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ABSTRACT A 1.488-Gb draft genome sequence was assembled for the fungus Massospora
cicadina, an obligate parasite of periodical cicadas. The M. cicadina genome has experienced
massive expansion via transposable elements (TEs), which account for 92% of the genome.

Massospora and other Entomophthorales (Zoopagomycota) are grossly understudied
due to their ephemeral and fastidious lifestyles, as well as the complicated disease

and host life cycles (1–4). The recent discovery of cathinone and psilocybin in Massospora-
infected cicadas has raised questions about their biosynthesis, which have proven difficult
to answer due to unwieldy metagenomes derived from field-collected cicadas (5). The
generation of high-quality genomic resources is fundamental to answering these and
other questions regardingMassospora’s unique biology and evolution.

Conidia and azygospores of Massospora cicadina strain MCPNR19 (ARSEF14555) were
collected from M. cicadina-infected Magicicada septendecim in Pennsylvania in June 2019
(Fig. 1). The spores were liberated from harvested posterior fungal plugs (conidia) or by
scraping abdominal walls (azygospores) of frozen infected cicada cadavers stored at
280°C. Azygospores were further isolated using 40- and 25-mm soil sieves to remove host
tissue and provide sufficient fungal biomass. Genomic DNA (gDNA) was extracted from
the spore pools using a fungal cell lysis and cetyltrimethylammonium bromide (CTAB)
gDNA purification protocol (6). Oxford Nanopore (ONT) DNA libraries generated using the
SQK-LSK109 ligation kit were sequenced on a MinION instrument with five R9.4.1 flow
cells (2 for conidia, 3 for azygospores) and base called using Guppy v6.0.1-GPU (Table 1)
to produce 29.7 Gb (coverage, 20�). Illumina sequencing of 1 azygospore library on a
NovaSeq instrument (2� 150 bp) using a Covaris-sheared DNA library produced 26.2 Gb
(coverage, ;18�). Table 1 details the library preparation, sequencing, and assembly
details obtained using NanoStat v1.4.0, wtdbg2 v2.5, BBMap v38.86, and AAFTF v0.2.6
(7–11). Bacterial contamination was removed by inspection of the Blobtools2 results (12,
13), iterative taxonomic searches using MMseqs2 v13-45111 (13) with UniRef50 (14), and
analysis of the fungal transposable element (TE) content (15, 16). Metagenome-assembled
bacterial genomes were analyzed separately (17). A 1.488 Gbp assembly in 19,694 scaf-
folds was constructed from a combined read coverage of 38� (L50, 139 kb; N50, 3,261;
mean GC content, 41.13%). A BUSCO v5.2.2 (18) completeness assessment identified 182
complete markers (71%) out of 255 markers in the Eukaryota Odb10 data set and 491
(65%) of 758 markers in the Fungi Odb10 data set (Table 1).

The genome was masked using RepeatMasker v4-1-1 (19) with Repbase (20) fungi
repeats and a species-specific library generated using RepeatModeler v2.0.1 (21, 22). The
repeats were screened manually to remove protein-coding genes using a DIAMOND
v2.0.13 (23, 24) search of the Swiss-Prot v2021_04 database (DB) (25). The best (373 total)
BUSCO-derived models were used to train the ab initio predictors SNAP v2013_11_29 (26)
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and AUGUSTUS v3.3.3 (27), with additional predictions from the self-trained programs
GeneMark-ES v4.68 (28) and GlimmerHMM v3.0.4 (29). Exon evidence was generated to
improve gene predictions using DIAMOND BLASTX and Exonerate v2.4.0 to align Swiss-
Prot DB proteins (30). EVidenceModeler v1.1.1 (31) was used via Funannotate to generate
consensus gene models with default evidence weights. tRNA genes were predicted using
tRNAscan-SE v2.0.9 (32). Putative protein functions were assigned based on sequence simi-
larity to the InterProScan v5.51-85.0 (33, 34), Pfam v35.0 (35), eggNOG v2.1.6-d35afda (36),
dbCAN2 v9.0 (37), and MEROPS v12.0 (38) databases, relying on NCBI BLAST v2.9.01 (39)
and HMMER v3.3.2 (40). Secretion signals and transmembrane domains were annotated
using Phobius (41) and SignalP v5.0b (42). A total of 7,532 gene models (5,453 protein-cod-
ing genes and 2,079 tRNAs) were predicted.

The genome of M. cicadina strain MCPNR19 is a significant improvement over the
previously sequenced strain MICH 231384 (5). Similarly to the 1.018-Gbp myrtle rust
genome (43) and the 1.25-Gbp soybean rust genome (44), 92% (1.369 Gbp) of the
MCPNR19 genome consists of TEs, 73% of which are LTR Ty3 retrotransposons. The low
predicted protein-coding gene count likely reflects gene undercalling in the absence
of transcriptome sequencing (RNA-seq) data and efforts to avoid overpredicting TEs as
genes (Table 1). Future work incorporating transcriptomic data is needed to validate
these findings.

