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The hypothalamus plays a key role in coordinating fundamental body 
functions. Despite recent progress in single-cell technologies, a unified 
catalog and molecular characterization of the heterogeneous cell types 
and, specifically, neuronal subtypes in this brain region are still lacking. 
Here, we present an integrated reference atlas, ‘HypoMap,’ of the murine 
hypothalamus, consisting of 384,925 cells, with the ability to incorporate 
new additional experiments. We validate HypoMap by comparing data 
collected from Smart-Seq+Fluidigm C1 and bulk RNA sequencing of selected 
neuronal cell types with different degrees of cellular heterogeneity. Finally, 
via HypoMap, we identify classes of neurons expressing glucagon-like 
peptide-1 receptor (Glp1r) and prepronociceptin (Pnoc), and validate them 
using single-molecule in situ hybridization. Collectively, HypoMap provides 
a unified framework for the systematic functional annotation of murine 
hypothalamic cell types, and it can serve as an important platform to unravel 
the functional organization of hypothalamic neurocircuits and to identify 
druggable targets for treating metabolic disorders.

Hypothalamic neurocircuits are key regulators of integrative physi-
ology and energy homeostasis1,2. In particular, the melanocortin 
neurocircuit, which comprises agouti-related peptide (AgRP)- and 
pro-opiomelanocortin (POMC)-expressing neurons in the hypotha-
lamic arcuate nucleus (ARC), exerts effects on neurons in the hypotha-
lamic paraventricular nucleus (PVH) and extra-hypothalamic projection 
sites, such as the bed nucleus of the stria terminalis (BNST)3, to control 

food intake and energy expenditure. Recently, studies have shown 
additional specialized neuronal subtypes located in the PVH and other 
hypothalamic regions, including the lateral (LH) and dorsomedial 
hypothalamus (DMH), that contribute to regulating energy homeo-
stasis4. Single-cell RNA sequencing (sc-seq) experiments have revealed 
molecular heterogeneity of cell types that were previously considered 
homogeneous5, including POMC neurons6.
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we performed nucSeq of 36,626 nuclei isolated from hypothalami of 
mice that had been either ad libitum chow fed or fasted overnight. This 
brought the total number of hypothalamic cells/nuclei, after quality 
control, to 384,925 (Supplementary Table 1).

Next, we systematically evaluated the data-integration algorithms 
Harmony, Scanorama, scVI, Combat and Seurat (CCA) across different 
parameter ranges, and benchmarked their performance on the basis 
of batch mixing, cell-type purity, and cluster separation (see Supple-
mentary Information, Extended Data Fig. 1, and Supplementary Table 
2 for details). We found that scVI consistently achieved the highest 
cell-type purity scores while retaining high cluster separation and 
good dataset mixing. Other methods, such as Seurat (CCA), achieved 
higher mixing scores, but performed worse in retaining cell-type purity 
(Extended Data Fig. 1b). Therefore, we proceeded with scVI and further 
optimized the hyperparameters on the combined dataset (see Methods 
and Extended Data Fig. 2) to generate the final integrated reference 
dataset—HypoMap, visualized here via uniform manifold approxima-
tion and projection (UMAP) in Figure 1a.

The majority of cells in HypoMap are neurons (56.9%, blue)  
(Fig. 1a,c), followed by astrocytes (13%, golden brown), oligodendro-
cytes (12.7%, orange), and oligodendrocyte precursor cells (OPCs, 
9.5%, brown). HypoMap can distinguish rarer cell types, such as 
microglia (3.7%, light-green), endothelial cells (2.6%, light blue), 
tanycytes (2.5%, pink), ependymal cells (1.1%, cyan), and mural cells 
(0.9%, turquoise) (Fig. 1a). Figure 1b shows the expression of key 
neuronal markers: VGlut2 (Slc17a6), VGat (Slc32a1), Th, and Hdc. We 
also examined the expression of regional markers, such as Sim1 for 
PVH, Nr5a1 (Sf-1) for ventromedial hypothalamus (VMH), Tbx3 for 
ARC, and Rgs16 for suprachiasmatic nucleus (SCN), which highlight 
the spatial origin of the neurons as one of major driving factors  
for segregation.

Each of the 18 datasets is distributed across multiple cell types in 
HypoMap (Extended Data Fig. 2d), with some areas showing over- or 
under-representation of cells from specific datasets. This is expected 
owing to the anatomically restricted sampling strategies used in some 
of these studies (for example Morris et al.40, SCN in deep blue; Kim 
et al.32, VMH in dark green) (Extended Data Fig. 2d). We examined the 
author annotations of the ARC cells from Campbell et al.5 more specifi-
cally, and the dataset covers only a subset of HypoMap, as expected 
(Extended Data Fig. 3). Cell types identified in this study largely consist 
of populations from the ARC, but we also observed cell types from other 
regions, for example the VMH (Extended Data Fig. 3) and the pituitary, 
as discussed in the original study5.

To construct a unified set of cell annotations, we adopted a 
multi-level clustering of cell populations using the Leiden algorithm42 
and Multiresolution Reconciled Tree (mrtree)43 (see Methods). This 
resulted in a circular dendrogram (or tree) representing the underly-
ing hierarchical organization of cell populations, similar to atlases of 
the brain transcriptome published previously20,29. Tree pruning was 
achieved by merging clusters that could not be separated by marker 
genes. The final clusters represent an overview of the transcriptomic 
landscape of the ‘sequenced’ hypothalamus (Fig. 2a and Supplemen-
tary Table 3). In total, we generated seven levels of clusters, each with 
increasing granularity, although here we show only the top 5 levels, 
C2, C7, C25, C66, and C185 (Fig. 2a); the two lowest levels (C286 and 
C465) are hidden to retain visual clarity (Supplementary Table 4; the 
full tree and a split version of Fig. 2a are shown in Extended Data Figs. 
4 and 5, respectively).

We next carried out differential gene expression (DEG) analysis 
to determine marker genes for all nodes at all cluster levels (Supple-
mentary Tables 5 and 6). Each node of the tree was labeled using the 
most informative marker gene (see Methods). The full cluster annota-
tion was constructed by concatenating the labels from all ancestor 
node(s), thereby incorporating the hierarchical structure (Extended 
Data Fig. 6 shows the marker expression of AgRP and POMC clusters 

Many sc-seq datasets exist, covering multiple brain regions and 
conditions. However, direct comparison of these data is challenging 
owing to technical and experimental variations. The integration of 
datasets is a key step in projects such as the Human Cell Atlas7, the 
BRAIN Initiative, and the Cell Census Network (BICCN) (https://biccn.
org/data). Recently, BICCN released an integrated single-cell reference 
for the primary motor cortex across different data modalities and 
species, underscoring the power that the analysis of systematically 
collected data on brain cell types and their connections can provide8. 
The emergence of dedicated portals and applications, such as Azimuth 
(https://azimuth.hubmapconsortium.org/), to facilitate access to 
reference datasets, further highlights the usefulness of combining 
available resources with newly generated data9.

The field of sc-seq data integration is evolving rapidly, with 
more than 20 available algorithms10. These methods use different 
approaches, such as shared low-dimensional embeddings (Seurat)11, 
soft-clustering strategies (Harmony)12, identification of nearest neigh-
bors across datasets (Scanorama, fastMNN)13,14, and deep-learning 
strategies like variational auto-encoders (scVI)15. Additionally, tradi-
tional approaches developed for bulk RNA-seq, such as Combat16, are 
widely used. The two key aims of these methods are: (1) to mix datasets 
and correct for the technical differences originating from experimental 
variation, while (2) retaining the underlying biological information in 
each cell type.

Additionally, single-nucleus sequencing (nucSeq) has gained a lot 
of attention in recent years. The major advantage of nucSeq is removal 
of the time-consuming enzymatic cell-dissociation steps, which can 
potentially influence gene expression17. In addition, nucSeq can be 
performed on frozen tissues, thus simplifying logistics, especially 
when dealing with precious human materials. Recent studies have 
shown that nucSeq is largely comparable to sc-seq, despite profiling 
different RNA species18,19.

Here, we attempted to create the first murine hypothalamic refer-
ence, ‘HypoMap,’ by systematically evaluating different integration 
algorithms to choose the best approach for integrating data from 17 
published datasets and an in-house hypothalamic nucSeq dataset from 
ad-libitum-fed and overnight-fasted mice. We validated HypoMap by 
comparing the transcriptomic profiles to: (1) sc-seq data collected 
from traditional Smart-Seq+Fluidigm C1 (ref. 20); and (2) selected cell 
populations through bulk bacterial artificial chromosome-translating 
ribosome affinity purification (bacTRAP) RNA-seq.

To further demonstrate the use of HypoMap, we molecularly and 
spatially characterized neurons expressing glucagon-like peptide-1 
receptor (Glp1r) and prepronociceptin (Pnoc), identified from 
HypoMap and bacTRAP. GLP-1 is an incretin hormone secreted from 
the gut that has an important role in the control of food intake and 
satiety21,22. GLP-1R agonists (GLP-1RA) are used clinically to treat type 2 
diabetes and obesity, with recent studies showing that they exert their 
effects in the area postrema (AP)23; however, their effects in the hypo-
thalamus are less known24,25. Similarly, we have recently identified PNOC 
neurons in the ARC (PNOCARC) as a GABAergic cell population, which is 
readily activated upon consumption of calorie dense, highly palatable 
food. Activation of PNOCARC neurons promotes food intake; conversely, 
the ablation of these neurons prevents high-fat-diet-induced hyperpha-
gia and weight gain26. Thus, PNOCARC neurons represent a promising 
target for the treatment of obesity. Yet, a clear molecular definition of 
these neurons is still lacking.

Results
The generation of HypoMap
To develop a unified hypothalamic cell atlas comprising cell types 
from major hypothalamic regions, we combined 17 publicly available 
droplet-based hypothalamus sc-seq datasets5,27–41 covering different 
hypothalamic regions, from the preoptic area (POA) to the ventropo-
sterior hypothalamus (VPH) (Supplementary Table 1). In addition, 
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across different source datasets). Additionally, for the highest three 
cluster levels, we manually annotated well-described cell type labels 
where applicable. Figure 2b,c shows dot plots of marker genes used 
for annotating the clusters at level C66 for neurons and non-neuronal 
populations, respectively.

