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% Check for updates y-Aminobutyrate (GAB), the biochemical form of (GABA) y-aminobutyric

acid, participates in shaping physiological processes, including the
immune response. How GAB metabolismis controlled to mediate such
functions remains elusive. Here we show that GAB is one of the most
abundant metabolitesin CD4* T helper 17 (T,;17) and induced T regulatory
(iT,) cells. GAB functions as abioenergetic and signalling gatekeeper by
reciprocally controlling pro-inflammatory T,17 cell and anti-inflammatory
iT. cell differentiation through distinct mechanisms. 4-Aminobutyrate
aminotransferase (ABAT) funnels GAB into the tricarboxylic acid (TCA)
cycle to maximize carbon allocation in promoting T,,17 cell differentiation.
By contrast, the absence of ABAT activity iniT,, cells enables GAB to be
exported to the extracellular environment where it acts as an autocrine
signalling metabolite that promotes T, cell differentiation. Accordingly,
ablation of ABAT activity in T cells protects against experimental aut-
oimmune encephalomyelitis (EAE) progression. Conversely, ablation

of GABA, receptor in T cells worsens EAE. Our results suggest that the
cell-autonomous control of GAB on CD4" T cells is bimodal and consists of
the sequential action of two processes, ABAT-dependent mitochondrial
anaplerosis and the receptor-dependent signalling response, both of which
arerequired for T cell-mediated inflammation.

Mounting a robust and effective adaptive immune response in verte-
brates is metabolically costly and requires proper allocation of essential
yet limited energy and carbon resources. Metabolism must be tightly
controlled at the cellular level to coordinate rapid expansion followed
by a fine-tuned differentiation process in T cells. Beyond acting as
bioenergetic substrates and biosynthetic precursors, metabolites

candirectly control cellular signalling responses through influencing
DNA, RNA and protein modifications, signalling receptors’ activities
and the production of reactive oxygen species'™. As such, metabo-
lismis fundamental to fine-tuning carbon and nitrogen allocation and
optimizing immune response, whichis at the centre of many diseases.
Previous studies have used systemic approaches to comprehensively
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characterize the transcriptome, the abundance of intracellular metabo-
lites and the overall catabolic activities of T cells at the different stages
duringthe T celllife cycle®’. These studies have generated critical tem-
poral snapshots of the metabolic landscapes, which help establish a
conceptual foundation for understanding T cell metabolic reprogram-
ming. However, most of these studies have centred mainly onintra-
cellular metabolites and activities of the central carbon metabolism.
The overall metabolic landscape of T cells can also be delineated by
monitoring the metabolites consumed from and secreted into the
growth medium. The extracellular metabolome represents the ultimate
outcome of metabolic input, processing and output. Extracellular
metabolome profiling (also called metabolic footprinting) has been
applied asastandard technique to optimize microbial bioprocesses by
analysing substrates consumed from and metabolites secreted into a
microorganism’s culture medium®’. Here, we took a similar approach
(Fig. 1a) to compare the extracellular metabolome profiles of naive
T (T,,) cells and different subsets of effector T (T,) cells, including T
helper (T,0, T,1, T,17) cellsand induced regulator T (iT,,.) cells.

Results

GAB is an abundant metabolite produced by effector T cells
The control (blank) medium and the spent medium of different subsets
of T cells (Extended Data Fig. 1a) were profiled on a semi-quantitative
untargeted global metabolomics platform based on liquid chroma-
tography-mass spectrometry (LC-MS), with broad coverage of up to
1,000-2,500 compounds, including amino acids, energy metabolites,
nucleotides and lipids. Using this approach, we have classified metabo-
lites as having changes in production or consumption according to
whether the fold change compared with control was positive or nega-
tive, respectively. Hierarchical clustering analysis, the pairwise compar-
isonand the principal-component analysis revealed that T cell subsets
were characterized by distinct extracellular metabolome profiles
(Fig.1b and Extended Data Fig. 1b-g). Consistent with the role of central
carbon metabolisminsupporting cell growth, the hyper-proliferative
T.sgroups consumed more carbohydrates and produced more lactate
thantheT,, group (Extended Data Fig.1e). Additionally, the T,,17 group
was characterized by the highest production of polyamines (Fig. 1b),
inline with the recent finding of a critical role for polyamine in deter-
mining T,,17 differentiation'*™. Intriguingly, i T, cells produced high
levels of y-aminobutyrate (GAB) and its derivatives (Fig. 1b). Next, we
applied gas chromatography-MS (GC-MS)-based targeted metabo-
lomics and nuclear magnetic resonance (NMR) to validate and quantify
intracellularand extracellular GAB production. We confirmed thatiT,.,
cells produced much higher levels of GAB than T17 cells (Fig. 1c-h).
Unexpectedly, GAB was the most abundant intracellular metabo-
lite and among the top three extracellular metabolites iniT,, cells
(Fig.1c,d). However, neither prolonged culture nor restimulation would
significantly changed GAB excretion (Extended DataFig. 1h,i). Following
activation, thymus-derived T, (tT,.,) cells could also excrete a com-
parable amount of GAB to the medium as iT,, cells (Fig. 1i). Notably,
the intracellular level of GAB was even higher than that of glutamate
(Glu) iniT,, cells, which is one of the most abundant intracellular
metabolites in various organisms®. GAB is produced by catabolizing
glutamine (GIn) through the (GABA) y-aminobutyric acid shunt and
elicits GABAergic response through GABA receptors (GABA-Rs) in
neurons. To better understand the molecular nature that determines
GAB production and functionin T cells, we examined the expression
of a panel of GABA-related metabolic and receptor genes by qPCR
(Fig. 1e,f). Consistent with the previous findings on the GABA-R expres-
sion profile in immune cells™. T, cells expressed a selected group of
GABA-R subunits. However, only iT,., and T,17 cells expressed high
levels of glutamate decarboxylase (GAD), the enzyme that catalyzes the
decarboxylation of Glu to GAB. Unexpectedly, the T,17 group exhibits
a higher level of GAD than the T, group and was the only group that
expressed ahighlevel of the GAB-catabolizing enzyme 4-aminobutyrate

aminotransferase (ABAT), indicating increased GAB catabolismin T, 17
cells but not iniT,., cells (Fig. 1f). Collectively, these findings suggest
that extracellular metabolome profilingis arobust approachtoreveal-
ing T cell metabolic characteristics in vitro. Using this approach, we
have found that GAB is an abundant metabolite produced by T cells.

