, sexual transmitted infections; UTIs, urinary tract infections.
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cancer (88). Transgenic hypergastrinemic mice infected with H. pylori develop gastric
carcinoma in a male-predominant fashion (89), and estrogen supplementation, but not
castration, attenuates gastric lesions (90). Ovariectomized mice develop significantly
more severe H. pylori-induced gastritis and gastric cancer, and E2 supplementation has
a protective effect (91).

On the other hand, female sex is associated with clarithromycin and metronidazole
resistance (92) and H. pylori eradication failure (93).

(ii) Clostridioides difficile. C. difficile is a major cause of health care-associated
infection, although community-acquired cases are increasingly reported (94). C. difficile
infection (CDI) is more common in females, who account for 55% to 60% of cases (95,
96). In the United States, females account for 67% of community-acquired CDI (97),
potentially due to more frequent antibiotic prescription in women (98). In addition, tra-
ditional gender roles result in women generally having more exposure to infants,
which is a risk factor for community-acquired CDI (97). Women also account for the
majority of hospital-acquired cases and are responsible for 55% of health care-associ-
ated CDI in Europe (99). Furthermore, females have an increased risk of recurrent CDI
(100) and severe cases have been reported in pregnant and peripartum women (101,
102). On the other hand, male sex is an independent predictor of mortality (103).

(iii) Listeriosis. L. monocytogenes is a foodborne pathogen that can cause septice-
mia and meningitis as well as fetal infection or abortion in pregnant women (104).
Pregnant women are about 20 times more likely to contract this infection compared to
the general population (60) due to suppressed cellular immunity and the placental tro-
pism of L. monocytogenes (104). In pregnant women and mice, increased P4 weakens
CD81 T memory cell-mediated IFN-g responses, which are crucial to host defense
against listerial infection (57). Treating female mice with E2 decreased IL-12, TNF-a,
and IFN-g expression and increased IL-4 and IL-10 expression (105). Estrogen also
depressed monocyte and lymphocyte accumulation at infective foci and increased
mortality in female mice (106).

Incidence rates of invasive listeriosis are higher in females than in males during
reproductive years (likely reflecting pregnancy-related listeriosis). In contrast, in older
age groups, rates are 2 to 4 times higher in males (107, 108), with similar case-fatality
rates (107). In mice, however, infection with L. monocytogenes led to significantly
higher lethality rates and bacterial numbers in females than in males (109).

Respiratory tract infections. Generally, males are more susceptible to respiratory tract
infections (RTIs) and have a more severe disease course and higher mortality compared with
females. Males are more affected by lower RTIs, such as pneumonia, bronchiolitis, or lung ab-
scess, while females more often develop upper RTIs, such as sinusitis, tonsillitis, and otitis externa
(110). However, there are some exceptions. Males are more often affected by otitis media (111)
andmastoiditis (112), whereas pertussis has a higher incidence rate in females (113).

Anatomical factors can explain some of these differences. For instance, peripheral
airways are narrower during the first year of life in males, which may predispose them
to lower rates of RTI (114). On the other hand, after puberty, males have significantly
larger central airway luminal areas than females, independently of height (115). This
could explain why in cystic fibrosis (which affects prepubescent males and females
equally), post-pubescent females have increased rates and severity of exacerbations
and more rapid declines in lung function after colonization with P. aeruginosa com-
pared with males (116). It has also been suggested that females have smaller ostia,
making them more susceptible to sinus obstruction and infection (117).

(i) Otitis media. Middle ear infections are a leading cause of medical visits and anti-
biotic prescription in infants and preschool-aged children. Acute otitis media is more
common in boys than in girls (111, 118), and children with more severe disease are
more often males (119). Studies also show that male sex is a risk factor for recurrent
infection (111), as well as a predictor of chronic otitis media (120).

The reasons for these differences are not well understood; however, it has been
proposed that abnormal pneumatisation of the mastoid process (with the smaller
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mastoid cell air system in boys compared with girls), could result in more frequent and
severe ear infections in male children (121).

(ii) Pneumonia. Pneumonia is a leading cause of hospitalization and death worldwide,
and all types of bacterial pneumonia are more common in males (122). In community-
acquired pneumonia, male sex is significantly associated with hospitalization and death,
with males 1.3 times more likely to die than females (123, 124). Community-acquired pneu-
monia is also more common in boys than in girls (125), and male sex is associated with
bacteremia in children (126).