As shown in Figure 2a, the top level of the tree separates cells into 
neurons and non-neuronal populations; this is followed by seven clus-
ters at the second level (C7), which further segregate cells into excita-
tory glutamatergic (GLU) and inhibitory GABAergic neurons (GABA) 
(See also Fig. 1c): glial cells, including astrocytes and ependymal cells 
(Gja1); oligodendrocytes and precursor cells (Sox10); microglia (Ly86); 
vascular cell types, including fibroblasts, mural cells, and endothelial 
cells (Igfbp7); and pars tuberalis cells (Cga) (Fig. 2a).

Neuronal populations
Focusing on the subset of 219,030 neurons, the next cluster levels con-
sist of 16 (C-25) and 50 (C-66) clusters that further subdivide the GLU 
and GABA subtrees. An example of a well-defined cluster is the Pomc.
GLU-54 neuronal cluster, which includes three subclusters: Anxa2.
Pomc.GLU-5, Ttr.Pomc.GLU-5, and Glipr1.Pomc.GLU-5, consistent with 
Campbell et al.5. The lowest level depicted in the tree (C185) consists of 
130 neuronal cell types (Fig. 2a). Interestingly, by combining all data-
sets together, we were able to identify a cluster of 61 extremely rare 
Gnrh1-expressing neurons (Gnrh1.GLU-9) (Fig. 2a).

The inner heatmap ring in Figure 2a depicts the contribution of 
each dataset. As expected, datasets that cover specific regions con-
tribute strongly to clusters originating from that region, but little to 
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Fig. 1 | Unified hypothalamus reference map. Integration of 17 single-cell 
sequencing datasets into one harmonized reference. a, UMAP visualization of 
HypoMap, colored by major cell types. b, UMAP of neuronal clusters in HypoMap 

(other cell types in gray) c, UMAP expression of key neuronal type markers and 
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other clusters (for example, Wen et al.31); other, less selective, datasets, 
such as Chen et al.34, and the in-house nucSeq cover a larger subset of 
the tree. Crucially, we found that no single dataset contributes to all 
clusters, thus emphasizing the power of the harmonized clustering 
on the basis of the integrated data of HypoMap. The middle ring in the 
heatmap in Figure 2a shows how each cluster contributes to the total 
number of cells in HypoMap (also in Supplementary Table 7).

Next, we performed spatial predictions for neuronal clusters, 
employing per-voxel enrichment analysis by overlapping the in situ 
hybridization data from the Allen Brain Atlas (https://brain-map.org) 
and cluster gene markers, followed by manual curation using known 
spatial origins of source datasets (see Methods). The predicted region 
annotation is shown in the outer ring (Fig. 2a and Supplementary Table 
8). We found that regions with well-defined gene markers, such as the 
ARC, VMH, and SCN, were annotated with high confidence, consistent 
with annotations from the original studies. We also identified clusters 
originating from LH, such as Hcrt.Rfx4.GLU-4, which co-expresses Hcrt 
and Pydn, and Pmch neurons (Pmch.GLU-7), consistent with Rossi et al.35 
and Mickelsen et al.33. The DMH is a region that lacks distinctive gene 
marker(s); at C185, three clusters were predicted to originate from the 
DMH (two glutamatergic and one GABAergic clusters, Fig. 2a).

The distribution of ARC, VMH, and SCN neurons over multi-
ple HypoMap clusters indicates that the larger cell numbers from 
additional datasets enhance the clustering granularity, thus allow-
ing for more accurate stratification of cellular subtypes. For exam-
ple, we observed a refinement of the clustering of VMH Nr5a1- and 
Fezf1-expressing populations (C25-3: GLU-3) in HypoMap (Fig. 3a), 
compared with the original annotations from Chen et al.34 (Fig. 3b,d); 
this is largely due to the integration with VMH-specific datasets, such 
as from Kim et al.32, while retaining clustering granularity, even when 
compared with the original annotations from Kim et al.32. (Fig. 3c,e). 
The improved clustering sensitivity also allowed the assignment of 
previously unlabeled cells in Campbell et al.5 into more distinct clusters, 
such as Cck-expressing Cck.Vipr2.GABA-2 cells (C185-73), which were 
previously annotated simply as Rgs16/Vip (Extended Data Fig. 3 inset).

Non-neuronal populations
There are 165,895 non-neuronal cells in HypoMap. Non-neuronal cells 
exhibit a lower level of heterogeneity, despite being sampled from dif-
ferent hypothalamic regions, and this is reflected in fewer branches in 
the tree (Fig. 2a).

The majority of non-neuronal cells originate from the oligoden-
drocyte lineage (42.1%, Fig. 1a) and are segregated into 15 clusters (Fig. 
2a). A recent study from our group showed that oligodendrocyte differ-
entiation in the median eminence is nutritionally regulated and plays a 
role in controlling energy balance44. HypoMap captures different stages 
of oligodendrocyte differentiation, from progenitor cells marked with 
Pdgfra and Ng2, to differentiating cells with decreasing Bmp4 and Olig2 
expression, and mature oligodendrocytes with increased expression 
of myelination genes, such as Mbp and Mog (Supplementary Table 5).

The second largest non-neuronal subtree consists of astrocytes 
and ependymal cells (39.1%). Astrocytes with high levels of Slc1a2 
and Gjb6 were divided into nine clusters (Fig. 2a). These include a 
cluster of reactive astrocytes (C66-54: Lgals3.Astrocytes), marked 
with high expression of Gfap and Lgals3. Neighboring the astrocytes 

are Vim-expressing ependymal cells and tanycytes (four subclusters 
each), both of which form tight junctions around the third ventricle 
and regulate its permeability. Ependymal cells are marked with high 
expression of Ccdc153, and tanycytes have high expression of Col23a1, 
Fgf10, and Crym. The tanycyte subclusters are consistent with previous 
division into alpha and beta tanycytes by Campbell et al.5 (Fig. 1b) and 
the Tany-seq atlas45. We also identified a small cluster of hypendymal 
cells from the subcommissural organ, marked by expression of Spp2. 
HypoMap also captures a large cluster of Ly86-expressing microglia 
(Fig. 2a), which could be further divided into ten clusters (Fig. 2a). 
Nutritional challenges, such as a high-fat diet (HFD), are known to 
regulate the activity of non-neuronal cells46–48 in the hypothalamus; it 
would be of interest to investigate how such perturbations will affect 
these populations in future studies.

Single-nucleus sequencing of the mouse hypothalamus
We performed nucSeq from mice that either were subjected to an 
overnight fast or were ad libitum chow fed49. The sequencing yielded 
data for 36,626 nuclei, which were integrated into HypoMap. Despite 
the difference in techniques, the nuclei are distributed throughout 
HypoMap with little evidence of technical artifact (Fig. 4a). At C185, 
nucSeq covers 163 out of 185 clusters (Supplementary Table 7). There 
is an under-representation of some cell types, particularly those origi-
nating from the POA, SCN, and PVH.

We next examined the difference in gene expression between 
nucSeq and all sc-seq datasets included in HypoMap. Consistent with 
recent findings50, most genes showed a positive correlation (Fig. 4b). 
Notably, we found that neuropeptides/hormones, G-protein-coupled 
receptors (for example, Glp1r), ion channels (for example, Kcnq3), and 
nuclear receptors (for example, Nr5a1) all have high average Pearson 
coefficients (r) of 0.789, 0.743, 0.736, and 0.689, respectively. Growth 
factors (for example, Vgf) also showed a high correlation of r = 0.737. 
Other protein classes, such as transcriptional and translation regula-
tors, have lower r values of 0.544 and 0.358, respectively.

When we examined the gene expression correlation on a 
per-cluster basis (see Methods), we found that the expression pro-
files in nucSeq showed a high correlation with the Kim et al.32 dataset, 
whereas the correlation with earlier Drop-seq datasets, such as Camp-
bell et al.5, was poorer, despite an emphasis on the same hypothalamic 
regions (Fig. 4c and Supplementary Table 9). The overall correlation of 
sc-seq and nucSeq per cluster, unsurprisingly, varies between clusters 
(middle ring in the heatmap in Fig. 4c). Nevertheless, these experiments 
highlight the overall concordance between the sc-seq and nucSeq 
results, and thus the feasibility to use them for unified data integration.

Inferring state-dependent neuron activation from nucSeq 
data
In sc-seq, the Fos signal is often unreliable owing to the short 
half-life of mRNA, as well as artifacts originating from the enzymatic 
cell-dissociation procedure17, which was reflected in the absence of 
difference in Fos between fasted and ad-libitum-fed states in Campbell 
et al.5 (Extended Data Fig. 7a). In the nucSeq dataset, we detected an 
upregulation of Fos in AgRP neurons (C66-46: Agrp.GABA-4) in the 
fasted state (Fig. 5a), indicative of increased neuronal activity17,32. In 
addition, we also found that the effect of fasting is strong enough to 

Fig. 2 | Harmonized annotation of hypothalamus cell types. a, A circular 
hierarchical tree of clusters of HypoMap. The first 5 levels with up to 185 clusters 
are shown, highlighting the diversity of hypothalamic cells when combining 
data across regions. Individual clusters at levels 4 and 5 are named with the 
most informative marker gene, given as edge labels. The inner (red) circular 
heatmap depicts the percentage contribution of each dataset to the clusters at 
the lowest tree level. The middle heatmap (blue) depicts the relative percentage 
contribution of each cluster at the lowest tree level to the total cell number. The 
scale is limited to 2%. The outer ring depicts the most likely region of origin (R) 

for each neuron cluster on the lowest level of the displayed tree. If support was 
insufficient for a cluster, no region was assigned, and the cluster was colored 
gray (see Methods). b,c, Dot plots displaying marker genes used for annotating 
the clusters at level 4 (C66) of the tree in a. For clusters with a proper name 
(for example, ‘Astrocytes’), the most specific gene that would have been used 
for annotation is included. Dot color corresponds to average log-normalized 
expression levels of each gene in a cluster and dot size to the percentage of cells 
expressing a marker in the cluster. b, Neuronal cell types. c, Non-neuronal cell 
types. See also Supplementary Tables 5 and 6.
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influence the clustering of AgRP neurons (Fig. 5a). Thus, in the following 
analysis, we used the higher-level classification C66-46: Agrp.GABA-4 
for AgRP neurons and C286 for all other clusters. We further examined 
other immediate early genes (IEGs) in AgRP neurons and found that 
they also exhibited comparable fasting-induced expression (Fig. 5b). 
We therefore aggregated the response of all IEGs (see Methods) and 

identified 15 additional neuronal clusters that showed increased neu-
ronal activity in the fasting state (Fig. 5c and Supplementary Table 10). 
The effect was strongest in C66: Agrp.GABA-4, with an upregulation 
of ~90% of expressed IEGs. This is followed by two other ARC clusters: 
C286-149: Grp.Ppp1r17.GABA-1 and C286-139: Myo5b.Sox14.Lef1.GABA-1 
(Fig. 5c). Here, we conducted the differential analysis on C286 with 
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high granularity, because we observed that changes were restricted to 
specific subclusters, while other daughter nodes under C185-88: Sox14.
Lef1.GABA-1 showed no difference (Fig. 5c). Lef1 has previously been 
shown to be crucial for energy homeostasis51,52, and the identification 
of Lef1-expressing subclusters pinpoints the specific cellular subtypes 
and their molecular characteristics for future studies.

