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Dermatology and Allergology, University of Szeged, Szeged, Hungary, 3 Centre for Translational Medicine,

Semmelweis University, Budapest, Hungary, 4 Division of Pancreatic Diseases, Heart and Vascular Centre,

Semmelweis University, Budapest, Hungary, 5 Department of Surgery, University of California, Los Angeles,

Los Angeles, California, United States of America

☯ These authors contributed equally to this work.

* eszter.hegyi@aok.pte.hu

Abstract

Introduction

Cystic fibrosis transmembrane conductance regulator (CFTR) plays a central role in pancre-

atic ductal fluid secretion by mediating Cl- and HCO3
- ion transport across the apical mem-

brane. Severe CFTR mutations that diminish chloride conductance cause cystic fibrosis

(CF) if both alleles are affected, whereas heterozygous carrier status increases risk for

chronic pancreatitis (CP). It has been proposed that a subset of CFTR variants character-

ized by a selective bicarbonate conductance defect (CFTRBD) may be associated with CP

but not CF. However, a rigorous genetic analysis of the presumed association has been

lacking.

Aims

To investigate the role of heterozygous CFTRBD variants in CP by meta-analysis of pub-

lished case-control studies.

Materials and methods

A systematic search was conducted in the MEDLINE, Embase, Scopus, and CENTRAL

databases for published studies that reported the CFTRBD variants p.R74Q, p.R75Q, p.

R117H, p.R170H, p.L967S, p.L997F, p.D1152H, p.S1235R, and p.D1270N in CP patients

and controls.

Results

Twenty-two studies were eligible for quantitative synthesis. Combined analysis of the 9

CFTRBD variants indicated enrichment in CP patients versus controls (OR = 2.31, 95% CI =

1.17–4.56). Individual analysis of CFTRBD variants revealed no association of p.R75Q with

CP (OR = 1.12, 95% CI = 0.89–1.40), whereas variants p.R117H and p.L967S were signifi-

cantly overrepresented in cases relative to controls (OR = 3.16, 95% CI = 1.94–5.14, and

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0276397 October 20, 2022 1 / 11

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Berke G, Gede N, Szadai L, Ocskay K,
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Pécs to EH, the National Research Development

and Innovation Fund grant ÚNKP-21-3-I-PTE-1081
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OR = 3.88, 95% CI = 1.32–11.47, respectively). The remaining 6 low-frequency variants

gave inconclusive results when analyzed individually, however, their pooled analysis indi-

cated association with CP (OR = 2.08, 95% CI = 1.38–3.13).

Conclusion

Heterozygous CFTRBD variants, with the exception of p.R75Q, increase CP risk about 2-4-

fold.

Introduction

Chronic pancreatitis (CP) is a progressive inflammatory disorder of the pancreas, which devel-

ops due to an interplay between environmental and genetic risk factors [1]. Research on the

identification of the underlying genetic basis has been rapidly evolving; there are at least a

dozen genes reported to date that may contribute to CP risk. Based on their function, these

susceptibility genes and their alterations can be categorized into three distinct pathophysiolog-

ical pathways [2]. Genetic variants in the so-called trypsin-dependent pathway alter premature

intrapancreatic trypsinogen activation, and include the serine protease 1 and 2 (PRSS1, PRSS2)

genes encoding human cationic and anionic trypsinogen, the serine protease inhibitor Kazal

type 1 (SPINK1) gene, the chymotrypsinogen C (CTRC) gene, and an inversion at the chymo-

trypsinogen B1-B2 (CTRB1-CTRB2) locus [3]. Variants in the misfolding-dependent patholog-

ical pathway induce digestive enzyme misfolding and endoplasmic reticulum stress. Certain

variants in PRSS1, CTRC, carboxypeptidase A1 (CPA1), and carboxyl ester lipase (CEL) belong

to this group [4]. Finally, variants in the ductal pathway of CP risk affect genes encoding differ-

ent channels expressed predominantly in the pancreatic ductal epithelial cells. These include

alterations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, the tran-

sient receptor potential cation channel subfamily V member 6 (TRPV6) gene, and the claudin

2—MORC family CW-type zinc finger 4 (CLDN2-MORC4) locus [2]. More recently, protease-

sensitive pancreatic lipase (PNLIP) variants, and the loss-of-function c.129+1G>A chymotryp-

sin like elastase 3B (CELA3B) variant have been reported to increase CP risk. The pathome-

chanism by which these variants promote the development of CP remains to be elucidated [5,

6].