Streptococcus pneumoniae is the most common bacterial pathogen in both sexes.
Pneumococcal pneumonia and invasive pneumococcal disease are more frequent in males
than in females (127), and male sex is associated with mortality in bacteremic pneumococ-
cal pneumonia (128). Although older (over 50 years) females generally have lower antibody
responses to pneumococcal vaccines than males (129), the 23-valent pneumococcal vac-
cine is more effective at preventing hospitalizations caused by S. pneumoniae in women
(130). Legionellosis is also more frequently noted in males, with male:female ratios of 1.7 to
5 reported in Europe, the U.S., Australia, and Japan (131–134).

Hospital-acquired pneumonia is also more common in men (122, 135), and male
sex is a risk factor for aspiration pneumonia in older patients (136). Furthermore, males
are 1.6 times more likely to develop ventilator-associated pneumonia (137), although
women have more severe disease and higher mortality (122, 138).

Animal models suggest that sex hormones are involved in pneumonia caused by
different pathogens. In some instances, estrogen appears to have a protective role. In a
mouse model of pneumococcal pneumonia, E2 promoted control of macrophage
inflammatory activity and resolution of lung inflammation (139). In contrast, in a mu-
rine model of Acinetobacter baumannii pneumonia, female mice were more susceptible
to infection, and treating male mice with E2 increased their susceptibility (140).

(iii) Tuberculosis. TB is the leading cause of death from a bacterial disease among
adults worldwide. TB rates are significantly higher in men than in women. According to
the World Health Organization, men accounted for 56% of all TB cases in 2020 versus
33% in adult women, with children accounting for the remaining 11% (141). However,
the reasons for this bias are not entirely clear. It has been proposed that it could result
from systematic underreporting and underdiagnosis of TB in women. Women may be
less likely to seek appropriate medical care (142) and present difficulties in diagnostic
testing, such as poorer-quality sputum samples (143). In addition, men undergo chest
imaging sooner and are more likely to have a sputum smear sample performed (144).
However, male bias persists when survey prevalence, rather than notification rates, is
analyzed (141), and male predominance is seen even in low-burden countries where
differences in access to health care should be negligible (78).

Both gender- and sex-related factors play a role. Men have more social contacts and
more often participate in activities that place them at higher risk for TB, such as travel-
ing, smoking, drinking, spending time in settings conducive to transmission (e.g., bars),
and engaging in hazardous careers (e.g., mining) (78). However, other risk factors, such
as household contacts and HIV infection, are not male-biased.

Both human and animal studies have shown that protective immune responses against
M. tuberculosis are largely mediated by CD41 Th1 cells, which secrete IFN-g, and this
response is mediated by IL-12 (145). However, excessive inflammation can exacerbate lung
infection and lead to early death. In a mouse model, elevatedM. tuberculosis loads in males
were associated with an early exaggerated pulmonary inflammatory response resulting in
accelerated disease progression and increased mortality (146). B cells also play a role, and
smaller B cell follicles have been reported in male compared with female lungs in mice
and are associated with greater disease progression (147).

Male bias does not appear until puberty, suggesting a role for sex steroid hormones.
Female and castrated male mice express significantly higher TNF-a, IFN g, and IL-12 lev-
els than uncastrated males (148), and treatment with testosterone increases their suscep-
tibility to Mycobacterium intracellulare and Mycobacterium marinum infection (149).
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Conversely, estrogen appears to have a protective role, as ovariectomized mice have a
higher susceptibility to Mycobacterium avium, which is lessened by treatment with E2
(150). This is paralleled in humans by postmenopausal women, who are more suscepti-
ble toM. avium complex disease (151).

Certain X-linked gene mutations and polymorphisms confer increased risk of TB.
Mutations in CYBB result in X-linked chronic granulomatous disease in males and
increase susceptibility to mycobacterial disease (152), and TLR8 polymorphisms are
linked to tuberculosis susceptibility in males (153).

From a clinical standpoint, women are usually less symptomatic than males. Men are
more likely to be smokers, have more comorbidities, and present with hemoptysis, weight
loss, and pleural effusion (154). Men also have more advanced radiological findings than
women (155) and begin treatment earlier (144), and in a prospective observational study,
male sex was associated with worse treatment outcomes (154). Males also have higher
treatment dropout rates (156) and are at higher risk of recurrence (157).

For unknown reasons, female sex is a risk factor for developing extrapulmonary TB;
studies in the U.S. (158) and Nepal (159) found women to be 1.7 times more likely to
develop extrapulmonary TB relative to males. In addition, a prospective cohort study in
eight countries showed that significantly more women than men had extensively
drug-resistant TB (160).