Next, we examined DEGs in the fasted state (Extended Data Fig. 7c 
and Supplementary Table 11). The top cluster was C66: Agrp.GABA-4 
neurons, with 797 DEGs. This was followed by C286-45: Rai14.Hmcn2.
Gpr149.GLU-3, with 757 DEGs. There were 172 DEGs detected in C286-
149: Grp.Ppp1r17.GABA-1 and 62 DEGs in C286-139: Myo5b.Sox14.Lef1.
GABA-1 neurons. Gene Ontology enrichment analysis revealed that the 
majority of the DEGs in AgRP neurons were involved in hormone secre-
tion and release, and responses to neuronal activity changes (Fig. 5d). 
We also compared DEGs after fasting between the nucSeq and Campbell 
et al.5 sc-seq datasets, and found that DEGs from both datasets were 
positively correlated, with r = 0.3618 (P < 2.2× 10–16) (Fig. 5e). Among the 

top DEGs in AgRP neurons and other activated cell types were Zbtb16, 
Fam107b, Vgf, and Sv2c (Fig. 5f), which exhibited varying patterns of 
expression changes. For example, Zbtb16 was up-regulated in many 
other cell types, aside from AgRP neurons, suggesting that it has a more 
global role. We also examined all DEGs across all clusters: 1,738 genes 
were significantly regulated in at least one cluster, and 33 and 155 of the 
DEGs were found to be significantly regulated in at least 50% or 20% of 
all clusters, respectively. The Gene Ontology enrichment analysis of 
overlapping DEGs between at least 20% of all clusters revealed pathways 
including protein translation and cell death (Extended Data Fig. 7d).

Evaluation with Smart-Seq+Fluidigm C1 and bacTRAP datasets
To further evaluate the utility of HypoMap, we projected external data-
sets onto the reference map from (1) a hypothalamic sc-seq dataset by 
Romanov et al.20 and (2) bulk bacTRAP RNA-seq of specific neuronal 
populations across different levels of cellular heterogeneity (Figs. 6 
and 7 and Supplementary Tables 13–18).
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Fig. 3 | Comparison of HypoMap and original clusters. a, HypoMap UMAP 
highlighting the cluster C25-3: GLU-3, which contains Nr5a1- and Fezf1-
expressing neuronal populations from the VMH that are compared in b–e. 
b,c, UMAP plot of cells from the C25-3: GLU-3 cluster from Chen et al.34 (b) and 
Kim et al.32 (c) overlayed on all cells of the cluster (gray) and colored by the 
original author annotations. d,e, Sankey diagrams showing the original author 
annotations of Chen et al. (d) and Kim et al. (e), compared with the HypoMap 

subclusters (C286) of C25-3: GLU-3. Chen et al. (d) covered VMH neurons 
only sparsely, and the combination with other datasets greatly improves cell 
classification. The VMH-specific dataset from Kim et al. (e) covered most 
subclusters identified in HypoMap, although in some cases clusters were further 
partitioned. (See Supplementary Table 20 for a full overview of all original and 
HypoMap cell labels).
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Fig. 4 | Comparison of nucSeq and single-cell data. a, UMAP visualization of the 
nucSeq data colored and annotated by cluster level 3 (C25) on all HypoMap cells 
(gray), demonstrating that the nucSeq data are evenly integrated in HypoMap. 
b, Heatmap of per-gene correlation (Pearson’s r) between sc-seq and nucSeq. 
Each row shows the density (color) of all genes in a specific gene class (number 
of genes shown on the right). Also see Supplementary Table 9. c, Heatmap of 

cluster-level correlation shown on the hierarchical tree of neuron clusters. For 
each cluster, the marker genes (M, number depicted in inner heatmap in red) were 
used to calculate Pearson’s r between all sc-seq and nucSeq data (middle heatmap 
in blue–green) or between individual HypoMap datasets and nucSeq (outer 
heatmap in blue–red). If there were fewer than ten cells per cluster and dataset, 
the comparison was omitted (white).
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Romanov et al.20 reported one of the earliest sc-seq datasets gen-
erated for the hypothalamus using traditional Smart-Seq+Fluidigm 
C1 (ref. 20). We successfully projected cells from this dataset onto 
HypoMap (Fig. 6a and Supplementary Table 12). At C185, cells were 
assigned to 125 of 185 clusters, although only 41 clusters contained 10 
or more mapped cells. Most cell type labels were projected with high 
confidence (Fig. 6b). Consistent with the original study, the majority 
of cells were oligodendrocytes (41% of all cells). Among neuronal clus-
ters, Shox2-expressing neurons (C185-1: Shox2.GLU-1) (5.6%) were the 
most common assignment, containing 163 cells, which were mostly 
left unclassified before (Fig. 6a).

Further inspection of the original annotations demonstrated that 
the inferred cluster labels are an accurate reflection of the true identity 
of these cells. For example, 12 of 23 cells annotated as ‘GABA 13 (Gala-
nin)’ were projected onto Gal- and Th-expressing C185-91: Gal.Hmcn1.
GABA-1 cluster of HypoMap, and others onto closely related clusters 
and other Gal-expressing clusters. Furthermore, HypoMap enhanced 
the stratification of the original annotations: out of 27 cells annotated 
as ‘GABA 7 (Pomc +/–),’ only 7 are Pomc-positive and 5 of these cells 
were mapped to the Pomc.GLU-5 cluster, whereas all Pomc-negative 
cells were relocated to other HypoMap clusters.

bacTRAP RNA-seq is a useful tool to obtain marker-gene-specific 
molecular expression profiles with a great sequencing depth and the 
possibility to compare between different conditions53. We generated 
bacTRAP of specific hypothalamic cell types previously shown to be 
involved in energy homeostasis, that vary in their heterogeneity and 
anatomical distribution. To this end, we first crossed mice expressing 
Cre-recombinase in either AgRP, POMC, PNOC, or GLP1R neurons with 
mice allowing for Cre-dependent expression of ribosomal protein L10a 
fused with green fluorescent protein6. We then mapped these bacTRAP 
datasets onto HypoMap to examine the concordance of gene expres-
sion and determine whether HypoMap could be used to deconstruct 
the cellular composition in bacTRAP.

We first focused on bacTRAP obtained from AgRP and POMC 
neurons, which are relatively homogeneous cell types, and we fur-
ther explored more heterogeneous data obtained from PNOC and 
GLP1-R neurons. We selected genes that were significantly enriched 
in the immunoprecipitation (IP) samples compared to the control 
samples of the bacTRAP datasets to define cell type signatures (see 
Supplementary Tables 13–18 for all DEGs). Subsequently, we compared 

HypoMap cluster markers and the signature fold changes using rank 
biased overlap (RBO), which allows the comparison of ranked sets 
with more weighting for the top part of the list that contains the most 
relevant markers54.

In Figure 6c, we highlight the AgRP bacTRAP signature enrich-
ment as small bars on top of the UMAP plot, showing the expression 
of Agrp in the sc-seq of HypoMap. This demonstrates that the AgRP 
signature is mapped successfully onto the cluster containing AgRP 
neurons in HypoMap (C66-46: Agrp.GABA-4), and indicates that the 
sc-seq integration grouped all AgRP neurons into one branch of the 
tree, and therefore could be used for further interpretation (Fig. 6c 
and Supplementary Table 19). There were other enriched ARC clusters 
with lower enrichment scores, indicating that they share some of the 
marker genes with AgRP neurons.

Next, we analyzed the POMC bacTRAP data (Fig. 6d): the C286-
75: Anxa2.Pomc.GLU-5 cluster at level C286 (score = 0.256) was more 
enriched than the other Pomc-expressing clusters, C286-77: Ttr.Pomc.
GLU-5 (score = 0.197) and C286-76: Glipr1.Pomc.GLU-5 (score = 0.185), 
an effect that is at least partly driven by the higher abundance of canoni-
cal marker genes for POMC neurons, such as Cartpt (Supplementary 
Table 5). In addition, we observed low-grade mapping of the POMC 
bacTRAP data onto Agrp-expressing clusters (Fig. 6d), and the enrich-
ment score for all other clusters was lower.

We recently found that leptin receptor (Lepr)- and Glp1r-expressing 
POMC neurons showed little overlap and have distinct molecular sig-
natures and functions6. In this study, we profiled these two POMC 
subpopulations using intersectional Cre/Dre-dependent targeting. 
This approach builds on the use of POMCDre as well as LeprCre and Glp1rCre 
transgenic mice. In contrast to the POMCCre transgenic model, POMCDre 
expression exhibits a progressive increase in recombination later in 
adulthood, thereby circumventing the developmental marking of 
AgRP neurons6. Analysis of the intersectional POMC bacTRAP gene 
signatures revealed that the Pomc-Lepr signature overlaps mostly 
with C286-75: Anxa2.Pomc.GLU-5 (score = 0.415), but scores lower 
in other Pomc-expressing clusters (Fig. 6e), as previously validated 
functionally6. This is consistent with the expression of Pomc and Lepr 
depicted in the UMAP of Figure 6e (only cells expressing both genes 
are highlighted). The enrichment of the Pomc-Glp1r signature was high-
est in C286-77: Ttr.Pomc.GLU-5 (score = 0.325), which is concordant 
with the expression of Glp1r and Pomc in HypoMap (Fig. 6f). The high 

Fig. 5 | Transcriptional changes induced by fasting. a, Fos is increased in 
nucSeq AgRP neurons after fasting. Left, UMAP plot depicting C66-46: Agrp.
GABA-4 in HypoMap. The inset shows Agrp expression in nucSeq cells from C66-
46: Agrp.GABA-4. Right, UMAP plots of the same cells showing Fos expression 
in fasted and ad-libitum-fed conditions. The changes in nucSeq AgRP neurons 
after fasting were strong enough to cause a shift in the cluster. b, IEGs with high 
log2(fold change) (log2FC) in AgRP neurons. The violin plots show the per-cell 
expression between conditions. c, Neuron clusters activated by fasting. The 
bar plot depicts the percentage of significantly up-regulated IEGs in the fasted 
state over the total number of expressed IEGs (left number, based on presence 
in at least 10% cells of clusters in either condition). AgRP neurons are strongly 
activated, as indicated by the high number of changing IEGs. The bars are 
colored by mean log2FC, and the number of cells in each cluster is shown on the 

right. d, Transcriptional changes in AgRP neurons induced by fasting. In the 
volcano plot (log2FC versus adjusted P values from a (two-sided) Wald test), 
differentially expressed genes (DEGs) are highlighted. The dot plot shows Gene 
Ontology (GO) terms enriched in up-regulated genes. The P values are based on 
a hypergeometric test from an over-representation analysis and were corrected 
using false discovery rate (FDR). e, Comparison of transcriptional changes 
in AgRP neurons between nucSeq and Campbell et al.5 data. The scatter plot 
of log2FCs is colored by DEGs in either dataset. f, Per-cell expression levels of 
selected DEGs between conditions. For each gene, the expression is shown across 
multiple activated cell types as well as POMC neurons and a reference containing 
all remaining cells. P values of DEGs were obtained by Wilcoxon rank-sum tests 
and were adjusted for multiple comparisons using Bonferroni correction. See 
also Supplementary Tables 10 and 11.