CFTR is a chloride (Cl-)/bicarbonate (HCO3
-) ion channel expressed in the secretory epi-

thelia of airways, gastrointestinal tract, pancreas, reproductive organs, and exocrine glands [7].

In the pancreas it has a dual function; CFTR-mediated HCO3
- secretion drives the transepithe-

lial fluid secretion in pancreatic ducts while maintaining the characteristic alkaline pH of the

pancreatic juice. Mutations in CFTR that diminish the ion channel function and lead to

impaired epithelial fluid transport cause cystic fibrosis (CF), the most common autosomal

recessive disorder among European populations. When both CFTR alleles harbor severe loss-

of-function mutations, CF with pancreatic insufficiency develops [8]. A severe mutation on

one CFTR allele and a milder mutation on the other allele with some residual CFTR function

may result in CF with pancreatic sufficiency or in CFTR-related disorders such as CP. Hetero-

zygous carriers of CFTR mutations do not develop CF but exhibit increased risk for CP [8].

The Whitcomb laboratory proposed that certain CFTR mutations that are not associated

with CF may be risk factors for CP by preferentially lowering the HCO3
- conductance and per-

meability of the CFTR channel (bicarbonate defective CFTR variants; CFTRBD) [9, 10]. Genetic

and functional assays identified 9 such CFTRBD variants (p.R74Q, p.R75Q, p.R117H, p.R170H,
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p.L967S, p.L997F, p.D1152H, p.S1235R, and p.D1270N). Subsequent studies, however, failed

to replicate the association of the relatively frequent variant p.R75Q with CP, raising doubt

about the clinical relevance of the CFTRBD variants [11, 12]. To resolve this controversy, here

we investigated the role of CFTRBD variants in CP by a meta-analytical approach.

Methods

Search strategy

Two authors independently performed a systematic search on June 7, 2022, in four databases

(MEDLINE via Pubmed, Embase, Scopus, and Cochrane Library) using the following search

key: ((CFTR related disorders) OR (CFTR RD) OR pancreatitis)) AND ((CFTR OR (cystic

fibrosis transmembrane conductance regulator) AND (mutation� OR variant� OR poly-

morphism�)). To reduce the number of results in Scopus, the search was conducted within the

‘article title, abstract, keywords’ fields. Language or date restrictions were not applied. Citing

(using MEDLINE via Pubmed and Google Scholar) and cited reference searches were con-

ducted on June 23, 2022.

Protocol registration

The present work is reported in accordance with the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) Statement (S1 Checklist) [13]. The protocol of the

meta-analysis was registered in advance in the PROSPERO database under the registration

number CRD42020163218.

Selection criteria and data extraction

The study selection process was completed by two authors using a reference management pro-

gram (Endnote X7.5; Clarivate Analytics, Philadelphia, PA). Genetic association case-control

studies with adequately defined CP patients [14] and controls investigating some or all previ-

ously reported CFTRBD variants (p.R74Q, p.R75Q, p.R117H, p.R170H, p.L967S, p.L997F, p.

D1152H, p.S1235R, and p.D1270N) were included. Studies (i) analyzing autoimmune, heredi-

tary, or familial chronic pancreatitis; (ii) with overlapping cohorts; and (iii) without proper

allele frequency or genotype distribution data were excluded.