Urinary tract infections. Urinary tract infections (UTIs) also exhibit a sex-based prefer-
ence, with a bias toward women. Etiology is influenced by patient sex, as E. coli, Klebsiella
pneumoniae, and Streptococcus agalactiae are more frequently isolated in females than in
males, while the opposite is true for Enterococcus faecalis, Proteus mirabilis, and P. aerugi-
nosa (161). The most common causative agent in both sexes is UPEC (162).

Male UTI shows a bimodal distribution at the extremes of age, whereas the burden
of infection in women is durable over a lifetime (162). During the first few months of
life, the incidence of UTI in boys exceeds that in girls (163), but afterwards, females of
all ages are more prone to UTIs than males and around half of all women will experi-
ence at least one UTI during their lifetime (164). This gap significantly decreases with
age as the incidence of benign prostatic hyperplasia, urinary retention, and inconti-
nence increases in the male population.

The increased female susceptibility to UTI is due to several factors. The female ure-
thra is shorter than its male counterpart, which has been proposed to make it easier
for ascending bacteria to reach the bladder (165). Physical proximity of the urethral
opening to the rectum and vagina is another important risk factor, as it can lead to col-
onization of the periurethral mucosa with enteric bacteria (166), and vaginal dysbiosis
is associated with an increased risk of UTI (167). A dryer environment at the urethral
opening and the anti-bacterial properties of prostate secretions are additional protec-
tive features in men (168).

While more common in women, UTIs are more persistent and have higher morbidity
and risk of complications in men. Other organs, namely, the prostate, are often involved
(168), and male UTIs are usually treated with antibiotics for a longer period compared with
female UTIs (169). In UPEC-infected mice, more males than females are unable to clear bac-
teria and remain chronically infected, and male mice more frequently develop advanced
pyelonephritis and kidney abscesses compared with females (170, 171). Furthermore, there
is a strong and rapid increase in proinflammatory cytokine expression in female mice
which is not observed in males and a larger infiltration by immune cells (170, 171), which
may contribute to better bacterial clearance.

Sex hormones are also likely involved. Treatment of UPEC-infected female mice
with testosterone leads to persistent bacteriuria and chronic cystitis (170), and cas-
trated male mice have significantly lower bacterial burdens than sham-operated con-
trols (171). After menopause, decreased estrogen levels contribute to physiologic and
structural changes which increase the risk of UTI in postmenopausal women, such as
reduced urinary flow, increased postvoid residual volume, and incontinence (172)
along with a rise in vaginal pH, loss of commensal lactobacilli, and increased vaginal
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colonization by enteric organisms (165). Furthermore, randomized controlled trials
have shown that vaginal estrogen administration reduces UTI recurrence rates in post-
menopausal women (173).

Sexually transmitted infections. Despite being curable, bacterial sexually trans-
mitted infections (STIs) are associated with a significant burden of disease. STI-related
morbidity disproportionately affects women, with important implications for women
of reproductive age.

In many societies, more restrictive sociocultural norms regarding sexual behavior in
women may limit their sexual freedom, restrict their access to information, and reduce
their ability to practice safe sexual behaviors (174). Male-to-female transmission of STIs
is also thought to be more efficient than female-to-male transmission, possibly due to
retention of the infected ejaculate within the vagina and greater tissue injury during
intercourse (175).

In addition, STIs are more often asymptomatic in women than in men. Undiagnosed and
untreated STIs can result in important long-term reproductive complications, including pel-
vic inflammatory disease (PID), ectopic pregnancy, and infertility (176, 177). Furthermore,
infections in pregnant women are associated with maternal morbidity as well as adverse fe-
tal and perinatal outcomes (178).

(i) Chlamydia. Chlamydia is the most common bacterial STI globally (179). Persons
between 15 and 24 years report the highest infection rates, and young women are
twice as affected as men (180, 181), although this partly reflects screening programs
which primarily target women.

The infection is asymptomatic in a large proportion of cases in both sexes, espe-
cially in women (182), but if left untreated can cause severe damage, particularly to the
female reproductive tract, and chlamydia is an important cause of PID (176). In men,
urethritis can be complicated by epididymitis and male infertility (183). C. trachomatis
is the most common genitourinary trigger of reactive arthritis, and Chlamydia-induced
arthritis is most often seen in men (184).