T cells use both GIn and Arg to produce GAB

Given the higher expression of GAD and ABAT in T, ;17 cells relative to
iT.gcells, wereasoned thatbothiT,, cellsand T;17 cells could produce
GAB.However, the fate of GAB depends on ABAT, thatis, GABis diverted
into the tricarboxylic acid (TCA) cycle in the presence of ABAT in T, ;17
cellsinstead of being exported into the extracellular compartmentin
the absence of ABAT asiniT, cells. To test this idea, we cultured T,17
cells with or without the potent ABAT inhibitor vigabatrin (Vig)™'¢,
for 6 hand then measured the levels of a panel of metabolites. Inhibit-
ing ABAT activity by Vig led to the accumulation of intracellular GAB
and GAB release into the medium (Fig. 1k,j). Notably, inhibiting ABAT
activity rendered GAB one of the most abundant metabolites in the
medium and cell pellet (Fig. 1k,j). Moreover, we have validated that
ABAT was expressed in T 17 cells but notiniT,, cells usingimmunoblot
(IB) analysis and intracellular staining (Fig. 2a,b). Interestingly, inhibit-
ing ABAT activity reduced Gln consumption without changing Glulevels
significantly but increased GAB levels over 100-fold (Fig. 2c,d). The
reciprocal changes in GIn consumption versus GAB production raise
the possibility of a GIn-independent GAB production routein T,17 cells.
Gln catabolism via the GABA shunt is the canonical GAB biosynthesis
pathway"”. Alternatively, GAB could be formed from putrescine (Put),
ametabolite mainly derived from arginine (Arg) (Fig. 2d)"*". Indeed,
the metabolic genes involved in converting Arg into GAB were highly
expressed in T,,17 cells (Fig. 2e). To determine to what extent Gln and
Arg contribute to GAB biosynthesis, we cultured T,17 cells with Vigin
the presence or absence of GIn, Arg or both. Then, we collected spent
mediumto measure the levels of various metabolites. While removing
Gln or Arg reduced GAB production, the removal of both completely
blocked GAB production (Fig. 2f). Next, we supplied [°C,]Arg, [°C;]
Gln, [*C,]lglucose (Glc) or [*C,]Put as metabolic tracers in the culture
medium and followed *C incorporation into individual metabolites
by GC-MS. The presence of the >C, isotopologue of GAB and the cor-
responding ®C, or*C,isotopologues of upstream metabolites further
confirmed that GIn and Arg are carbon donors of GAB (Fig. 2g). How-
ever, only the *C, isotopologue of GAB was detected in samples with
[*C,]Glc, suggesting that Glc can support Glu (and GAB) synthesis
through the TCA cycle (Fig. 2h). Finally, we showed that Put can be
converted to GAB viaadiamine oxidase (DAO)-dependent reaction as
itsinhibitor aminoguanidine (AG) completely blocked the production
of [*C,]GAB from [*C,]Put (Fig. 2i). In addition to a general require-
ment of both amino acids for protein synthesis, we envisioned that
GIn and Arg might also support T,,17 function and survival through
supporting GAB biosynthesis. To test this idea, we cultured T,17 cells
in GIn/Arg-replete medium or suboptimal medium (with low levels of
GIn/Arg) in the absence or presence of high levels of GAB. Support-
ing our hypothesis, reducing the amount of either amino acid led to
defects in the maintenance of viability and interleukin (IL)-17* popu-
lations. Notably, GAB supplementation could correct both defects
(Fig.2j,k). We, therefore,concludethat T,;17 cellscanuse both GIn-derived
and Arg-derived carbon to synthesize GAB and support cell viability
and function.

ABAT confers GAB-dependent anaplerosis on T,17 cells

Next, we reasoned that the expression of ABAT may render T,;17 cells
capable of diverting GAB into the TCA cycle in a way that maximizes
carbon allocation and oxidative phosphorylation (OXPHOS) in mito-
chondria. To test this idea, we added [*C,JGABA as a metabolic tracer
into the culture medium and followed C incorporation into interme-
diate metabolites of the TCA cycleiniT,., cells and T, 17 cells with or
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Fig.1|GABis an abundant metabolite produced in T,17 andiT ., cells.

a, Experimental scheme of T cell extracellular metabolome profiles (LC-

MS). b, Extracellular metabolites associated with amino acid metabolism
intheindicated T cell subsets were profiled by LC-MS. The value for each
metabolite represents n = 3 biologically independent samples. The heatmap
represents the value of the relative amount (see colour scale). The complete
metabolomic profile is provided as source data. ¢,d j k, Indicated metabolites
were quantified by GC-MS. The value for each metabolite representsn=3
biologically independent samples. Cysteinylglycine disulfide*, (2R)-2-amino-3-
{[2-amino-2-(carboxymethylcarbamoyl)ethyl]disulfanyl}propanoic acid; alpha-
ketoglutaramate*, 2-keto-glutaramate; 2-oxoarginine*, 5-[(diaminomethylidene)
amino]-2-oxopentanoic acid; 2,3-dihydroxy-5-methylthio-4-pentenoate
(DMTPA)*, (2R,3R 4E)-2,3-dihydroxy-5-(methylsulfanyl)pent-4-enoic acid. The
heatmaps (c k) represent the log value (medium) or the absolute value (pellet)
ofthe indicated metabolite quantity (see colour scale). The complete data are
provided as source data. The volcano plots (d,j) show changes in metabolites in
the cell medium and cell pellet. Heatmaps and volcano plots are representative

of n=3independentbiological samples from n =2 independent biological
experiments. e, Schematic of the pathway of GABA metabolism. f, RNA was
isolated from theindicated T cell subsets (n = 3 biologically independent
samples) and used for qPCR analyses of the indicated metabolic genes. mRNA
levels of T,,,; cells were set to 1. The heatmap represents the log value of the
relative mRNA expression level (see colour scale). Values and s.d. are provided
assource data.g,h, GABin theindicated groups was determined and quantified
by NMR (n =3 biologically independent samples). i, As illustrated by the
experimental scheme (left), GAB productioniniT,.; and tT,, cells was quantified
by a GAB bioassay kit (n = 4 biologically independent samples). Statistical
analysis was performed by R (b) or unpaired two-tailed Student’s ¢-test (c,d,i-k).
GAD, glutamate decarboxylase; SSADH, succinic semialdehyde dehydrogenase;
SSAR, succinic semialdehyde reductase; GHB-R, y-hydroxybutyrate receptor;
GATs, GABA transporters; VGAT, vesicular GABA transporter; GABA,-R, GABA
type Areceptor; GABA;-R, GABA type B receptors; DBI, diazepam binding
inhibitor.

without Vig treatment (Fig. 3a,b). In line with the expression of ABAT
inT,17 cellsbutnotiniT,cells, T,17 cells exhibited much higher levels
of the C, isotopologue of succinate and its downstream metabolites
inthe TCA cycle thaniT,, cells (Fig. 3a). Inhibiting ABAT activity by
Vig completely abolished the C, isotopologue of succinate and its
downstream metabolites in T,17 cells, supporting the idea that GAB
isdiverted tothe TCA cycle viaan ABAT-dependent reaction (Fig. 3b).

Next, we sought to determine the temporal change in respiration fol-
lowing asequential supplementation of GABA, Vig, oligomycin or car-
bonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) into the
Ty17 cell culture medium. Indeed, GABA supplementation enhanced
oxygen consumption in an ABAT-dependent manner, while ATPase
inhibitor oligomycin suppressed and FCCP maximized oxygen con-
sumption as expected (Fig. 3c). We and others have recently shown
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Fig.2|GInand Arg are the main carbon sources for GAB biosynthesis in T
cells. a,b, ABAT protein levels were determined by IB (ABAT molecular weight,
56 kDa; full-scan images are provided as source data) (a) and cytometry (b).