Eligible original studies were subjected to data collection onto a pre-defined Excel sheet by two

authors independently. The following data were extracted: first author, publication year, cohort

ethnicity, range and mean age of participants, etiology of CP, number of cases and controls, geno-

typing method, allele frequencies of CFTRBD variants, and SPINK1 p.N34S carrier status. In some

cases, allele frequencies were calculated from the reported genotype distribution.

Quality assessment

Quality of the included studies was assessed by two authors independently using the modified

version of the Newcastle-Ottawa Scale (NOS) and by calculating the Hardy-Weinberg Equilib-

rium with the χ2 test (S1 Table).

Discrepancies during search, selection, data extraction, and quality evaluation between

authors were resolved by the corresponding author or by mutual agreement.

Statistical analysis

Combined or individual effects of CFTRBD variants were assessed by calculating pooled odds

ratios (OR) with 95% confidence intervals (CI) using the random-effects model with Der-

Simonian Laird estimation. Results were displayed on forest plots. To determine the
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cumulative effect of CFTRBD variants, studies investigating all nine variants were included.

Heterogeneity between studies was investigated with the I2 (p�0.1) and χ2tests, interpretation

of results was based on the Cochrane Handbook for Systematic Reviews of Interventions ver-

sion 6.3 [15]. Sensitivity analysis was carried out by repeating the quantitative synthesis while

leaving out one study at a time (leave-one-out method). Where the number of included studies

allowed, funnel plots were generated to rule out publication bias and the small study effect was

estimated by Egger’s test. The effect of compound heterozygosity for CFTRBD and SPINK1 p.

N34S variants was assessed by Fisher’s exact test. Statistical analyses were performed with the

Stata 15 (Stata Corp) program.

Results

The comprehensive systematic search and selection process identified 22 case-control studies

that reported on some or all of the 9 CFTRBD variants and met the inclusion criteria for quanti-

tative synthesis (Fig 1) [9, 11, 12, 16–34]. We noted significant geographic/ethnic differences

in the distribution of the CFTRBD variants. In the cohorts of European origin or ancestry, the

overall allele frequency of all CFTRBD variants was 6.1% (174/2862) in patients and 3.6% (130/

3592) in controls, whereas CFTRBD variants were nearly absent in the Indian and East-Asian

cohorts (S2 and S3 Tables). Although CFTRBD variants were relatively common in an African

American cohort, there was no difference between their allelic distribution in patients (10/464,

2.2%) and controls (10/476, 2.1%, OR = 1.03; 95% CI 0.42–2.49; p = 0.95). To avoid the poten-

tially confounding effect of these geographic/ethnic disparities, we focused our analysis on

cohorts of European origin. All CFTRBD variants were reported in the heterozygous state with

the sole exception of the p.R75Q variant, which was also detected in the homozygous state in 3

patients and 1 control. Hence, our analyses considered allele frequencies only.

Association analysis

The aggregate analysis of the 9 CFTRBD variants (p.R74Q, p.R75Q, p.R117H, p.R170H, p.L967S,

p.L997F, p.D1152H, p.S1235R, and p.D1270N) showed significant association with CP

(OR = 2.31, 95% CI = 1.17–4.56) (Fig 2). When analyzed individually, conclusive results were

obtained for 3 CFTRBD variants, p.R75Q, p.R117H, and p.L967S. The most common variant p.

R75Q showed no association with CP (OR = 1.12, 95% CI = 0.89–1.40) (Fig 3A). In contrast, vari-

ants p.R117H and p.L967S were significantly overrepresented in CP cases relative to controls

(OR = 3.16, 95% CI = 1.94–5.14, and OR = 3.88, 95% CI = 1.32–11.47, respectively) (Fig 3B and

3C). Individual analysis of the remaining 6 CFTRBD variants (p.R74Q, p.R170H, p.L997F, p.

D1152H, p.S1235R, and p.D1270N) gave inconclusive results due to their low frequency in the

studied cohorts (S1–S4 Figs). However, a pooled analysis of these 6 variants showed significant

enrichment in CP cases versus controls (OR = 2.08, 95% CI = 1.38–3.13) (Fig 4).