Fig. 6 | Projection of new data. a, HypoMap UMAP colored by cluster level 3 
(C25) and overlaid with the projected ‘locations’ of cells from Romanov  
et al.20. Even clusters represented by only few cells in the query dataset can be 
accurately embedded into the reference. b, Probability scores (see Methods) of 
projection accuracy of Romanov et al.20 cells from a. High scores indicate high 
confidence in the projection, which is the case for most cells. c–f, Enrichment 
of bacTRAP signatures of specific neuronal population on HypoMap clusters 
using rank-biased overlap (RBO). RBO scores per cluster (C286) are shown as 
small bars relative to the highest score of each signature enrichment. The UMAP 
shows the expression level of the marker gene used in the bacTRAP experiment 

in HypoMap. In e and f, it shows the cells that express the combination of marker 
genes in orange (square root of product of expression levels). The corresponding 
cluster names for each unique ID in the figure can be found in Supplementary 
Table 3. c, AgRPCre neurons are enriched in C66-46: Agrp.GABA-4 subclusters. 
d, PomcCre neurons are highly enriched in the C66-19: Pomc.GLU-5 subclusters, 
with medium scores in C66-46: Agrp.GABA-4. e, PomcDreLeprCre neurons are most 
enriched in C286-75: Anxa2.Pomc.GLU-5, which expresses Lepr. f, PomcDreGlp1rCre 
neurons are most enriched in C286-77: Ttr.Pomc.GLU-5, which expresses Glp1r. 
Also see Supplementary Table 19.
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enrichment score in C286-75: Anxa2.Pomc.GLU-5 (score = 0.299) was 
likely driven by the high expression of marker genes, such as Pomc and 
Cartpt, similar to POMC-only bacTRAP.

Validation of predicted Glp1r-expressing neurons
Next, we turned to the more heterogeneous Glp1r- and Pnoc-expressing 
neurons. Again, we utilized the bacTRAP signature for Glp1r-expressing 
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hypothalamic cells to investigate their heterogeneity in HypoMap. 
At C286, the highest enrichment of Glp1r bacTRAP was found in 
the Avp- and Oxt-expressing neurons C286-81: Ebf3.Caprin2.GLU-6 
(score = 0.19) and C286-82: Oxt.Caprin2.GLU-6 (score = 0.166), both 
from the PVH, consistent with previous findings55 (Fig. 7a). Interest-
ingly, Glp1r-expressing POMC neurons (C286-77: Ttr.Pomc.GLU-5)6,24 
were enriched, with a lower score of 0.119. We identified four additional 
populations on the basis of high Glp1r expression and enrichment 
score: C286-175: Ghrh.GABA-3, C286-174: Trh.Nkx2-4.GABA-3, C286-181: 
Il1rapl2.Otp.Sst.GABA-4, and C286-130: Tbx19.Il1rapl2.GABA-1 (Fig. 7a 
and Supplementary Table 19).

We performed multiplexed single-molecule in situ hybridization 
to identify the spatial distribution of Glp1r-expressing populations 
(Fig. 7). Using probes specific to Glp1r, Pomc, and Anxa2 for the Ttr.
Pomc and Anxa2.Pomc subclusters, we found that although 49% of 
all POMCARC neurons expressed Glp1r, only 14.6% co-expressed Pomc 
and Anxa2 (Fig. 7b,c). For the SSTARC neurons, we used probes against 
Sst and Unc13c to target the C286-181: Il1rapl2.Otp.Sst.GABA-4 cluster 
and found that 64.5% of Sst/Unc13c-positive cells expressed Glp1r 
(Fig. 7b,c). When we used Sst as the only marker gene, the percentage 
of Glp1r-positive cells decreased to 31.4%, indicating that C286-181: 
Il1rapl2.Otp.Sst.GABA-4 is indeed the most relevant SSTARC subtype 
(Fig. 7b,c).

Ghrh is a distinct marker of C286-175: Ghrh.GABA-3 neurons, which 
control growth via the growth hormone (GH)–insulin-like growth factor 
1 (IGF1) axis56. We found that 47.9% of Ghrh-expressing cells expressed 
Glp1r (Fig. 7b,c). However, GLP-1 action has not been investigated in 
these neurons, and these findings offer the possibility that they may 
serve as an integrator in the adaptation of metabolism and growth.

Anxa2 is expressed in C286-130: Tbx19.Il1rapl2.GABA-1. Using 
probes specific for Anxa2 and Tbx19, we found that 38.1% of Anxa2- 
and Tbx19-positive cells expressed Glp1r (Fig. 7b,c), which was mark-
edly higher than the number of triple-positive cells identified in sc-seq 
(Extended Data Fig. 8). Trh and Nkx2-4 were used to distinguish C286-
174: Trh.Nkx2-4.GABA-3 from other Trh-expressing cells. Although, we 
detected only a few Trh-positive cells in ARC, and not all of them were 
Nkx2-4-positive, we found a striking overlap with Glp1r expression: 90.9% 
of Trh- and Nkx2-4-expressing cells were Glp1r-positive (Fig. 7c). Last, we 
examined the expression of Glp1r in Oxt-expressing cells in the PVH, which 
had the strongest bacTRAP enrichment; 47.9% of the Oxt-expressing cells 
were Glp1r-positive (Fig. 7C), consistent with the previous findings38.

Validation of predicted Pnoc-expressing neurons
Pnoc is widely expressed in the hypothalamus, thus the molecular sig-
nature obtained through bacTRAP reflects the heterogeneity of this 
diverse population (Fig. 7d). Projecting Pnoc bacTrap onto HypoMap 
resulted in lower enrichment score overall than that of the AgRP and 
POMC bacTRAP, but resulted in more enriched clusters (Fig. 7d). Many 
of these clusters express Pnoc at high levels in HypoMap, indicating 
that Pnoc bacTRAP is identifying these cell types correctly. At tree level 

C286, the highest enrichment was found in C286-171: Tac2.Nts.GABA-1 
(score = 0.13). Interestingly, some clusters, such as C286-85: Nts.Foxb1.
GLU-8 from the mammillary region, also express Pnoc (55.4% of cells), 
but were not enriched in bacTRAP (score = 0.005), suggesting that the IP 
might not have captured some of these Pnoc-expressing neurons. Con-
versely, C286-84: Pmch.GLU-7 (score = 0.088) and histamine-producing 
C286-157: Hdc.GABA-1 (score = 0.07) from the tuberomammillary nucleus 
were enriched in Pnoc-specific bacTRAP, but did not show high Pnoc 
expression in HypoMap (17.5% and 16.2% of cells, respectively).

Owing to the heterogeneity of Pnoc-expressing cell types, we 
focused on clusters from ARC. Again, some cell types such as C286-
175: Ghrh.GABA-3 expressed Pnoc at moderate levels (23.1%), but were 
not enriched in bacTRAP (score = 0.018). Among cell types that were 
concordant between bacTRAP and sc-seq were multiple Sst-expressing 
clusters and two Crabp1-expressing clusters (Fig. 7d and Supplemen-
tary Table 19). We validated Sst- and Crabp1-positive populations, 
including multiple subclusters of Unc13c-expressing C185-118: Otp.
Sst.GABA-4 (28.3% Pnoc-positive) and Nts-expressing C185-117: Npy.Sst.
GABA-4 (65.9% Pnoc-positive) populations, which were also enriched 
in bacTRAP. Using RNAScope, we further validated that a large propor-
tion of SstARC cells co-expressed Pnoc (59.9%) (Fig. 7e,f). Similarly, 52.2% 
of the Unc13c-and Sst-positive cells also expressed Pnoc. We found a 
very small overlap between Nts and Unc13c expression in Pnoc- and 
Sst-positive cells in the ARC (2.3%), thus confirming the segregation 
suggested by HypoMap (Extended Data Fig. 9). However, very few 
cells expressed Nts in the Pnoc-and Sst-positive cells (6.7%) (Fig. 7e,f).

The Htr3b-expressing C286-158: Vgll3.Tbx3.GABA-1 (39.0% 
Pnoc-positive in HypoMap) and the closely related Tmem215-expressing 
C286-159: Crabp1.Sytl4.Tbx3.GABA-1 (26.3% Pnoc-positive in HypoMap) 
were enriched in bacTRAP, with scores of 0.078 and 0.047, respec-
tively (Fig. 7e,f and Extended Data Fig. 9). Using RNAScope, we vali-
dated the expression of Pnoc in Crabp1-expressing cells (76.35%), as 
well as the subcluster of Tmem215-expressing cells (41% of Pnoc- and 
Crabp1-positive were Tmem215-positive) and Htr3b-expressing cells 
(32.2% of Pnoc- and Crabp1-positive were Htr3 -positive).