¢, Asillustrated by the experimental scheme (left), the indicated metabolites

in T,17 cells were quantified by GC-MS (right); data are representative of n=3
biologically independent samples. d, Scheme of the GAB metabolic pathways
and a pharmacological inhibitor Vig of ABAT. e, Schematic diagram of GAB
biosynthesis from Arg (left), with the expression of relevant genes determined
by qPCR detection (right). mRNA levels for T,,; cells were set to 1. The heatmap
represents the relative mRNA expression level (see colour scale). Values and
s.d.are provided as source data. f. Asillustrated by the experimental scheme
(left), the indicated metabolites in T,,17 cells were quantified by YSI (Gln and
Glu) or by bioassay kits (Arg and GAB) (n = 3 biologically independent samples).
g, Diagram of conversion of [*C]Glu and [°C4]Arg to downstream metabolites
(top). Indicated metabolites in T,;17 cells were quantified by GC-MS (n=3
biologically independent samples) (bottom). Numbers along the x axis represent

those of ®C atoms in the given metabolites. h, Diagram of the conversion of
[®*C,]Glc to downstream metabolites. Indicated metabolites in T,;17 cells were
quantified by GC-MS (n = 3 biologically independent samples). Black dot, *C; red
dot, *C derived from [*C,]Glc. i, Diagram of the conversion of [*C,]Put to GAB.
Indicated metabolites in T,;17 cells were quantified by GC-MS (n = 3 biologically
independent samples). Unpaired two-tailed Student’s ¢-test. j, Asillustrated

by the experimental scheme (top), cytokine expression and cell viability were
determined by flow cytometry (bottom). All experiments with bicuculline
(5uM); complete medium, 2 mM GIn + 0.1 mM Arg; GIn (low), 10 pM GIn+0.1mM
Arg; GIn (low plus GABA), 10 uM GIn + 0.1mM Arg +1 mM GABA; Arg (low), 2 mM
GIn+10 pM Arg; Arg (low plus GABA) 2mM GIn +10 pM Arg +1mM GABA.

k, Statistical analysis for j; data are representative of n = 3 biologically
independent samples. Significance was calculated by one-way ANOVA with
Tukey’s multiple-comparisons test. GIn, glutamine; Glu, glutamate; Arg,
arginine; ODC, ornithine decarboxylase; DAO, diamine oxidase; PDH, pyrroline
dehydrogenase; M, million.

that Arg-dependent polyamine biosynthesis is required to support
T cell proliferation and T,;17 cell differentiation’® ">, We reasoned that
ABAT expression in T,17 cells might allow Arg-derived carbons to be
divertedinto the TCA cycle through Put and GAB. Supporting thisidea,

[®C,JArg-derived and [*C,]Put-derived *C were incorporated into the
B¢, isotopologue of succinate and its downstream metabolites in an
ABAT-dependent mannerin T ;17 cells (Fig. 3d, e). Finally, we sought to
determine whether GIn-derived carbons could enter the TCA cycle via
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ABAT. GIn is amajor carbon donor known to drive the TCA cycle and
OXPHOS via glutamine transaminase and glutamate dehydrogenase
(GDH) in T cells?*2, We found that asequential supplementation with
Vig and the GDH inhibitor R162 (ref. *) suppressed oxygen consump-
tionadditively (Fig. 3f). Similarly, combining Vigand R162 suppressed
[*C,]GIn-derived ®Cincorporationinto the TCA cycle metabolites more
profoundly than single-agent treatment (Fig. 3g). Collectively, we have
identified GAB as a conditional anaplerotic substrate in T cells, and
its catabolism via the TCA cycle depends on the expression of ABAT.

GAB metabolism controls proliferation and differentiation

To further delineate the role of ABAT in T cells, we generated a
T cell-specific Abat-knockout strain (Abat cKO) by crossing the Abat”
strainwith the Cd4-Cre strain. qPCR, IB and intracellular staining analy-
ses validated the deletion of ABAT (Fig. 4a, b). ABAT deletion did not
resultin T cell development defectsin the thymus, the spleen or lymph
nodes (Extended Data Fig. 2a-f). In addition, ABAT deletion did not
affect cell viability, the expression of cell surface activation markers, the

cell cycle progression from GO/G1to the S phase, RNA, DNA or protein
contents, cell size, or viability 24 h after activation in vitro (Extended
DataFig.3a-d). However, ABAT deletion moderately suppressed overall
T cell proliferation after activationinvitro (Fig. 4c and Extended Data
Fig. 3e). Remarkably, both genetic and pharmacological ablation of
ABAT activity inhibited pro-inflammatory T,17 cell differentiation while
enhancing anti-inflammatory iT,, cell differentiationin vitro (Fig. 4c).
Supportingthese findings, the RNA-seq analysis of wild-type (WT) and
Abat cKOT cells activated under the T,,0 condition revealed enriched
gene signatures associated with inflammation and T cell differentia-
tion (Fig. 4d-f). Notably, the ABAT inhibitor (Vig) did not potentiate
the effect of genetic deletion in suppressing T,,17 cell differentiation,
suggesting that Vig is a specific inhibitor of ABAT (Extended Data
Fig. 4a). Moreover, overexpressing ABAT (ABAT-OE) suppressed iT,,
differentiation and could synergize with IL-6 to increase the percentage
of IL-17" cells under the iT,.,-polarizing condition in vitro (Extended
Data Fig. 4b). Next, we examined the effect of ABAT inhibition on T,;1
and T,;2 differentiation. Genetic and pharmacological ablation of ABAT
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Fig. 4| Genetic ablation or pharmacological inhibition of ABAT suppresses
T,17 but enhancesiT,, cell differentiation. a,b, ABAT mRNA and protein levels
were determined by qPCR and IB analysis (a, full-scan images are providedin as
source data) or by flow cytometry (b); unpaired two-tailed Student’s t-test for a
(n=3biologicallyindependent samples). ¢, Expression of the indicated cytokines
and CFSE dilutionin the indicated groups determined by flow cytometry

(WT, n=>5independent biological samples from n = 5independent biological
experiments; Abat cKO, n =5 independent biological samples fromn=3
independent biological experiments; WT plus Vig, n = 3independent biological
samples fromn =3 independentbiological experiments). Two-way ANOVA with
Sidak’s multiple-comparisons test. d-f, Hierarchical clustering analysis, gene

set enrichment analysis (GSEA) and Ingenuity Pathway Analysis (IPA) of a list of
inflammatory genes performed by using RNA-seq data of CD4" T cells that were
cultured under T,,0 culture conditions and collected at 36 h after activation (n=3
independent biological samples). Ind, heatmaps represent the log-transformed

value of the quantity (see colour scale). Inf, the orange dotted line along the x axis
indicates the cut-offvalue (P = 0.05). The complete data are provided as source
data. g, Asillustrated by the experimental scheme (top), the expression of the
indicated proteins in CNS-infiltrating CD4" T cells isolated from EAE animals was
determined by flow cytometry (n =3 independent biological samples fromn =2
independent biological experiments). h,j, EAE clinical scoresin the indicated
groups evaluated daily from mice of the indicated genotypes (n = 6 independent
biological samples from n =2 independent biological experimentsinhandn=35
independent biological samples from n = 3 independent biological experiments
inj); significance was calculated by unpaired two-tailed Student’s ¢-test. i,k, The
expression of the indicated markers in CNS-infiltrating T cells determined by
flow cytometry (n=5independent biological samplesiniand n=3independent
biological samplesink). PTX, paclitaxel; NES, normalized enrichment score; FDR,
false discovery rate.

activity inhibited T,,1 cell differentiation without significantly changing
T,2 cell differentiation significantly in vitro (Extended Data Fig. 4c,
d). Finally, we asked whether T,1 cells could divert GAB into the TCA
cycleasT,17 cells did. We applied [*C,JGABA as ametabolic tracer and
followed "C incorporation into intermediate metabolites of the TCA
cyclein T land T,17 cells. Only T,17 cells exhibited high levels of the *C,
isotopologue of succinate and its downstream metabolites inthe TCA

cycle (Extended Data Fig. 4e). Notably, genetic and pharmacological
ablation of ABAT activity completely abolished the *C, isotopologues
of metabolitesin T,17 cells (Extended Data Fig. 4e).