No substantial heterogeneity was observed among studies. Sensitivity analysis (leave-one-

out method) revealed a significant impact of the largest cohort study conducted by Larusch

et al. (2014) on the summary OR values in case of three variants; omitting this study resulted

in loss of significance in case of the p.L967S and p.S1235R variants, while the calculated risk

became significant in case of the p.L997F variant.

Quality assessment and publication bias

Assessment of the Hardy-Weinberg equilibrium in control subjects for the individual CFTRBD

variants revealed no deviations in the included studies (S1 Table). Based on the modified New-

castle-Ottawa Scale, all studies met the excellent-quality criteria (S1 Table). Funnel plots were

generated for the p.R75Q, p.R117H, and p.D1152H variants (S4 Fig).
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Discussion

The pathogenic significance of CFTR mutations has been established not only in the develop-

ment of CF, but also in CFTR-related disorders such as congenital absence of the vas deferens,

chronic sinopulmonary disorders, and CP. Observations that heterozygous and compound

heterozygous CFTR mutations are linked with CP were first reported in the late 1990s [35, 36].

Fig 1. PRISMA flow diagram showing the systematic search and selection process.

https://doi.org/10.1371/journal.pone.0276397.g001
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Large cohort analyses confirmed the initial findings and determined an increased risk for het-

erozygous carriers of the severe p.F508del mutation (OR~2.5), and the mild p.R117H mutation

(OR~4) [9, 11, 12, 18–20, 37]. Compound heterozygous carriers of a severe and a mild CFTR
variants are at increased risk of developing CP and such constellations can be considered caus-

ative [8, 12]. It has been proposed that a subset of 9 CFTR variants somewhat selectively

reduces the permeability of CFTR to HCO3- and thereby increases risk for CP [9, 10]. Accord-

ing to the CFTR2 database, when combined with a CF-causing allele, these CFTRBD variants

do not cause CF or have variable clinical effects [38].

The aim of the present study was to determine the risk of CP in heterozygous CFTRBD carri-

ers using meta-analysis of published case-control studies. First, we investigated the association

of CP with all 9 CFTRBD variants combined, based on the assumption that these variants act

via the same pathomechanism. We found that CFTRBD variants increased CP risk by about

2.3-fold, as estimated by the odds ratio. Next, individual analysis of the 9 CFTRBD variants was

Fig 2. Forest plot showing cumulative odds ratios for chronic pancreatitis risk in carriers of CFTRBD variants. OR,

odds ratio; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0276397.g002

Fig 3. Forest plot showing odds ratios for chronic pancreatitis risk in subjects with CFTR variants. A, p.R75Q; B, p.R117H; C, p.L967S. OR, odds ratio; CI,

confidence interval.

https://doi.org/10.1371/journal.pone.0276397.g003
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performed. Two variants, p.R117H and p.L967S, showed significant association with CP with

moderate effect sizes (OR~3.2 and 3.9, respectively). The CFTR2 database reports the p.R117H

variant as a mild CF-associated mutation with variable clinical consequences influenced by the

length of the poly-T tract in intron 8. The variant acts as CF-causing when found in cis with

the T5 tract [38]. When combined with a T7 tract in cis and a CF-causing variant in trans,
some subjects develop CF while others do not. Notwithstanding the poly-T tract length of p.

R117H carriers, CF patients are likely to remain pancreatic sufficient. With respect to CP, it

seems that p.R117H increases disease risk regardless of the poly-T tract status [9, 11]. Unfortu-

nately, due to the limited data on the intron 8 poly-T tract in the studies included in our meta-

analysis, we could not investigate this relationship further. Mechanistically, the p.R117H is an

outlier among the CFTRBD variants, as it significantly reduces Cl- transport, while the other 8

variants have minimal or no impact on this CFTR function (see Fig 1B in [9]). A recent study

demonstrated that mutation p.R117H impairs channel gating due to the loss of a hydrogen

bond between the side chain of Arg117 and the backbone carbonyl group of Glu1124 [39].