Discussion
HypoMap, a harmonized transcriptomic reference map of the murine 
hypothalamus, faithfully integrates 18 single-cell sequencing experi-
ments that cover almost all hypothalamic regions. It allows efficient 
interpretation of new datasets by harmonizing cell type labels, identi-
fying previously unannotated populations, and inferring anatomical 
localization. We demonstrated that data integration is an essential 
step towards comparability of sc-seq/nucSeq studies and that choos-
ing a reliable data integration algorithm can be challenging10. We used 
well-defined neuronal populations to ensure that the algorithm did not 
over-correct, by removing the boundaries between truly distinct cell 
types while inter-mixing datasets sufficiently.

We chose scVI15 as the best purity-preserving integration method, 
which also offers a ‘future proof’ ability to map new datasets to the 

Fig. 7 | Validation of heterogeneous neuronal populations. a–c, Glp1r-
expressing cell types identified the hypothalamus. a, The Glp1rCre bacTRAP 
signature is enriched in multiple hypothalamic cell types, mostly corresponding 
to the Glp1r expression in HypoMap. b,c, RNAscope of Glp1r together with 
specific markers of neuron clusters identified using Glp1r-bacTRAP in (a). 
Representative images (b) and quantification shown as the percentage Glp1r-
positive cells identified by marker gene expression (c). Points refer to individual 
sections, in total 4 rostral and 4 caudal ARC sections from 4 mice were included 
for each experiment (0 rostral and 8 caudal for Tbx19- plus Anxa2 and 16 PVH 
sections for Oxt). Mean ± s.e.m,: Pomc: 49.03 ± 4.77; Pomc/Anxa2: 14.56 ± 3.89; 
Sst: 31.39 ± 3.06; Sst/Unc13c: 64.46 ± 3.88; Ghrh: 47.93 ± 5.19; Tbx19/Anxa2: 
38.13 ± 8.3; Trh/Nkx2-4: 90.89 ± 8.26; Oxt: 47.94 ± 6.73. d–f, Pnoc-expressing 
cell types identified in the hypothalamus. d, The PnocCre bacTRAP signature is 
enriched in multiple hypothalamic cell types, and covers only a subset of Pnoc-

expressing cell types in HypoMap. e,f, RNAscope of Pnoc and marker genes of 
selected ARC neuronal cell types based on Pnoc-bacTRAP and gene expression 
in (d). e,f, Representative images (e) and quantification (f) of Pnoc and Sst or 
Crabp1 co-expressing subclusters. Points refer to individual sections, in total 
14 ARC sections along the rostral-caudal axis from 4 mice were included for 
each experiment. Mean ± s.e.m: Sst/Pnoc: 59.9 ± 3.24; Sst/Pnoc/Nts: 6.78 ± 3.56; 
Sst/Pnoc/Unc13c: 52.28 ± 7.17; Sst/Pnoc/Nts/Unc13: 2.29 ± 1.1; Crabp1/Pnoc: 
76.35 ± 2.2; Crabp1/Pnoc/Tmem215: 41.02 ± 4.81; Crabp1/Pnoc/Htr3b: 32.18 ± 3.04; 
Crabp1/Pnoc/Tmem215/Htr3b: 10.02 ± 1.17. In all dot plots, the red point depicts 
the mean and red error bars the s.e.m. of all sections. We used a two-sided 
Wilcoxon rank-sum test (multiple testing correction with Benjamini–Hochberg) 
to test for differences between the means of relevant groups and added the 
resulting P values to the quantification in (c) and (f).
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reference. Harmony, Scanorama, and Combat also performed well, 
when tuned properly, especially when using a large number of latent 
variables12,14,16. Overall, while computational metrics can assist in deter-
mination of an optimal integration method, these should be combined 
with careful evaluation and experimental validation.

We showed that nucSeq covers many of the clusters in HypoMap 
(163 of 185). Comparing the transcriptomic profiles of sc-seq and 
nucSeq highlighted a dataset-related bias: it correlates better with 
some datasets (for example, Kim et al.32), which could be related to the 
single-cell technology used (that is, Drop-seq versus 10x). However, 
because some 10x-based datasets (for example, Moffit et al.30 and 

Mickelsen et al. (Flynn10x)27) show a lower correlation, this may not be 
the only factor. Differences also exist between cell types; for example, 
the Trh-expressing cluster C185-12: Ebf1.Trh.GLU-2 showed a markedly 
lower r value of 0.017 (across all datasets) than that of its sister-cluster 
C185-11: Cbln2.Trh.GLU-2 (r = 0.789) (Fig. 4c). This divergence could 
be related to differences in RNA species measured between sc-seq 
and nucSeq.

Changes in IEGs can be used to infer neuronal activity17,32. Here, 
AgRP neurons are known to be activated during fasting57 and are used 
as positive controls. No other cell type showed an effect similar in 
strength compared to AgRP neurons, but some, such as C286-149: 
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Grp.Ppp1r17.GABA-1 and C286-139: Myo5b.Sox14.Lef1.GABA-1, could 
be interesting targets for future studies. When comparing cells from 
fasted and ad-libitum-fed mice, we detected DEGs in many cell types. 
Interestingly, many of the DEGs are common across multiple clus-
ters. This indicates that these changes may not be cluster specific, but 
might follow a common program (for example, protein translation) in 
response to a change of the metabolic state.

To demonstrate the utility of HypoMap, we showed that the under-
lying scVI model is able to project new hypothalamic sc-seq data, such 
as the Smart-Seq+Fluidigm C1 data by Romanov et al.20 onto the exist-
ing reference, thereby allowing quick and reliable annotation of cells 
in new datasets.

We also attempted to project bacTRAP bulk RNA-seq data of 
known neuronal populations onto HypoMap, to demonstrate that 
HypoMap was able to segregate these neurons over a wide range of 
cellular complexities and heterogeneity. Importantly, the POMCCre 
transgenic-based translational profiling not only faithfully captured 
bona fide Pomc-expressing cells, but also detected the AgRP neuron 
cluster, which expressed the POMCCre transgene developmentally 
and had thus been lineage-traced in this approach, as previously 
described58. However, HypoMap was also able to differentiate distinct 
POMC neuron subpopulations, as revealed by selective ribosomal pro-
filing of Lepr- and Glp1r-expressing POMC neurons via intersectional 
recombinase based targeting6. Our recent study using this system 
allowed us to unravel the microcircuit architecture and functional 
consequences of these heterogeneous cell groups6. Mapping of the 
more complex Pnoc and Glp1r bacTRAP datasets further illustrates 
how HypoMap can be successfully used to disentangle complex cell 
type mixtures. Compared with AgRP and POMC neurons, Pnoc and 
Glp1r neurons are less well characterized populations, and HypoMap 
offers an opportunity to better define these diverse, physiologically 
relevant neuron subtypes.

Here, we validated six Glp1r-expressing cell populations in the ARC 
and other hypothalamic regions. GLP-1RA can activate POMC neurons 
and contributes to an acute anorexigenic effect24. Consistent with this, 
acute chemogenetic activation of Glp1r-expressing POMC neurons rap-
idly and potently suppressed food intake, but less so in Lepr-expressing 
POMC neurons6. Activation of Glp1r-expressing cells in the PVH has also 
been described to mediate an acute anorexigenic effect55, and HypoMap 
can identify these clusters: C286-82: Oxt.Caprin2.GLU-6 and C286-81: 
Ebf3.Caprin2.GLU-6, which were both validated by in situ hybridiza-
tion. Integrating this information with the identification of additional 
Glp1r-expressing clusters in HypoMap may guide functional studies to 
further delineate the cells responsible for mediating the weight-reducing 
actions of GLP-1RAs. Candidate Glp1r-expressing clusters include Trh and 
Nkx2-4 co-expressing populations and Ghrh-positive and Tbx19-positive 
populations. The enrichment observed in C286-75: Anxa2.Pomc.
GLU-5 and C286-76: Glipr1.Pomc.GLU-5 was likely an artifact due to the 
high expression of POMC marker genes, as our previous mapping of 
Pomc-Glp1r bacTRAP data demonstrated.

We also validated multiple Pnoc-expressing populations in the 
ARC, such as the Crabp1-expressing clusters C286-158: Vgll3.Tbx3.
GABA-1 and C286-159: Crabp1.Sytl4.Tbx3.GABA-1, as well as SST neu-
rons (for example, Otp.Sst.GABA-4), which could mediate different 
effects than could other Crabp1-expressing cell types. Combining 
Pnoc bacTRAP with HypoMap allows the molecular characterization 
of the PNOCARC neurons at a high magnification and will enable further 
functional studies on their role in energy homeostasis. Our previous 
studies revealed that PNOCARC neurons are implicated in feeding behav-
ior26. Thus, this cell population represents a promising new target for 
therapeutic interventions in obesity and warrants further studies on 
the role of defined subclusters via intersectional targeting.

We envision that HypoMap will be used to align newly generated 
datasets to annotate cell types. When complemented with studies of 
different hypothalamic regions, the full range of hypothalamic cell 

expression can be revealed. It has been shown that the brain, includ-
ing the hypothalamus, is enriched for genes involved in heritability 
of body-mass index59. The unified cell-type annotation provided by 
HypoMap could further refine the enrichment analysis of genome-wide 
association studies of traits implicated in energy homeostasis. We 
expect that future versions of HypoMap will be extended by adding 
data from human and non-human primates, which will further increase 
the power of translational analyses.

HypoMap is limited only by the data we used to build it. Notably, 
some regions, such as the zona incerta, are underrepresented. We will 
continue to update HypoMap on a regular basis in order to incorporate 
new datasets and make it available to the scientific community.

It should be noted that we chose to not correct the count-level 
data, as we found that the count correction was often ‘smoothing’ dif-
ferences between clusters too strongly, thereby limiting downstream 
biological interpretation. However, this also means that gene expres-
sion queries to HypoMap still represent a mixture of different datasets 
and technical modalities.

In summary, we systematically integrated sc-seq/nucSeq datasets 
into HypoMap, a unified single-cell reference of the murine hypothala-
mus. HypoMap can serve as a basis for functional studies that further 
define energy-sensing neurons, such as GLP1-R and PNOC neurons. 
We found that nucSeq is a reliable alternative to sc-seq, and is able 
to capture similar cell types with a good comparability. nucSeq from 
snap-frozen cells is able to preserve neuronal activation markers, which 
makes it an attractive modality for functional studies.

Methods
Dataset download
An overview of all datasets included in the reference map is available 
in Supplementary Table 1. Sequence reads from 17 publicly available 
datasets were downloaded using ‘fastq-dump’ from the SRA toolkit (ver-
sion 3.0.0), with the exception of (1) GSE132355, GSE113576, GSE167927, 
and SRP135960, for which the original 10X BAM files were downloaded 
and used to regenerate fastq files via the ‘bamtofastq’ command 
from the Cellranger software (version 6.0.1, 10X Genomics); and (2)  
Kim et al.32, for which the original reads could not be found and the 
count table was used instead.