The expansion and balance between pro-inflammatory CD4" T,
cells and anti-inflammatory CD4" T,, cells determine the pathogenic
development of experimental autoimmune encephalomyelitis (EAE),
a mouse model of multiple sclerosis (MS), which is an inflammatory
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demyelinating disease of the central nervous system (CNS). Consist-
ent with the expression profile of ABAT in vitro, the IL-17°CD4" T cell
group expressed the highest level of ABAT among all the CD4* T subsets
with infiltration into the CNS in animals with EAE (Fig. 4g). Notably,
the genetic deletion of Abatin T cells or the systemic delivery of Vig
conferred significant protection against EAE pathogenic progression,
associated with more infiltrated FoxP3°CD4" T cells and fewer infil-
trated inflammatory CD4° T cells, reciprocally (Fig. 4h,iand Extended
Data Fig. 5a,b). However, Vig treatment resulted in better protection
against EAE and a broader impact on periphery CD4" T cells in the
periphery than T cell-specific deletion of Abat, indicating that the
systemic inhibition of ABAT might affect inflammation through both
Tcell-intrinsicand T cell-extrinsic mechanisms (Fig. 4j,k, and Extended
Data Fig. 5¢,d). We also used a competitive antigen-specific, T cell
receptor (TCR)-dependent proliferation assay (OT-II) and a competi-
tive homeostatic proliferation assay to assess T cell proliferation and
differentiation in vivo. Notably, the ratio between WT and Abat cKO
CD4" T cells, CFSE dilution patterns and the percentage of IL-17°CD4*
orinterferon-y (IFNy")CD4" T cellsin various tissues suggested that the
loss of ABAT dampens T cell proliferation and T,1and T,17 differentia-
tioninvivo (Extended DataFig. 6a-e). Collectively, our results indicate
that ABAT status determines the fate of intracellular GAB and, hence,
pro-inflammatory T;17 and anti-inflammatory iT,, cell differentiation
invitroandinvivo.

GAB regulates T cell differentiation through the GABA ,
receptor

In line with earlier studies', we have found that T, cells express vari-
ous subunits of the GABA, receptor (GABA,-R) (Fig. 1f). Additionally,
T cells can produce and secrete alarge amount of GAB into the extracel-
lular compartment, which may elicit a context-dependent autocrine
signalling response to regulate T cell differentiation (Fig. 5a). Sup-
porting thisidea, alow level of GAB supplementation could reduce
Tul7 but enhance iT,, differentiation without significantly affecting
Tcellactivation and proliferationinvitro (Fig. 5b,cand Extended Data
Fig.7a,b). Conversely, GABA,-R antagonists with distinct antagonistic
mechanisms enhanced T,17 cell differentiation but reduced iT,., cell
differentiation without affecting T cell activation and proliferation
invitro (Fig. 5c-eand Extended DataFig. 7c,d). The B-subunitisacore
component of GABA,-R, and the 3 subunit (encoded by Gabrb3) was
highly expressedinall T, subsets (Fig. 1f). We generated a T cell-specific
Gabrb3-knockout strain (Gabrb3 cKO) by crossing the Gabrb3* strain
withthe CD4-Cre strain. Gabrb3 deletion did not resultin T cell develop-
ment defects in the thymus, spleen and lymph nodes (Extended Data
Fig.8a-f).Inaddition, cell viability, the expression of cell surface acti-
vation markers and cell proliferation were comparableinboth WT and
Gabrb3 cKO T cells after activation in vitro (Extended Data Fig. 9a,b).
However, genetic ablation of Gabrb3 promoted pro-inflammatory
Ty17 cell differentiation while reducing anti-inflammatory i T, cell
differentiation in vitro (Fig. 5¢,f). Notably, GABA supplementation
only affected WT but not Gabrb3 cKO T cell differentiation in vitro
(Fig.5c,f).Finally, the T cell-specific Gabrb3 deletion let to significantly
deteriorated EAE pathogenic progression, associated with increased
inflammatory CD4" T cellsand decreased FoxP3'CD4" T cellsin the CNS
and periphery (Fig. 5g,h and Extended Data Fig. 9c,d).

GAB regulates T cells through abimodal mechanism of action

Next, we sought to dissect the effect of ABAT-dependent mitochon-
drial anaplerosis and GABA,-R-mediated signalling on T cell differ-
entiation and function (Extended Data Fig. 10a). We envisioned that
the ABAT-dependent anaplerotic reaction might support T,17 dif-
ferentiation by providing succinate to fuel mitochondrial OXPHOS
(Fig. 6a).Indeed, inhibiting ABAT activity by Vig suppressed oxygen
consumption, which was reversed by adding a cell-permeable suc-
cinate analogue NV118 (Fig. 6a,b)**. In line with the effect of NV118

on oxygen consumption, the NV118 supplementation could partially
reverse the inhibition of T,17 differentiation resulting from genetic or
pharmacologicalinhibition of ABAT (Fig. 6¢,d). Next, we asked whether
ABAT-dependent mitochondrial anaplerosis could impact transcrip-
tion factorscritical for T,;17 lineage differentiation, such as RORyt and
STATs”. To test thisidea, we reduced the medium’s GIn concentration
andadded a high concentration of GAB (1 mM) with a GABA,-R antago-
nist. Wereasoned that reducing Glnlevels would force cells to use GAB
asamitochondrial fueland adding the receptor antagonist would elimi-
nate the effects of receptor signaling. Indeed, GAB supplementation
significantly enhanced the levels of RORyt and phosphorylated STAT3
(pSTAT3) but reduced the levels of phosphorylated STATS (pSTATS5)
(Extended Data Fig.10b).

Next, we sought to determine whether modulating GABA,-R
affects key signalling molecules involved in regulating T;17 and iT,.,
differentiation. We treated T cells with a low dose of GAB (10 uM) in
the presence of a GABA,-R antagonist. We reasoned that the low dose
of GAB could engage the receptor-mediated signalling response with-
outsignificantly fuelling mitochondrial metabolism. We assessed the
levels of phosphorylated STAT proteins and the phosphorylation of
a canonical mTORCI substrate (pS6) because mTORCI1 is critical for
determining T,17 and iT,, differentiation’*”. Treating T,17 and i T,
cellswith alow dose of GAB suppressed pSTAT3 and mTORCl1 substrate
phosphorylation (pS6) butincreased pSTAT5 (Extended Data Fig.10c).
Notably, the effects of GAB on these signalling molecules could be
reversed by a GABA,-R antagonist (Extended Data Fig.10c). We showed
thatiT,, cells can excrete GAB into the extracellular compartment
(Extended DataFig.1g-i). Finally, we sought to determine whether GAB
contributes to T,.,-dependent immune suppression. We performed a
competitive T, suppression assay by co-culturingiT,, cells with WT
and Gabrb3 cKO CD4" T cells that carried different isogenic markers
(Fig. 6e).Indeed, Gabrb3cKO CD4" T cells proliferated better than the
WT group, indicating that genetic ablation of GABA,-R could partially
alleviate iT,.,-mediated suppression (Fig. 6e). Together, these results
suggest that GAB is an abundant metabolite produced by T cells and
exerts both bioenergetic control and receptor-mediated signalling
control of T cell differentiation (Fig. 6f).

Discussion
The vertebrateimmune and nervous systems are intimately connected
with each other developmentally, anatomically and physiologically.
Interaction between the two systems coordinates their sensory func-
tions to ensure organismal homeostasis and survival®~*!, Immune
cells and neurons can communicate with each other through a group
of shared ligand molecules and receptors, including the neurotrans-
mitter GABA and its receptors'***. Beyond mediating intersystem
communication between the immune and nervous systems, grow-
ing evidence suggests that GABA can also act as a paracrine signalling
molecule mediating intrasystem communication to regulateimmune
response®. Onerecent study has found that B cells can produce GABA
and suppress anti-tumour immunity through paracrine modulation
of intratumoural macrophages and CD8' T cells*. Additionally, GABA
in macrophages has been implicated as an intracellular metabolite
with a pro-inflammatory function'. Here, we show that GAB (the bio-
chemical form of GABA at physiological pH) is one of the most abundant
metabolitesin T cells and promotes inflammation through modulating
T cell proliferation and differentiation. Depending on the status of its
catabolizing enzyme ABAT, GAB can act as a conditional anaplerotic
substrate to promote T,17 cell differentiation or an autocrine signal-
ling metabolite to enhance iT,, cell differentiation. In addition to its
role in mediating intercellular communications, GAB also serves as
ametabolic and signalling gatekeeper to regulate inflammationin a
T cell-autonomous manner.