The mechanisms by which sex hormones affect C. trachomatis infections are not entirely
clear. The likelihood of developing chlamydial or gonococcal salpingitis has been reported
to be highest during the estrogen-dominant proliferative phase of the menstrual cycle
(185), and a positive correlation was shown between chlamydial load and E2 levels in
women (186). In vitro studies have also demonstrated that estrogen enhances chlamydial
adherence and intracellular development (187). In contrast, other studies have found
increased detection of C. trachomatis during the secretory phase when P4 is higher (188).

(ii) Gonorrhea. Gonorrhea is the second most common bacterial STI (179) and rates
of reported infections continue to increase, particularly among men. Rates are highest
among adolescents and young adults, and men—especially men who have sex with
men (MSM)—are currently more often affected than women in high-income countries
(181, 189). In 2018, the male-to-female ratio was 3.2 in Europe and 1.4 in the United
States (181, 189).

Urethritis is the most common manifestation of gonococcal infection in men, whereas
the endocervical canal is the primary infection site in women (190). Most women show no
symptoms of infection (182), while males are often symptomatic (191). Rectal gonorrhea
occurs in both sexes and is usually asymptomatic in women, whereas cases in MSM can be
associated with complaints of overt proctitis (192). Complications in men include epididy-
mitis, infertility, prostatitis, and seminal vesiculitis (190). Similarly to chlamydial infection,
PID is the main complication of gonorrhea in women (176). Disseminated gonococcal
infection is the most common systemic complication in both sexes, and probably occurs
more frequently in women (190). Estrogen likely plays a role, as E2-treated mice show an
enhanced susceptibility to disseminated gonococcal infection (193).

The molecular mechanisms used by the gonococcus to initiate infection, and the
resulting inflammatory response, also differ between sexes. In men, interaction with
the urethral epithelial cells triggers the release of pro-inflammatory cytokines, promot-
ing an inflammatory response and contributing to the symptomatic nature of
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gonococcal disease in men (194). Similarly, ascending gonococcal infection of the
uterus and fallopian tubes also results in inflammation. In contrast, gonococcal cervici-
tis is mostly asymptomatic because the gonococcus can evade host immune function
by subverting the alternative pathway of complement and does not elicit strong
immune responses during uncomplicated genital infections in women (194).

Emergence of gonococcal antimicrobial resistance is a major public health threat,
and one study found that men infected with N. gonorrhoeae had 4-fold higher expres-
sion of gonococcal antimicrobial resistance genes compared with women (195), which
could have implications for sex-specific treatment.

Sepsis. Sepsis is a life-threatening organ dysfunction caused by a dysregulated host
response to infection (196), and it is a major global health problem (197). If not identified
and treated promptly, it can lead to septic shock, multiple organ failure, and death (196).
The most common sources are the respiratory tract in males and the urinary tract in
females (198, 199). Most studies report higher rates of sepsis and septic shock in males,
who account for 55% to 64% of cases (200–202), and male sex has been identified as a pre-
dictor of sepsis after trauma (203) and surgery (204). Experimental studies have consistently
shown a survival advantage and a protective effect of sex hormones in females. In humans,
however, reports on sex and mortality have shown conflicting results. Some have found
higher mortality in women (199, 205), others in men (198, 206), whereas others reported
no differences (207, 208).

In animal models, estrogen exerts a protective effect by maintaining adequate immune
responses and cardiac function. Ovariectomized females show depressed macrophage and
splenocyte functions after trauma-hemorrhage, which are associated with significantly
increased mortality from subsequent sepsis (209, 210), and addition of E2 normalizes
immune functional capacities (210). Sepsis-induced cardiac dysfunction is also less pro-
nounced in female mice than in males (211). In contrast, in humans, circulating E2 levels
are increased in non-survivors compared to survivors (212). Testosterone levels are gener-
ally low in male patients with sepsis (213), and androgen depletion appears to be protec-
tive in animals. Testosterone receptor blockade after trauma-hemorrhage in male mice
restores depressed immune functions and improves survival following subsequent sepsis
(214). Males also show an inappropriate inflammatory response to sepsis and produce sig-
nificantly higher levels of pro-inflammatory cytokines (including TNF-a, IL-6, IL-8, IL-1b ,
and procalcitonin) following endotoxemia induction or sepsis than females (22, 215, 216),
which could render them more susceptible to septic shock.