Association of the p.L967S variant with CP was mainly driven by a single study with the

largest cohort [9], as determined by the sensitivity analysis. Since the variant was found only

once in two other studies each, the overall confidence regarding the effect size of the demon-

strated disease association remains tempered. The CFTR2 database indicates that the p.L967S

variant has varying clinical consequences. When combined with another CF-causing variant,

it may or may not cause CF. Patients with CF who have this variant are likely to be pancreatic

sufficient [38].

In contrast to the p.R117H and p.L967S variants, variant p.R75Q was not associated with

CP. According to the CFTR2 database, this variant does not cause CF when combined with a

CF-causing variant [38]. Earlier studies suggested that p.R75Q elevates CP risk in subjects

transheterozygous for the SPINK1 p.N34S mutation [10, 40]. We were unable to perform a rig-

orous test of this assumption, because of the very low number of transheterozygotes in con-

trols. We considered comparing the detected and expected number of transheterozygous CP

patients, however, ethnic/geographic differences in the carrier frequency of the individual

Fig 4. Forest plot showing cumulative odds ratios for chronic pancreatitis risk in subjects carrying CFTR variants

p.R74Q, p.R170H, p.L997S, p.D1152H, p.S1235R, and p.D1270N. OR, odds ratio; CI, confidence interval.

https://doi.org/10.1371/journal.pone.0276397.g004
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variants makes the prediction of the expected number unreliable. Furthermore, we note that

there are no other examples in the genetics of CP when a variant would confer no disease risk

but it would act pathogenic when combined with another risk variant. To date, all identified

CP-associated genetic variants seem to be independent risk factors whose effects become mul-

tiplied in carriers of multiple variants. Finally, there is no known mechanistic link between the

SPINK1 and CFTR proteins, which might suggest a direct interaction.

Due to the relatively rare occurrence of the remaining 6 CFTRBD variants (p.R74Q, p.

R170H, p.L997F, p.D1152H, p.S1235R, and p.D1270N), individual analyses were inconclusive,

although all variants showed a trend toward disease association. When we calculated their

combined effect size, we found significant association with CP (OR~2.1). Variants p.D1152H

and p.D1270N are listed in the CFTR2 database as having a variable clinical effect [38]. CF

patients with these variants are likely to be pancreatic sufficient. The database lists p.R170H, p.

L997F, and p.S1235R as non-CF causing variants. There is no entry for p.R74Q, however,

another variant that affects the same position, p.R74W, is associated with a variable clinical

phenotype. Taken together, it appears that this group of heterozygous CFTR variants increases

CP risk modestly, but the effect sizes of the individual variants cannot be determined with con-

fidence until more data becomes available.

Finally, it is curious to note that genetic effect size correlates poorly with the reported func-

tional defects in the CFTRBD variants. Thus, variant p.R75Q, which does not alter CP risk, had a

significant impact on HCO3
- permeability and conductance (see Fig 1E and 1F in [9]). In con-

trast, variant p.L967S, which showed the highest OR in our analysis, had the smallest impact on

ion permeability. We also note that the published functional analysis was performed under

somewhat artificial conditions, with CFTR variants as well as WNK1 and SPAK overexpressed

in transfected HEK 293T cells. It is possible, even likely, that the CFTRBD variants behave some-

what differently in their native environment, which might explain these discrepancies.

Taken together, our meta-analysis confirmed that with the sole exception of p.R75Q,

CFTRBD variants increase the risk for CP by approximately 2-4-fold. The limitation of this

meta-analysis is the relatively small cohort size in many of the included studies, which likely

precluded detection of some of the rare variants. Furthermore, due to the limited data avail-

able, no subgroup analyses regarding CP etiology could be performed.
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