T.i cells consume GIn and Arg at high rates®°. Beyond a gen-
eral requirement for protein synthesis, Gln and Arg support T cell
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Fig. 5| Receptor-mediated GAB autocrine signalling response reciprocally
suppresses T,17 and enhancesiT,,, differentiation. a,d, Schematic diagram
of GAB metabolism and the GABA ,-R-mediated autocrine signalling response in
T cells (a) and schematic diagram of the binding sites for GABA,-R antagonists
(d).b,ef, Cytokine expression of the indicated groups determined by flow
cytometry. ¢, Combination statistical analysis of b, e and f; data are shown
asmean = s.e.m. (n =4 independent biological samples). Significance was

flumazenil; PTX, paclitaxel.

calculated by two-way ANOVA with Sidak’s multiple-comparisons test. g, EAE
clinical scores in the indicated groups evaluated daily (n = 5independent
biological samples from n =3 independent biological experiments); significance
was calculated by unpaired two-tailed Student’s ¢-test. h, Expression of the
indicated markers in CNS-infiltrating T cells were determined by flow cytometry
(n=3independent biological samples). Bicl, bicuculline; PicroT, picrotoxin; Flu,
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Fig. 6| GAB exerts both bioenergetic and receptor signalling-mediated
control of T cell differentiation. a, Schematic diagram of GAB catabolism
through the TCA cycle. b, OCR of T;17 cells with the indicated treatments
determined by Seahorse (n =16 independent biological samples fromn =3
independent biological experiments); significance was calculated by two-way
ANOVA with Sidak’s multiple-comparisons test. ¢,d, Expression of IL-17A in the
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multiple-comparisons test. e, Left, experimental diagram of the competitive

T, suppression assay. Right, CFSE dilution was determined by flow cytometry
(n=3independent biological samples); significance was determined by two-way
ANOVA with Sidak’s multiple-comparisons test. f, Schematic conceptual model
inwhich GAB generated by GIn and Arg can regulate T cell differentiation by
entering the TCA cycle or being exporting into the extracellular environment and
acting on GABA,-R. T_,,,,, conventional T cells.
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proliferation and function through their catabolic products. GIn is
a primary carbon source to sustain the TCA cycle, which generates
energy through OXPHOS and allocates carbonto produce biosynthetic
precursors to support T cell growth***¥, Similarly, Arg catabolism s
coupled with the urea cycle to produce bioactive metabolites such as
polyamines to support T cell proliferation and differentiation'®™"2, Our
results show that both Arg catabolism (via Put) and GIn catabolism
(via Glu) are coupled with GAB biosynthesis in T,17 cells, implicating
GAB as a crucial metabolic node and a branch point in amino acid
catabolism. GAB can be consumed through the TCA cycle to enhance
bioenergetic and biosynthetic capacities or be secreted as an auto-
crine signalling metabolite depending on the status of ABAT. We have
further revealed that Gln can replenish the TCA cycle intermediate
metabolites through either Glu or GAB anaplerosis. Glu increases the
levels of a-ketoglutarate (a-KG), while GAB increases the levels of suc-
cinate. Therefore, it is conceivable that the carbon input from Glu or
GAB may change the intracellular a-KG to succinate ratio reciprocally.
Hence, the GABA shunt in T cells may impact the hypoxia signalling
response and/or DNA/histone methylation patterns by modulating
the enzymatic activities of the a-KG-dependent dioxygenase fam-
ily*"*°, and Glu and Put are highly abundant intracellular metabolites
that can be secreted to the extracellular environment by T,,17 cells
(Fig.1a)'°*', The GAB-catabolizing enzyme ABAT may provide a sensi-
tive and precise regulation of the three interconnected and highly
abundant metabolites: GAB, Glu and Put, permitting rapid metabolic
and signalling responses to control inflammation.

The high and dynamic metabolic demands of T cells during inflam-
matory and autoimmune responses require fine-tuned regulation of
central carbon and ancillary metabolic pathways. Hence, metabolic
pathways have been therapeutically exploited to target inflammatory
and autoimmune diseases***’. Disruption of central carbon catabolism
can affect many cellular processes and cell types. However, targeting
ancillary metabolic pathways engaged in a small group of specialized
immune cells under physio-pathological conditions may resultinless
toxicity but maximal clinical benefits®. Gene and protein expression
profiling studies have suggested that human autoimmune diseases,
including MS, type 1 diabetes and rheumatoid arthritis, are associ-
ated with the dysregulation of GABA-related metabolic and signaling
genes* ¥, Interestingly, cortical GAB levels are lower in patients with
relapsing-remitting multiple sclerosis MS than in healthy controls***.
Inaddition, one recent study based on genome-scale metabolic mod-
elling and in silico simulations for drug response indicated that GAB
metabolism and signalling pathway not only are involvedin the disease
process but also are potential drug targets in human autoimmune
diseases™. Consistent with clinical profiling and in silico studies, phar-
macological modulation of GAB metabolism and receptor-mediated
signalling response could ameliorate pathological phenotypesin sev-
eral preclinical models of autoimmune diseases™ . Our results further
elucidateapreviously unrecognized aspect of the T cell-intrinsic effects
conferred by GAB catabolism and receptor-mediated signalling. Col-
lectively, GAB-modulating strategies via blockade of GAB catabolism,
activation of receptor-mediated response, or both may presentaprom-
ising therapy for treating inflammatory and autoimmune diseases.

Methods

Mice

C57BL/6 (WT), Flippase (B6.129S4Gt(ROSA)26Sor™ PIym/Rain]),
OT-1l (B6.Cg-Tg(TcraTcrb)425Cbn/)), CD45.1" (B6.SJL-Ptprc°Pepc’/
Boy)), Ragl” (B6.129S7-RagI™™°™/J), IL17A-IRES-GFP-KI (C57B
L/6-117a"™ € /}), FoxP3°** (C57BL/6-Tg(Foxp3-GFP)90Pkraj/))
and Gabrb3" (B6;129-Gabrb3™*"/]) mice were obtained from the
Jackson Laboratory (JAX, Bar Harbor, ME). Mice with one targeted
allele of Abat on the C57BL/6 background (Abat™?2EUCOMMImeY) yere
generated by the European Conditional Mouse Mutagenesis Pro-
gram (EUCOMM)*°. The mice were first crossed with a transgenic

Flippase strain (B6.129S4Gt(ROSA)26Sor™*r>»m/Rainj) to remove
the lacZ-reporter allele and then crossed with the Cd4-Cre strain to
generatethe T cell-specific Abat knockout strain (Abat cKO). OT-Il mice
were crossed with Cd4-Cre Abat cKO mice to generate the OT-11 Cd4-Cre
Abat cKO mice. OT-Il mice were crossed with Thyl.I* mice (B6.PL-ThyI*/
CyJ) to generate the OT-Il Thyl.1 mice. Gabrb3" mice were crossed
with the Cd4-Cre strain to generate T cell-specific Gabrb3-knockout
strain (Gabrb3 cKO). For one independent experiment, we used male
and female mice from the same strain that were both sex and age
matched (6-12 weeks old), such as two males and two females for WT
mice, as well as for KO mice. All mice were bred and kept in specific
pathogen-free conditions at the Animal Center of the Abigail Wexner
ResearchInstitute at Nationwide Children’s Hospital. A low-fat diet was
provided (Envigo 2920, theirradiated form of 2020X; https://insights.
envigo.com/hubfs/resources/ data-sheets/2020x-datasheet-0915.
pdf). Animals were killed by carbon dioxide asphyxiation followed
by cervical dislocation under protocols approved by the Institutional
Animal Care and Use Committee of the Abigail Wexner Research
Institute at Nationwide Children’s Hospital (IACUC; protocol number
ARI13-00055).