Sex-based differences in health care have also been reported. Women experience
significantly longer delays to initial antibiotic administration than men (217, 218), and
in a nationwide cohort study, a complete 1-h emergency department sepsis care bun-
dle was fulfilled 38% more often in men (218). In the UCI, women are less likely to
receive deep venous thrombosis prophylaxis, hemodialysis catheters, invasive mechan-
ical ventilation (199, 205), or vasopressor support (207), and have a shorter length of
stay (206) compared with men.

Other infections. (i) Lyme borreliosis. Lyme borreliosis is the most common human
vector-borne infection in Europe and the U.S. (219). It has a slight male predominance in
the U.S., with around 57% of cases being male (220), presumably due to higher occupa-
tional risks and outdoor recreational activities. However, in Europe, 55% to 60% of affected
patients are female (221–223). Furthermore, females have been reported to attract 33%
more tick bites than males, despite spending less time outdoors (224).

One study in Sweden found that erythema migrans in women was less likely to have
the classic “bull’s eye” appearance, and the duration from treatment until disappearance of
the lesion was significantly longer in women than in men (224).

In the U.S., 70% of patients with Lyme carditis and 60% of cases of Lyme arthritis are
male (220). A retrospective study in Slovenia reported that 75% of patients with Lyme arthri-
tis were men, and men accounted for 60% of cases of neuroborreliosis (225). Acrodermatitis
chronica atrophicans, a late cutaneous manifestation of Lyme disease, was more common
in females, who represented nearly 70% of cases (225). Women may also be at higher risk of
developing post-treatment Lyme disease syndrome (226). Reinfection rates are higher in
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women, particularly postmenopausal women (227), which could be due to falling estrogen
levels and differences in the immune response (228).

Sex also impacts diagnosis, because the recommended two-tier testing is male bi-
ased. The magnitude of enzyme-linked immunosorbent assay (ELISA) and IgG serologic
responses is greater in men (229) and men have on average six reactive bands on the
IgG immunoblot, whereas women have only four (230). Current Centers for Disease
Control and Prevention criteria require five bands for a positive test, likely underesti-
mating the true number of female cases (230).

(ii) Q fever. Q fever is a zoonosis caused by Coxiella burnetii (231). Seroprevalence
is higher in men, a study in Australia reporting a male-to-female ratio of around 1.6
(77). An even greater proportion of men are diagnosed with the disease (sex ratio of 2
to 5) (232, 233), suggesting that men develop symptomatic Q fever more often than
women (234). In contrast, boys and girls are almost equally represented (231), suggest-
ing that sex hormones could be involved.

In C. burnetii-infected mice, bacterial loads and granuloma numbers were lower in
intact females than in males and ovariectomized females, and treatment with E2
reduced bacterial loads and granuloma numbers in ovariectomized mice (235). P4
inhibits C. burnetii replication in infected placenta-derived cells (236) and bacterial
loads increase toward parturition (237) when P4 levels decrease. However, both ani-
mals and humans exhibit an increased risk of persistent infection and unfavorable out-
comes during pregnancy (231), likely due to impaired cellular immunity.

(iii) Meningitis. Bacterial meningitis is an infection of the membranes that cover
the brain and spinal cord caused by a bacterial pathogen. S. pneumoniae, N. meningiti-
dis, and Haemophilus influenzae are the most frequently isolated bacteria. Some studies
have reported similar rates of bacterial meningitis in men and women, while others
have found a slight male bias (238–241). Male sex has been identified as a predictor of
poor outcomes in children (242, 243) and adults (238, 241), despite females having a
higher disease severity and higher inflammation markers on admission (238). This may
be in part related to a better female response to anti-inflammatory treatment with cor-
ticosteroids (244). Sex steroid hormones may also play a role.

CONCLUSIONS

Many bacterial infections exhibit sex and gender differences in pathophysiology,
incidence, clinical presentation, disease course, response to treatment, and outcome.
Both biological and gender factors come into play and their recognition is essential to
improving patient care. Behavioral differences play an important role in the exposure
to pathogens, whereas sex differences in the immune response are directly influenced
by sex chromosome complement and concentrations of sex steroid hormones.

Nevertheless, these observations have not been systematically integrated into research
practices or resulted in changes to medical guidelines, which are mostly not sex-specific.
This needs to change, and funding agencies and medical journals should promote scien-
tific research that is sex-conscious and provides sex-disaggregated data. Incorporating
implementation science methods to translate existing evidence into sex-specific guidelines
is essential to promote improved and more personalized patient care.
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