Sequence alignment, UMI and gene count
For 10X datasets (including nucSeq), Cellranger Version 6.0.1 (5.0.1 
for nucSeq) was used to (1) map sequence reads to the mouse genome 
GRCm38 (mm10); and (2) perform the UMI and gene-level counts 
against Ensembl gene model V100, with Gm28040 removed to recover 
Kiss1 expression. The per-cell gene count tables (in HDF5) generated 
by the software were then used for downstream analyses.

For each Drop-seq library, the sequence alignment of the bio-
logical reads was performed using STAR 2.7.5 to the mouse genome 
GRCm38 to generate a BAM file containing mapped reads. Read 1, 
which contains the cell barcode (CBC)/UMI read was first split into 
two separate fastq files, one containing just the CBC and the other 
containing the UMI, using ‘fastx_trimmer’ from the FASTX Toolkit 
(version 0.013), and were then tagged (XC and XM, respectively) onto 
the mapped biological reads using Fgbio’s ‘AnnotateBamWithUmis’ 
command (Fulcrum Genomics, version 1.5.1). All the untagged reads 
were removed from annotated BAM file using Samtools (version 1.14), 
and PCR duplicates based on UMI (XM tag) were removed using Picard’s 
‘MarkDuplicates’ command (version 2.22.2).

The deduplicated BAM file was then further annotated with genes 
using the gene model above (GRCm38, Ensembl V100 minus Gm28040) 
using ‘TagReadWithGeneFunction’ from Drop-seq tools (version 2.3), 
and digital gene expression was performed using ‘DigitalExpression’ 
command from Drop-seq tools, using a minimum number of transcript 
cut-off of 800 UMIs to generate a gene-level expression matrix for all 
cells detected, in a tab-delimited text format.
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Dataset quality control
We used the expression matrices of each datasets and ran a basic pre-
processing using Seurat (version 4.0.2)9. Each dataset was further fil-
tered to contain cells with a minimum of 1,000 UMIs per cell and a 
maximum fraction of mitochondrial genes of 0.1. We curated a common 
set of metadata features, including unique cell, sample and dataset-IDs, 
sample description (sex, mouse strain, experimental condition), dataset 
descriptions (technology, regional identities), and cell details (author 
annotations, UMI counts, cellcycle scores), among others. We harmo-
nized the annotations of major cell types (’classes’) to be comparable 
across datasets, including: neurons, tanycytes, astrocytes, oligodendro-
cytes, ependymocytes, immune cells, vascular/endothelial cells, and 
fibroblasts. For the data from Kim et al.32, no raw read files were available, 
hence we used the UMI count matrices provided by the authors and 
subset the cells to those annotated by the authors as hypothalamic cells 
(removing doublets, low-quality cells, and other unannotated cells). 
After identifying within-dataset batches, we merged all datasets to one 
combined dataset as input for our integration pipeline.

Batch identification
We considered datasets as independent datasets if they were split into 
multiple datasets by the original authors (for example Wen et al.31). 
For all individual datasets, an automated detection of batches was 
used: starting with a default processing using Seurat, consisting of 
log-normalization, feature detection (2,000 features), and princi-
pal component analysis (PCA), a low-dimensional embedding with 
50 PCs was obtained. Afterwards, randomForest R package (version 
4.6) (https://cran.r-project.org/package=randomForest) was used to 
predict the sample ID using the PCs as features and cells as observa-
tions. Using hierarchical clustering with spearman correlations ρ of 
the pairwise out-of-bag (oob) probabilities as distances, a clustering of 
samples was obtained. We iteratively merged the closest samples in the 
associated dendrogram and trained another random forest only on the 
currently merged samples. The entropy of the oob class probabilities, 
normalized by the logarithm of the total number of samples and aver-
aged over all cells, was used to estimate how well samples are separated. 
An entropy close to 1 means high similarity of samples; decreasing 
entropy indicates that the random forest can tell the merged samples 
apart and that there could be a batch effect. Merging of samples was 
stopped when the averaged entropy over all (merged) samples fell 

below 0.9. We calculated the entropy (H) as: H (X) = −
n
∑
i=1

p (Xi) × log(p(Xi)), 

where p(Xi) is the vector of class probabilities.

Doublet removal
We used DoubletFinder (https://github.com/chris-mcginnis-ucsf/
DoubletFinder)60 to identify doublets within each batch (as defined 
above), independent of all other data sets. We used 70 PCs and a fixed 
value for the variable numbers of artificial doublets (pN) of 0.25. For 
the neighborhood size (pK), we iterated over multiple values to find an 
optimal one for each batch but limited it to a maximum of 0.1. For 10x 
sc-seq data, we set the expected rate of doublets to 0.05; for Drop-seq 
data and pre-filtered data (for example, Kim et al.32) we set the expected 
rate of doublets to 0.01. Using the DoubletFinder predictions and 
preliminary clusters from the per-batch preprocessing, we excluded 
all clusters with a percentage of doublets above 70%.

After obtaining the final harmonized version of the data (see the 
next sections), we ran another round of manual doublet curation to 
identify potential doublet clusters that formed only after combining 
all cells. For this, we took advantage of defined signatures for major 
cell types and an exploratory clustering on the harmonized data. If 
cells of a cluster had a high average score for more than one cell type, 
the cluster was marked and subsequently removed. To avoid removing 
intermediate cell types, all marked clusters were evaluated manually 
before removal.

Data integration
Please see the Supplementary Information for information on data 
integration and evaluation. This includes a description of the pipeline, 
an overview of evaluated integration methods, the metrics used for 
evaluation, and the tuning of the final scVI model.

Cluster detection
Clustering was conducted using the Leiden algorithm42 for single-cell 
data in scanpy on the shared nearest-neighbor graph, as implemented 
in Seurat9 (k = 25 neighbors). We iteratively increased the clustering 
resolution starting from 0.001 up to 50 to obtain a range of differ-
ent cluster levels. The first clustering level was manually defined on 
the basis of the known annotation for neurons and non-neuronal cell 
types, and a Leiden clustering with seven groups was chosen as the 
second level (segregating into GABAergic and glutamatergic neurons 
and five major non-neuronal cell groups). We manually adjusted some 
small problematic clusters (for example, PMCH-neurons that were 
grouped with non-neuronal cell types). For the following five levels, we 
selected Leiden clustering results with increasing granularity, aiming to 
roughly triple the number of included clusters with each level. In total, 
7 clustering levels yielding between 2 and 680 clusters were generated. 
These clusters were subsequently combined into a clustering tree using 
the Multiresolution Reconciled Tree (mrtree)43 algorithm. We used 
the mrtree function from the original package (https://github.com/
pengminshi/MRtree) with standard parameters. We did not cut the 
resulting tree at an optimal level, but instead used it as a representation 
of the complex subtypes within neuronal cell types. After determining 
marker genes distinguishing each cluster node from its siblings in the 
tree (as described below), we merged sibling clusters with less than 
10 relevant markers (specificity > 1, see ‘Cluster annotation’) into one 
cluster node to avoid over-clustering.

For visualization of the tree we used the ggtree R package (version 
2.4.2)61 (https://github.com/YuLab-SMU/ggtree). VMH neuron cluster 
comparisons were visualized using the sankeyNetwork function from 
the networkD3 R package (version 0.4) (https://cran.r-project.org/
package=networkD3).

Marker gene detection
We used the van Elteren test implementation for Seurat objects (https://
github.com/KChen-lab/stratified-tests-for-seurat) to detect marker 
genes for each node of the cluster tree, comparing the current cluster 
either against all other nodes on the same level or against the sibling 
nodes to obtain a set of markers per cluster. We subset the tree into its 
neurons and non-neurons and calculated the global marker genes only 
versus other cells in the respective subtrees to restrict the marker sets 
to more relevant genes.

Cluster annotation
We calculated a specificity score, S, per gene and cluster, c, as 

Sc,ref = Average log2Foldchangec,ref ×
Pctc
Pctref

 which includes the foldchange 

of the average expression of cluster c and a set of reference cells (for 
example, all others), and the percentage (Pct) of expressing cells in 
cluster c and the reference. We used the specificity S to rank genes, 
and additionally the adjusted P values from the van Elteren test to 
reduce this ranking to potential marker genes. To determine the most 
relevant marker genes and to select a cluster name, each node (clus-
ter) of the tree was visited from top to bottom. We ranked the most 
descriptive markers by calculating a score (T) for each cluster c as 

Tc = Sc,all × Sc,siblings/max
i

(Si,siblings) , which includes the specificity 

compared with all other clusters, as well as only the sibling clusters 
and the specificity for all children clusters i. Additionally, we excluded 
pre-specified genes such as ‘mt-’ or ‘Rp’ and any genes that were already 
used as a name in the ancestor nodes. To incorporate a node’s parent 
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cluster, the final cluster annotation was constructed by concatenating the 
node’s best marker gene with its parent’s name. If no siblings existed, no 
additional gene name was added. For the first three levels of the tree, we 
manually set the names of clusters on the basis of the previously curated 
major cell types (‘class’) and, in some cases, specific neuronal markers.

Region annotation
In order to predict potential spatial locations of clusters, we combined 
the likely regions of origin based on the original dataset (if specific to 
certain subregions), with a prediction based on ISH expression values 
from the Allen Brain Atlas62 (https://mouse.brain-map.org/). We used 
the cocoframer R package (version 0.1.1) (https://github.com/AllenIn-
stitute/cocoframer) to query the API and obtain ISH expression values 
for each voxel from the coronal sections.

For each voxel we used the ‘energy’ value to rank all probes. Then, 
for each neuronal cluster from level 6 of the HypoMap tree (C286), we 
selected all probes with matching marker genes (specificity > 4) and 
calculated the median rank in that voxel as an enrichment score. We 
aggregated the median ranks (normalized to total number of expressed 
probes) of the four voxels with the highest median ranks. We subtracted 
the aggregated normalized median ranks from 1 and used the result 
as the final score for each region, so that a score close to 1 indicates an 
enrichment of the cluster marker genes in the top ranked probes of the 
voxels of each region. In Supplementary Table 8, we have reported the 
top ten results for each cluster.