Murine T cellisolation and culture

Naive CD4" T cells were enriched from mouse spleen and lymph nodes
by negative selection using the MojoSort™ Mouse CD4" Naive T Cell
Isolation Kit (MojoSort, BioLegend) according to the manufacturer’s
instructions. For the activation assay, freshly isolated CD4" T cells were
either maintained in a culture medium with 5 ng/ml*IL-7 or activated
with 5 ng/ml?IL-2 and plate-bound anti-mouse CD3 and anti-mouse
CD28. The culture plates were precoated with 2 pg/ml* anti-mouse CD3
and2 pg/ml* anti-mouse CD28 antibodies overnightat 4 °C. Naive tT,,,
cells were enriched from mouse spleen and lymph nodes by positive
selection using the MojoSort™ Mouse CD4'CD25" Regulatory T Cell
Isolation Kit (MojoSort, BioLegend) according to the manufacturer’s
instructions. For the activation assay, freshly isolated CD4"CD25"
regulatory T cells were either maintained in a culture medium with
5ng/ml'IL-2 or activated with 5 ng/mlI*IL-2 and anti-mouse CD3/CD28
beads according to the manufacturer’s instructions (Gibco, Thermo
Fisher Scientific). Unless indicated separately, the cells were seeded
in the RPMI-1640 medium (Corning) supplemented with 10% FBS, or
heat-inactivated dialysed FBS (DFBS), 2 mM L-glutamine, 1% sodium
pyruvate (Sigma-Aldrich), 100 units/ml? penicillin, 100 pg/ml" strep-
tomycin and 0.05 mM 2-mercaptoethanol (Sigma-Aldrich) at 37 °C
and 5% CO,.

For CD4" T cell differentiation, 48-well culture plates were pre-
coated with 2 pg/ml” (iT. differentiation), 5 pg/ml™ (T,1/ T2 differ-
entiation) or 10 pg/ml* (T, 17 differentiation) anti-mouse CD3 and
anti-mouse CD28 antibodies overnight at 4 °C. Freshly isolated naive
CD4" T cells (0.5 x 10° cells per ml) were activated with plate-bound
antibodies and with mouse IL-2 (3 ng/ml?) and human TGF-$1 (10 ng/
ml”) for iT,, differentiation, with mouse IL-2 (10 ng/ml") and mouse
IL-12 (20 ng/ml?) for T,,1 differentiation, with mouse IL-2 (2 ng/ml?),
mouse IL-4 (50 ng/ml") and anti-mouse IFN-y (10 pg/ml?) for T,;2 dif-
ferentiation, or with mouse IL-6 (50 ng/ml?), human TGF-B1(20 ng/ml?),
anti-mouse IL-2 (8 pg/ml?), anti-mouse IL-4 (8 pg/ml™), and anti-mouse
IFN-y (8 pg/ml™) for T,17 differentiation. In some experiments, Vig
(I1mM), GABA (0.1 pM~1 mM), NV118 (25 pM), GABA,-R antagonists
includingbicuculline (Bicl, 5 or 50 uM), picrotoxin (PicroT, 5 or 50 pM)
and flumazenil (10 or 1 pM), R162 (20 pM), oligomycin (1.5 uM), FCCP
(1 M), or AG (0.2 mM) was added to cell culture medium. Additional
information on cytokines, antibodies and chemicals is listed in Sup-
plementary Tablel.

Flow cytometry
For analysing surface markers, cells were stained in phosphate-buffered
saline (PBS) containing 2% (wt/vol) BSA and the appropriate antibodies
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from BioLegend. For analysing the intracellular cytokines IFN-y
and IL-17A, T cells were stimulated for 4 hrs with eBioscience™ Cell
Stimulation Cocktail (eBioscience) before being stained with cell
surface antibodies. Cells were then fixed and permeabilized using
FoxP3 Fixation/Permeabilization solution according to the manu-
facturer’s instructions (eBioscience). Cell proliferation was assessed
using CFSE staining according to the manufacturer’s instructions
(Invitrogen). Cell viability was evaluated by 7AAD staining accord-
ing to the manufacturer’s instructions (BioLegend). For analysing
DNA/RNA content, cells were collected and stained for surface mark-
ers before being fixed with 4% paraformaldehyde for 30 min at 4 °C,
followed by a permeabilization step with FoxP3 permeabilization
solution (eBioscience). Cells were stained with 7AAD for 5 min and
then stained with pyronin-Y (4 pg/ml?; PE) for 30 min before being
analysed using flow cytometer with the PerCP channel for 7AAD
(DNA) and PE channel for pyronin-Y (RNA). A protein synthesis assay
kit (Item N0.601100, Cayman) was used for analysing protein content.
Briefly, cells were incubated with O-propargyl-puromycin (OPP) for
1hr and then they were fixed and stained with 5 FAM-azide staining
solutions before being analysed using a flow cytometer with the FITC
channel. For analysing the cell cycle profile, cells were incubated with
10 pg/ml* BrdU for 1 hr, followed by cell surface staining, fixation
and permeabilization based on the Phase-Flow Alexa Fluor 647 BrdU
Kit (BioLegend). Flow cytometry data were acquired on Novocyte
(ACEA Biosciences) and were analysed with FlowJo software (TreeS-
tar). Additional information on flow cytometry antibodies is listed in
Supplementary Table 2.

T, cell suppression assay

For theiT,,suppressionassay, naive CD4" T cellsisolated from CD45.1
mice using the naive CD4* mouse T cellisolation kit (BioLegend) were
differentiated for 3 d togenerateiT,, cells. Naive CD4" T cellsisolated
from CD45.2/Thy1.1 WT donor mice and CD45.2/Thyl.2 Gabrb3 cKO
donor mice were mixed at a 1:1ratio (as T, cells) and labelled with
CFSE.Then, approximately 5 x 10* T, cells were mixed with i T, cells
(withindicated ratios) and cultured with 3 ng/ml*IL-2 and anti-mouse
CD3/CD28beads. Cellswere collected 4 d later and processed to assess
proliferation by flow cytometry analysis.

Retrovirus production and transduction

Phoenix Eco cells that were cultured in fresh DMEM media (Corn-
ing) supplemented with 10% heat-inactivated FBS and 0.5%
penicillin-streptomycin were transfected with the control plasmid
(pMIC, MSCV-IRES-mCherry) or pMIC-ABAT (Supplementary Table
3). Viral-Boost Reagent (ALSTEM) was added to the culture medium
ata1:600 dilution 6 h after transfection. Cell medium was collected
at48 hafter transfection, centrifuged at 300g for 10 min, and then fil-
tered through a 0.45-pum filter unit (GVS Filter Technology). Retrovirus
Precipitation Solution (ALSTEM) was added to retrovirus-containing
supernatant at 1:4 dilution and incubated overnight at 4 °C, followed
by centrifugation at1,500gfor 30 minat4 °Cto concentrate the virus.
Then, approximately 0.3 x 10® activated CD4" T cells (1d after activa-
tion) were resuspended in 1 ml of retroviral supernatant containing
8 pl/ml? Lipofectamine (Invitrogen) and cultured under iT,, differ-
entiation for4d.

reg

Adoptive cell transfer assays

For homeostatic proliferationinlymphopenic Rag”’” mice, naive CD4*
T cellsisolated from donor mice using anaive CD4" mouse T cellisola-
tion kit (BioLegend) were labelled with CFSE. Approximately 1 x 107 cells
(mixof WTandKO cellsatal:1ratio) in150 plof PBS were transferred via
caudal venous injectioninto 6- to 8-week-old sex-matched host mice.
Mice were killed between 4-7 d after cell transfer. Lymph nodes and
spleenwere collected and processed to assess cell ratio and prolifera-
tion by flow cytometry analysis.