Data availability. This whole-genome shotgun project has been deposited at DDBJ/
ENA/GenBank under the accession number JAKSZP000000000. The version described in

FIG 1 Photographs of Massospora cicadina-infected Pharaoh cicadas (Magicicada septendecim) and
associated spore stages. (A) Adult female with conspicuous conidia “plug” protruding from the
posterior end of the abdomen. (B) Adult male with inconspicuous azygospore (resting spore)
infection. (C) Active male with conidial plug. (D) Close-up of M. cicadina verrucose (“warty”) conidia.
(E) Close-up of M. cicadina thick-walled reticulated (“net-like”) azygospores. The photos in panels A, B,
D, and E are from brood V, Morgantown, WV (2016). The photo in panel C is of a live infected cicada
included in the sampling for strain MCPNR19 (ARSEF14555). Photos in panels A and B are by
Cameron Stauder. Photos in panels C to E are by Matt Kasson.
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TABLE 1 Genome strain information, statistics, and methods forMassospora cicadina

Characteristic

Data for strain:

MICH 231384 MCPNR19 (ARSEF 14555)
Spore type Conidia Conidia, azygospores
Yr/location/cicada brood 2016/OH, USA/brood V 2019/PA, USA/brood VIII
Sampling location I-77S rest area (Summit County) Carnegie Museum of Natural History Powdermill

Nature Reserve (Westmoreland County)
Sampling coordinates (lat, long) 41.194492,281.624714 40.164837,279.265278
Sequencing technology Illumina HiSeq Illumina NovaSeq 60001 Oxford Nanopore

MinION R9 LSK109
Assembly method SPAdes v. 3.10.0 wtdbg2 v. 2.5, target assembly size of 1.1 Gb
Assembly polishing wtpoa-cns using Illumina reads and Racon
Assembly contig extension BBMap extend.sh using Illumina reads
Assembly adaptor and contamination screening AAFTF v. 0.2.6
Genome size (Mbp) 766.56 1,488.88
GC content (%) 39.3 41.13
Scaffold N50 3,457 3,261
Scaffold L50 (bp) 67,854 139,493
No. of scaffolds 272,193 19,694
Longest scaffold (kbp) 225 1,107
No. of contigs 373,021 19,694
Avg coverage (�) 6.5 38.0
Total Illumina sequence data (Gbp) 16.6 26.22
Total Nanopore sequence data (Gbp) 29.73
Avg Nanopore coverage (�) 20
Nanopore read N50 (bp) 5,209
Longest Nanopore reads (kbp) 265, 179, 159
Nanopore read quality scorea 9.9 million (85.1%) of the 11 million reads had a

mean quality score of 10 (.Q10)
No. of BUSCOs (Eukaryota/Fungi Odb10
data sets [n {%}])

Complete 107 (42)/301 (40) 182 (71)/491 (65)
Complete and single-copy 107 (42)/301 (40) 177 (69)/481 (63)
Complete and duplicated 0 (0)/4 (1) 5 (2)/10 (1)
Fragmented 56 (22)/110 (15) 29 (11)/74 (10)
Total no. of genes (protein-coding genes/tRNAs) 9,889 (9,510/379) 7,532 (5,435/2,079)
GenBank accession no. QMCF00000000 JAKSWZP000000000
GenBank assembly accession no. GCA_006912075.1 GCA_022478985.1
SRA accession no SRR7045068 (Illumina) SRR17553520–SRR17553524 (ONT); SRR17553525,

SRR17553526 (Illumina)
BioSample accession no. SAMN08956764 SAMN24722893
BioProject accession no. PRJNA451007 PRJNA795459
Supporting data
Sanger sequencing data
(GenBank accession no.)

See reference 3 Representative sequences deposited asM.
cicadina strains 8PA01 and 8PA02: 28S
(MN706567, MN706568); 18S (MN706543,
MN706544); EFL (MT044284, MT044285).

Specimen collection and storage Collected alive individually in 15-mL Falcon tubes,
transported on ice to lab, and stored at280°C
until sequencing. Shipped on dry ice from WVU
to UCR.

Spore cleanup methods Both: spores were aseptically removed from
cicada host and placed in sterile secondary
tubes for transport. Azygospores were passed
through sterile 40- and 25-mm soil sieves to
reduce host tissue and specifically enrich for
spores.

Library prep and parameters Illumina: NEB Ultra II FS (New England Biolabs,
Ipswich, MA) (fragmentation enzyme) libraries
prepared from DNA sheared with a Covaris
S220 (Woburn, MA).

Oxford Nanopore: constructed for R9.4.1 flow
cells and the LSK109 kit. The NEBNext end-
repair/dA-tailing module (E7546), NEBNext

(Continued on next page)
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this paper is version JAKSZP010000000. The sequence reads have been deposited under
SRA project accession numbers SRR17553520 to SRR17553526 and BioProject accession
number PRJNA795459.
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