To build one final regional prediction, we assigned the highest 
scoring region as the possible spatial origin (if the score was >0.8). 
However, to further refine the prediction, we included the known 
dataset origin for many studies. For each subregion-specific data-
set, we manually curated a set of likely Allen Brain Atlas regions and 
checked their contribution to the cells of each cluster. On the basis of 
this, we down-scaled the median rank predictions if insufficient cells 
originated from the predicted region (for example, a high mammillary 
region score was down-scaled if the majority of cells originated from 
preoptic/anterior datasets). We further checked many clusters manu-
ally and changed the final annotation shown in the paper figures to the 
second- or third-highest prediction for well-documented cell types. 
To reduce the number of categories for the color-coded annotation 
in Figure 2a, we summarized some regions by spatial proximity (for 
example, grouping all mammillary and pre-mammillary clusters or all 
preoptic region clusters together).

Mapping of new data
We stored the reference scVI model using scvi.model.SCVI.save. 
The scvi.model.SCVI.load_query_data method allows the embed-
ding of a query dataset into the latent space of the reference map 
via scArches algorithm15,63. We used Seurat’s ProjectUMAP function 
to calculate nearest neighbors in the reference and visually embed 
a query dataset into the original UMAP9. The nearest neighbors Nc 
were used to propagate cluster labels by calculating the mapping 
probability per available label y using the similarity to each neighbor: 

p (Y = y|X = c) =
∑
iϵNc

I(y(i)=y)×sim(c,ni)

∑
jϵNc

sim(c,nj)
 where similarity to each neighbor I is 

the indicator function and y(i) is the label of ith neighbor. This approach 
is adapted from the scArches algorithm63, but simplified by skipping 
the gaussian smoothing step and using cosine similarity derived from 

the cosine distances as: simcosine = 1 − dist2cosine
2

. We combined the mapping 

and projection functions together with preprocessing and visualization 
functions in an R package: mapscvi (https://github.com/lsteuernagel/
mapscvi). In order to map data from Romanov et al.20, we used the 
functions predict_query and project_query from the mapscvi package 
to construct a projected embedding and clustering of the data. For 
nearest-neighbor detection, we used k = 25 neighbors.

We employed HypoMap to explore bulk bacTRAP data of Agrp, 
Pomc, Pnoc, and Glp1r neurons. Comparison of the reference sam-
ples (’input’) with the immunoprecipitation (’IP’) with DEseq2 (ref. 64) 
yielded signatures of genes that are enriched in the IP and likely to be 
expressed in the targeted cell types. We adapted rank-biased overlap 
(RBO)54 to compare two sets of ranked genes: (1) bacTRAP signature of 
interest ranked by the their log2(fold change); and (2) cluster markers 
of each cluster in the sc-seq reference ranked by their log2(fold change) 
or specificity scores. We used extrapolated RBO for uneven lists as 
implemented in the gespeR R package (version 1.26.0) to calculate 
RBO scores for each bacTRAP signature on each cluster of the mrtree 
clustering54 (https://www.bioconductor.org/packages/release/bioc/
html/gespeR.html).

NucSeq comparative analysis
To compare the molecular profiles of single-cell and single-nucleus 
data in HypoMap, we calculated the correlation of gene expression 
between our in-house nucSeq and the public sc-seq datasets. For the 
comparison, we used the projected level 5 clustering (C185, corre-
sponding to the lowest level of the hierarchical tree in Figs. 2a and 4c). 
We selected genes that were expressed in more than 20% of cells of a 
cluster or that had a mean expression > 0.2 (log-normalized) in at least 
one cluster. Using the mean expression per cluster (single-cell versus 
nucSeq), we calculated Pearson’s r for each gene and grouped genes by 
different classes on the basis of the Ingenuity pathway analysis (Qiagen) 
for further analysis. For neuropeptides we included genes annotated 
with the gene ontology (GO) term GO:0005179 or annotated ko04080 
in the KEGG pathway. In order to compare the correlation of sc-seq 
and nucSeq on the cluster level, we used marker genes of each cluster 
with specificity > 0.25 and Pearson’s r > 0.3. Pearson’s r for each cluster 
was calculated between nucSeq and HypoMap or the individual sc-seq 
datasets in HypoMap across all marker genes.

We used a curated set of IEGs from Wu et al.17 and reduced the set 
to 73 genes (expressed in >300 cells and a maximum of 10,000 cells 
in nucSeq). We manually added 1700016P03Rik, which correlated 
with Fos. To determine whether 1700016P03Rik is a CREB1-target 
gene, we looked for cAMP response element (CRE) in the promoter65. 
Briefly, we used BSgenome (version 1.58) (https://bioconductor.
org/packages/release/bioc/html/BSgenome.html) to retrieve pro-
moter sequences –800 to +200 base pairs (bp) around the transcrip-
tion start site (TSS) (mm10). We then used refTSS v3.3 to obtain 
a set of TSSs per gene66. Detection of JASPAR profiles MA0018.1 
and MA0018.2 from JASPAR2020 (ref. 67) was conducted with TFB-
Stools (version 1.28) (https://bioconductor.org/packages/release/
bioc/html/TFBSTools.html) using the function searchSeq on both 
strands and with a relative score of >80%. We counted the number 
of detected profiles per promoter and normalized it by the number 
of non-overlapping promoters per gene. We found multiple occur-
rences of CRE in 1700016P03Rik’s promoter, similar to other known 
CREB1-target genes (Extended Data Fig. 7b). To quantify the activa-
tion of clusters (Level 4) we counted the number of significantly 
up-regulated IEGs detected using the Wilcoxon test implemented in 
Seurat’s FindMarkers per cluster and split by diet condition, using 
Bonferroni correction for multiple testing.

Differential expression between cells from fasted and 
ad-libitum-fed mice was performed using the Wilcoxon test and 
negative binomial generalized linear model implemented in Seurat’s 
FindMarkers function (see Supplementary Tables 10 and 11). The enrich-
ment of significantly up-regulated genes in the fasted state in AgRP 
neurons for GO ‘Biological Process’ terms was conducted with the 
clusterProfiler R package (version 3.18.1)68 (https://bioconductor.
org/packages/release/bioc/html/clusterProfiler.html). We used the 
enrichGO function with default parameters and all genes expressed 
in at least 10% off all AgRP neurons in nucSeq as background gene set. 
The simplify function was used to remove redundant terms
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Experimental methods
All experimental methods regarding animal care and mouse lines, 
details on the bacTRAP, nucSeqm and in situ hybridization experiments 
can be found in the Supplementary Information.

Statistics
Statistical analyses are described in the respective sections. No prior 
power calculations were performed. For large-scale hypothesis testing 
(for example, marker genes or differential gene expression) dedicated 
R packages for these analyses were used and included correction for 
multiple testing (DESeq2: Benjamini–Hochberg, Seurat: Bonferroni). 
For individual null hypothesis tests, we used the appropriate functions 
in R: t.test, wilcox.test, or cor.test with alternative set to ‘two.sided.’ For 
the quantification in Figure 7, we additionally used functions from the 
R packages ggpubr (version 0.4.0) (https://github.com/kassambara/
ggpubr) and rstatix (version 0.7.0) (https://github.com/kassambara/
rstatix).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Both HypoMap and the hypothalamic nucSeq are available in an interac-
tive CellxGene viewer (available via https://www.mrl.ims.cam.ac.uk). 
Additionally, the Seurat object containing the HypoMap, which is 
required to reproduce the shown figures and to project new data, is 
deposited at University of Cambridge’s Apollo Repository (https://doi.
org/10.17863/CAM.87955) in standard RDS format.
The nucSeq and the bacTRAP profiling data for Agrp, Glp1r, and Pomc 
neurons are available from the Gene Expression Omnibus (GEO), acces-
sion numbers: GSE207736 and GSE208355, respectively. The Pnoc bac-
TRAP data are available at GSE137626. The Pomc-Lepr and Pomc-Glp1r 
bacTRAP data are available at GSE153753. The published sc-seq studies 
used to construct HypoMap are listed in Supplementary Table 1. Source 
data are provided with this paper.

Code availability
The code used to create all Figures, all additional input data, the output 
plots, tables and source data files can be found at: https://github.com/
lsteuernagel/hypoMap_paper. An R package that allows mapping of 
new single-cell data onto the existing HypoMap scVI model is avail-
able at: https://github.com/lsteuernagel/mapscvi. The pipeline for 
evaluation of scVI hyperparameters to optimize the HypoMap model 
can be found at https://github.com/lsteuernagel/scIntegration. The 
pipeline to build HypoMap, including all downstream clustering and 
annotation steps, can be found at: https://github.com/lsteuernagel/
scHarmonization.
The R packages scUtils (https://github.com/lsteuernagel/scUtils) and 
scCoco (https://github.com/lsteuernagel/scCoco) provide additional 
functions used in the above pipelines. We will provide any other code 
upon request.
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Extended Data Fig. 1 | Selection of single-cell integration method. a, 
Overview of the pipeline used to determine an optimal integration of data 
including normalization and feature selection. b, Evaluation metrics calculated 
on integration results of preliminary dataset (85,000 cells). Purity refers to a 
combined score of cell type purity and cluster separation. Mixing refers to a 
combined score of dataset mixing. An optimal integration achieves high mixing 

scores while retaining high purity scores. c, UMAPs of each integration method’s 
best result colored by dataset of origin to show dataset mixing and cluster 
separation. As indicated by the metrics, most methods are able to mix the data 
and retain most of the original cell types. The Raw PCA is not mixing the data 
fully, while the low-dimensional Harmony result is not able to represent the full 
complexity of the data.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Optimization of scVI parameters. a, Evaluation 
metrics calculated on scVI integration results of full HypoMap (384,925 cells). 
Purity refers to cell type purity only. Cell type separation (asw_norm = average 
silhouette width) is shown by the point size (see methods for details on metrics). 
PCA (orange) clearly mixes that data less well than scVI (pink). b, Evaluation 
metrics similar to (a), calculated on scVI integration results with comparable 
hyperparameters using either all cells (light blue) or only neurons (grey) as input. 
Using all cells as input did not affect the integration performance in mixing and 
purity, but the the cluster separation (asw_norm) was lower. c, Example box plots 
for detailed evaluation of scVI hyperparameters, visualizing the influence of the 