For antigen-driven proliferation using OT-1l mice, naive CD4"
T cells isolated from OT-1I/CD45.2 TCR-transgenic donor mice using
the naive CD4" mouse T cell isolation kit (BioLegend) were labelled
with CFSE. Approximately 1 x 107 cells (mix of WT and KO cells at a1:1
ratio) in 150 pl of PBS were transferred via caudal venous injection
into 6- to 8-week-old sex-matched CD45.1 host mice. Host mice were
immunized subcutaneously in the hock area (50 pl each site) in both
legs with1 mg/ml™ ovalbumin (OVA)*** peptide (InvivoGen) emulsi-
fied with complete Freund adjuvant (CFA; InvivoGen). The mice were
then killed 8 d after immunization. Lymph nodes were collected and
processed to assess cell ratio, proliferation and protein expression by
flow cytometry analysis.

EAE

Mice wereimmunized subcutaneously with100 pg of myelin oligoden-
drocyte glycoprotein (MOG);;_ss peptide emulsified in CFA, which was
made from IFA (Difco) plus Mycobacterium tuberculosis (Difco). Mice
were injected intraperitoneally with 200 ng of pertussis toxin (PTX,
List Biological Laboratories) on the day ofimmunizationand 2 d later.
In the experiments shown in Fig. 4j,k and Extended Data Fig. 5¢,d, the
mice were injected intraperitoneally with 250 mg/kg” of Vig in 100 pl
PBS daily from day 3 after immunization throughout the end of the
experiment. Inthe experiments shownin Fig. 5g,h and Extended Data
Fig. 9¢,d, the animals were injected with PTX only once on the day of
immunization for asuboptimal EAE induction. All mice were observed
daily for clinical signs and scored as described previously’. In some
experiments, the mice were killed when the control mice reached the
onset of symptoms. The CNS (brain and spinal cord), spleenand periph-
erallymph nodeswere collected and mashed to generate the single-cell
suspension. The cell suspension was centrifuged on a30%/70% Percoll
gradientat 500gfor 30 min toisolate mononuclear cells fromthe CNS,
followed by cell surface and intracellular staining and flow cytometry
analysis described above.

Stable isotope labelling experiments

[C,]Gln, [¥C,]Arg and ['*C,]Glc labelling of T,;17 cells. Naive CD4"
Tcellsisolated from WT mice were polarized for 72 hunder T,17 culture
conditions before being collected and reseeded at 2 x 10° cells per
ml in a conditional medium (RPMI-1640) containing 4 mM [*C,]GlIn,
1mM [BCJArg or 10 mM [®C/]Glc. After 12 h of culture, around 1 x 107
cells for each sample were collected and washed three times with PBS
before being snap-frozen.

[*C,]Arg labelling of T,;17 cells. T,,17 cells (as described above) were
pretreated with vehicle or Vig (1 mM) for 1 hbefore being collected and
reseeded at a density of 2 x 10° cells per mlin a conditional medium
(RPMI-1640) containing 4 mM1 mM [“CJArg with vehicle or Vig (1 mM).
After 6 hof culture, around1 x 107 cells for each sample were collected
and washed three times with PBS before being snap-frozen.

[*C,]Put labelling of T,,17 cells. T,;17 cells (as described above) were
pretreated with vehicle, Vig (1 mM), or AG (0.2 mM) for1 hand then col-
lected and reseeded at a density of 2 x 10° cells per mlin a conditional
medium (RPMI-1640) containing 0.1 mM [*C,JPut and 10 uM Arg and
withvehicle, Vig (1mM), or AG (0.2 mM) treatment. After 6 h of culture,
around 1 x 107 cells for each sample were collected and washed three
times with PBS before being snap-frozen.

[°C.IGABA labelling of T,17, iT,.; and T,1 cells. Naive CD4" T cells
isolated from WT mice were polarized for 72 hunder T,17,iT,, or T, 1
culture conditions before being collected and re-seeded at a density
of 2 x10° cells per mlin a conditional medium (RPMI-1640) containing
0.5 mM[®C,]JGABA, 0.1 mM GInand the GABA,-R antagonist bicuculline
(5 uM). After 12 h of culture, around 1 x 10’ cells for each sample were
collected and washed three times with PBS before being snap-frozen.
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[*C,]GABA labelling of T,17 cells with Vig. T,;17 cells (as described
above) generated from WT or Abat cKO mice were pretreated with
vehicle or Vig (1 mM) for 1 h before being collected and reseeded at a
density of 2 x 10° cells per ml in the conditional medium containing
0.5mM[*C,]JGABA, 0.1 mM GInand the GABA ,-R antagonist bicuculline
(5 pM) and with vehicle or Vig (1 mM) treatment. After 12 h of culture,
around 1x 107 cells for each sample were collected and washed three
times with PBS before being snap-frozen.

[*C;]Gln labelling of T,17 cells with multiple inhibitors. T,17 cells
(asdescribed above) were pretreated with vehicle, Vig (1 mM) or R162
(20 uM) for 1 h and then collected and reseeded at a density of 2 x 10°
cells per mlin a conditional medium (RPMI-1640) containing 4 mM
[*C]GInand with vehicle, Vig (1 mM), R162 (20 uM) or the combination
of Vig and R162 treatment. After 6 h of culture, around 1 x 107 cells for
each sample were collected and washed three times with PBS before
being snap-frozen. Additional information on stableisotope labelling
islisted in Supplementary Table 4.

Gas chromatography-mass spectrometry sample preparation
and analysis

GC-MSwas performed as previously described”, and cell pellets were
resuspended in 0.45 ml of -20 °C methanol/water (1:1 v/v) contain-
ing 20 pM L-norvaline as internal standard. Further extraction was
performed by adding 0.225 ml of chloroform followed by vortexing
and centrifugation at 15,000g for 5 min at 4 °C. The upper aqueous
phase was evaporated under vacuum using a Speedvac centrifugal
evaporator. Separate tubes containing varying amounts of standards
were evaporated. Dried samples and standards were dissolved in30 pl
of 20 mg/ml* isobutylhydroxylamine hydrochloride (TCI #10387)
in pyridine and incubated for 20 min at 80 °C. An equal volume of
N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA)
(Soltec Ventures) was added and incubated for 60 min at 80 °C. After
derivatization, samples and standards were analysed by GC-MS using
an Rxi-5ms column (15 m x 0.25 internal diameter x 0.25 um, Restek)
installed ina Shimadzu QP-2010 Plus GC-MS instrument. GC-MS was
programmed with aninjectiontemperature of 250 °C, injection volume
of 1.0 pland asplitratio of 1/10. The GC oven temperature was initially
130 °C for 4 min, rising to 250 °C at 6 °C min™ and to 280 °C at 60 °C
min®withafinal hold at this temperature for 2 min. GC flow rate, with
helium as the carrier gas, was 50 cms™. GC-MS interface temperature
was 300 °C, and the (electron impact) ion source temperature was
200 °C, with an ionization voltage of 70 eV. Fractional labelling from
BC-labelled substrates and mass isotopomer distributions were cal-
culated as described previously”. Data from standards were used to
construct standard curves in MetaQuant®®, from which metabolite
amounts in samples were calculated. Metabolite amounts were cor-
rected for the recovery of the internal standard and for *C labelling
toyield total (labelled and unlabelled) quantities in nanomoles per
sample and then adjusted by cell number.