number of training rounds (epochs) and hidden layers on the three different 
metrics. Each point corresponds to a scVI training run on the full HypoMap data. 
The center of the boxplot is the median of all runs, the lower and upper hinges 
correspond to the first and third quartiles and the whiskers extend from each 
hinge to the largest value smaller than 1.5 times the distance between the first 
and third quartiles. Overall n = 224 scVI runs that were compared, the number 
differs between boxplots depending on the parameters. d, UMAP visualization 
of HypoMap colored by datasets to visualize mixing. e, UMAP visualization of 
HypoMap colored by mapped cell types for the evaluation of purity (see Methods 
and Supplementary Table 2 for details).
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Extended Data Fig. 3 | UMAP visualization of cells and original annotations from Campbell et al. UMAP visualization of cells and original annotations from 
Campbell et al., highlighting which parts of HypoMap are covered by this dataset. Inset shows the enlarged view of cell clusters from the SCN colored by HypoMap 
clusters.
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Extended Data Fig. 4 | Full hierarchical cluster tree. Full hierarchical cluster tree of HypoMap showing all 7 cluster levels. This includes level 6 (C286) and 7 (C465). 
Individual clusters at levels 4 – 7 are named with the most informative marker gene, given as edge labels. Full cluster names were constructed by concatenating the 
given gene names with those of all ancestors.
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Extended Data Fig. 5 | Hierarchical cluster trees of HypoMap split into 
neuronal (A) and non-neuronal (B) populations. Similar to Fig. 2A, but split 
into neuronal (a) and non-neuronal (b) populations. The first 5 levels with up to 
185 clusters are shown. Individual clusters at levels 4 and 5 are named with the 
most informative marker gene, given as edge labels. The inner (red) circular 
heatmap depicts the contribution of each dataset to the clusters at the lowest 
tree level in percent. The middle heatmap (blue) depicts the relative contribution 

of each cluster at the lowest tree level to the total cell number in percent. The 
scale is limited to 2%. The outer ring depicts the most likely region of origin (R) 
for each neuron cluster on the lowest level of the displayed tree. If support was 
insufficient for a cluster, no region was assigned and the cluster was colored in 
grey (see methods). For the non-neuronal cell types in (b) no regional prediction 
was conducted.
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Extended Data Fig. 6 | Marker gene expression across datasets. a-b, Violin plots showing the expression of the top 5 marker genes (selected by specificity and 
adjusted p-value) of POMC subcluster C185-48: Anxa2.Pomc.Glu-5 (a) and AgRP subcluster C185-115: Npy.Agrp.GABA-4 across datasets, demonstrating that the 
expression level of key marker genes are mostly stable.
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Extended Data Fig. 7 | Neuronal changes after fasting. a, there is no change 
in Fos expression in Campbell et al. AgRP neurons after fasting. Left: UMAP plot 
depicting C66-46: Agrp.GABA-4 in HypoMap. The inset shows Agrp expression 
in Campbell et al. cells from C66-46: Agrp.GABA-4C66-46: Agrp.GABA-4. Right: 
UMAP plots of the same cells showing Fos expression in fasted and ad libitum 
fed states. b, CREB1 transcription factor binding site (TFBS) detection in IEG 
promoters compared to 1000 randomly sampled background gene promoters 
and IEG promoters. 1700016P03Rik contains multiple putative CREB1 binding 

sites in its promoter sequence, indicating it could play a role as an immediate 
early gene. c, Number of differentially expressed genes (DEG) after fasting in 
each cluster shown on the UMAP of nucSeq data. d, Enrichment of DEGs that 
were found in at least 20% of all clusters (155 genes) in ‘biological process’ gene 
ontology (GO) terms. The pvalues are based on a hypergeometric test from 
an over representation analysis and corrected using false discovery rate (fdr). 
Globally regulated genes are enriched in translation related terms and ‘cell death’.

http://www.nature.com/natmetab
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Extended Data Fig. 8 | Gene expression of marker genes used for Glp1r 
RNAscope validation. For each marker combination that was quantified 
together with Glp1r (see also Fig. 7a-c), double or triple positive cells are shown 
on UMAP subsets around the relevant cell types. The color scale is based on 
the square root of the product of expression levels. The colored rectangles 

in the grey reference in the central UMAP show which parts of the complete 
HypoMap are shown in the subsets. For most cell types the gene combinations 
are highly specific, especially compared to their neighboring cells. However, for 
Tbx19/Anxa2 only very few Glp1r cells exist in the single cell data.

http://www.nature.com/natmetab
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Extended Data Fig. 9 | Gene expression of marker genes used for Pnoc RNAscope validation. For each marker combination that was quantified together with Pnoc 
(see also Fig. 7e-f), double or triple positive cells are shown on UMAP subsets around the relevant cell types (See Extended Data Fig. 8 for details).

http://www.nature.com/natmetab
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Sample size

Data exclusions

Replication

10X Genomics Cellranger 6.0.1 and 5.0.1

STAR 2.7.5

Scater R package (version 1.20.1)

scDblFinder (1.6.0)

https://github.com/chris-mcginnis-ucsf/DoubletFinder (V2.0)

randomForest R package (version 4.6)

Scanorama package (version 1.7)

Harmony R package (version 0.1)

AUCell R package (version 1.12.0)

leiden R package (version 0.3.7)

cocoframer R package (version 0.1.1)

mrtree (https://github.com/pengminshi/MRtree) (Version: 0.0.0.9000)

ggtree R package (version 2.4.2)

https://github.com/KChen-lab/stratified-tests-for-seurat

gespeR R package (Bioconductor 0.99.5)

networkD3 R package (version 0.4)

BSgenome (version 1.58)

TFBStools (version 1.28)

rstatix (version 0.7.0)

ggpubr (version 0.4.0)

Fiji (version 2.0.0-rc-41/.50d)

docker (version 1.41)

singularity (version 3.4.1-1)

slurm (version 16.05.6)

Both HypoMap and the hypothalamic nucSeq is made available in an interactive cellxgene viewer (available via https://www.mrl.ims.medschl.cam.ac.uk).
Additionally, the Seurat object containing the HypoMap, which is required to reproduce the shown figures and to project new data, is deposited at University of
Cambridge’s Apollo Repository (doi:10.17863/CAM.87955) in standard RDS format.

The nucSeq and the bacTRAP profiling data of Agrp, Glp1r, and Pomc neurons are available from the Gene Expression Omnibus (GEO), accession numbers:
GSE207736, and GSE208355 respectively. The Pnoc bacTRAP data are available from GSE137626. The Pomc-Lepr and Pomc-Glp1r bacTRAP data are available from
GSE153753. The published sc-seq studies used to construct HypoMap are listed in Suppl. Table 1).

No prior power calculations for sample size were performed. Sample sizes (n=3-5) for bacTRAP, nucSeq and RNAscope experiments were
based on previous experiments (Biglari, 2021; Jais, 2020). For RNAscope validation we aimed for 4 mice with 2-4 sections (rostral and caudal)
analyzed per animal and celltype.

We removed single cells from the nucSeq that were of low quality (e.g. Doublets or low UMI numbers). For the creation of HypoMap removed
cells that were of low quality and additionally removed samples that had fewer than 100 cells left after cell filtering. We did not remove any
other data.

A substantial part of the analysis conducted in this study revolves around replicability and comparability of the different data types. We
generally find that the nucSeq data is well comparable with the single-cell data but dependent on covariates such as single-cell technology.
The bacTRAP RNAseq data partly recapitulates the findings from the single-cell data but does not exactly replicate the expected cell types.
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used

Validation

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals

Wild animals

Field-collected samples

Using RNAscope we validated the expression of Glp1r in the cell types that were predicted from the sequencing data.

Animals were randomized for the grouping into fed and fasting. For other experiments no experimental condition was tested.

Data collection was carried out blinded where applicable. Data analysis of sequencing data (e.g., single-cell data processing and differential
expression analysis) was not carried out in a blinded fashion, due to the common workflows requiring availability of metadata and working
fully blinded impeding work with these.

Heintz Lab TRAP anti-GFP 19F7 antibody (Cat# Htz-GFP-19F7, RRID:AB_2716736)

Heintz Lab TRAP anti-GFP 19C8 antibody (Cat# Htz-GFP-19C8, RRID:AB_271673)

From: Heintz Lab; Rockefeller University. Validated in Heiman et al., 2008, DOI:https://doi.org/10.1016/j.cell.2008.10.028

Ordered from: Memorial Sloan-Kettering Cancer Center

Cologne (bacTRAP & RNAscope):

Mice were housed in individually ventilated cages at 22–24C and humidity at 45-55% using a 12-h light/dark cycle. Animals had
access to water and food ad libitum and were fed a normal chow diet (ssniff, V1554). Food was only withdrawn during defined fasting
periods. C57BL/6N mice were obtained from Charles River, France. For RNAscope experiments 16 h fast, 10 weeks old male
C57BL/6N mice were sacrificed. For bacTRAP experiments 10 weeks old male Glp1rCre ROSA26lSlEGFPL10a mice, 12 weeks POMCCre
ROSA26lSlEGFPL10a and 12 weeks old AGRPCre ROSA26lSlEGFPL10a were sacrificed in a random-fed state.

Details on genetically modified mouse lines:

Driver lines: Glp1r-ires-Cre (Williams, 2016), AgRP-ires-Cre (Balthasar, 2004) and POMC-Cre (Anastassiadis, 2009) mice have been
previously described.

ROSA26lSlEGFPL10a (ROSA26-CAGS-lox-STOP-lox-EGFPL10a-WPRE): This line was generated by breeding ROSA26lSlrSrEGFPL10a
(ROSA26-CAGS-lox-STOP-lox-roxSTOP-rox-EGFPL10a-WPRE) 7 with a ubiquitously expressed CAGGS-Dre deleter line (Anastassiadis,
2009).

Experimental lines: Glp1rCre ROSA26lSlEGFPL10a mice were generated via mating homozygous Glp1r-ires-Cre mice to homozygous
ROSA26fl/fl mice of the EGFPL10a construct. A similar breeding strategy was used for the POMCCre ROSA26lSlEGFPL10a mice.
Resulting double transgenic Cre+/- ROSA26fl/wt mice were used as experimental animals.

Cambridge (single nucleus sequencing): Male C57BL/6J mice at 6-8 weeks were housed in ventilated cages in a controlled
temperature (20-24°C) and humidity (45-65%) facilities with a 12-h light/dark cycle (lights on 06:00–18:00) and had ad libitum access
to food (RM3(E) Expanded chow, Special Diets Services, UK) and water in the animal facility at the Anne McLaren Building, University
of Cambridge. For the overnight fasted group (6 animals), the chow was removed from at 5pm until 9am the next day, the animals
had access to water throughout the fasted period.

The study did not involve wild animals.

The study did not involve samples collected from field.
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