Liquid chromatography-mass spectrometry sample
preparation and analysis

Naive CD4" T cells were polarized under T,,0, T,,1, T,17 andiT,, culture
conditions or cultured with IL-7 (T,,;condition) for 72 h. Then, the cells
were collected, washed with PBS and reseeded at a density of 5 x 10°
cells per mlin fresh medium. After 6 h of culture, the cell mediumwas
collected and snap-frozen. Sample preparation and analysis were
carried out as described previously at Metabolon®. In brief, sample
preparationinvolved protein precipitation and removal with methanol,
shaking and centrifugation. The resulting extracts were profiled onan
accurate mass global metabolomics platform consisting of multiple
armsdiffering by chromatography methods and MS ionization modes
to achieve broad coverage of compounds differing by physiochemi-
cal properties such as mass, charge, chromatography separation and

ionization behaviour. Metabolites were identified by automated com-
parison of theion features in the experimental samples to areference
library of chemical standard entries that included retention time,
molecular weight (m/z), preferred adducts and in-source fragments as
well as associated MS spectraand were curated by visual inspection for
quality control using a software developed at Metabolon.

Metabolite quantification

Insome experiments, T,17 cells were suspended at a density of 5 x 10°
cells per ml with medium containing vehicle or Vig (1 mM). After 6 h
of culture, blank medium (without cells) and spent medium were col-
lected. Thelevels of GIn and Glu were measured using the Bioanalyzer
(YSI2900). Following the manufacturer’s instructions, Arg and GAB
quantities were determined by L-Arginine Assay Kit (BioVision) and
GABA Research ELISA Kit (LDN). Consumption or production of each
metabolite was determined by calculating the difference between
blank and spent media.

OCR

Following the manufacturer’s instructions, the OCR was determined
using the Seahorse XFe96 Analyzer (Agilent Technologies). Briefly,
approximately1x 10°T,17 cellswere suspendedina 50 plassay medium
(Seahorse XF RPMI Assay Medium, pH 7.4, Agilent Technologies) con-
taining 10 mM Glc, 2 mM Glu and 1 mM pyruvate and were seeded in
an XF96 Cell Culture Microplates (Seahorse, Agilent Technologies)
precoated with poly(b-lysine) (50 ug ml?; Millipore). The cells were
centrifuged at200g for 2 min on a zero-braking setting toimmobilize
the cells before they were supplied with an additional 130 pl of assay
medium and kept in a non-CO, incubator for 30 min. Data analysis
was performed using the Seahorse Wave Software (Seahorse, Agilent
Technologies). In some experiments, the GABA,-R antagonist bicuc-
ulline (5 uM) was added along with GABA to prevent the activation of
GABA,-R. Various compounds wereinjected into each well sequentially
toachieve the following final concentrations: 0.5 mM GABA,1 mM Vig,
20 pMR162,1.5 uM oligomycin, and 1 pM FCCP.

Western blot analysis, RNA extraction, QPCR, and RNA-seq and
NMR analysis of medium
Details are provided in the Supplementary Information.

Statistical analysis

Statistical analysis was conducted using the GraphPad Prism software
(GraphPad Software; v 8.0.1). To determine the statistical significance,
different testsincluding unpaired two-tailed Student’s t-test, one-way
ANOVA with Tukey’s multiple-comparisons test and two-way ANOVA
with Sidak’s multiple-comparisons test were used as indicated in the
figure legends. The number of experimental repeats is indicated in
the figure legends. R software (v 4.2.1) was used for Metabolon and
RNA-seq data analysis. P values that were considered significant are
shownin the corresponding figures.

Reporting summary
Further information on the research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The RNA-seq datasets generated for this study can be found inthe Gene
Expression Omnibus under accession GSE190818. The authors declare
that all other data supporting the findings of this study are available
within the paper and supplementary information files. Source data
are provided with this paper.
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Extended Data Fig. 6 | Inhibition of ABAT suppresses T cell proliferation
and differentiation invivo. a-c, Asillustrated by the experimental diagram
of competitive antigen (OVA)-specific proliferation (a, top), the donor cell
ratio (a, bottom and b), CFSE dilution (a, bottom), and indicated protein levels
(a, bottom and c¢), were determined by flow cytometry (n = 3 biologically
independent samples). b, ¢, Data are shown as mean + SEM, significance was

calculated by unpaired Two-tail Student’s t-test. ns, no significant differences.
d-e, Asillustrated by the experimental diagram of competitive homeostatic
proliferation (d, top). The donor cell ratio (d, bottom, and e) and CFSE dilution
(d, bottom) were determined by flow cytometry (n = 3 biologically independent
samples). e, Significance was calculated by unpaired Two-tail Student’s t-test.
CSA: cervical, submandibular and axilla.
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Extended Data Fig. 9| GABA receptor is required for T cell differentiation

but not activation. a, b, Cell viability, cell activation markers (a), and
CFSE dilution (b) were determined by flow cytometry (n =3 biologically

independent experiments). ¢, T cells were isolated from indicated sites in

was determined by flow cytometry. d, Statistical analysis (n = 3 biologically

independent samples) was calculated by unpaired Two-tail Student’s t-test.
Data are shown as mean + SEM, ns, no significant differences. EAE: experimental

experimental animals described in Fig. 5g. The expression of indicated proteins

autoimmune encephalomyelitis, CNS: central nervous system, LNs: lymph nodes.
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Extended Data Fig.10 | GAB controls T cell signaling pathways through
both receptor and mitochondrial metabolism. a, Schematic diagram of GAB
metabolism and GABAA-R-mediated signaling response. b, ¢, The schematic
diagram of the experiment (top), the expression of indicated proteins from

each group was determined by flow cytometry (n = 3 biologically independent
samples). Dataare shown as mean + SEM. b, Significance was calculated by
unpaired Two-tail Student’s t-test. ¢, Significance was calculated by one-way
ANOVA with Tukey’s multiple comparisons test. ns, no significant differences.
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Animals and other organisms
Human research participants
Clinical data

Dual use research of concern
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Antibodies

Antibodies used For cell culture: InVivoMAb anti-mouse CD3 (clone 145-2C11, Bio X Cell, Cat# BEO0O1-1)
InVivoMAb anti-mouse CD28 (clone 37.51, Bio X Cell, Cat# BEO015-1)
InVivoMADb anti-mouse IL-2 (clone JES6-1A12, Bio X Cell, Cat# BEO043)
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Validation

InVivoMADb anti-mouse IL-4 (clone 11B11, Bio X Cell, Cat# BEO0O45)

InVivoMADb anti-mouse IFN gamma (clone XMG1.2, Bio X Cell, Cat# BEOO55)

For flow cytometry: Anti-mouse CD4-FITC (clone RM4-5, Biolegend, Cat# 100510, dilution 1:100)
anti-mouse CD4-PE/Cyanine7 (clone GK1.5, Biolegend, Cat# 100422, dilution 1:100)

anti-mouse CD4-Pacific Blue (clone GK1.5, Biolegend, Cat# 100428, dilution 1:100)

anti-mouse CD8-APC/Cyanine7 (clone 53-6.7, Biolegend, Cat# 100714, dilution 1:100)

anti-mouse CD62L-APC (clone MEL-14, Biolegend, Cat# 104412, dilution 1:100)

anti-mouse CD44-FITC (clone IM7, Biolegend, Cat# 103006, dilution 1:100)

anti-mouse CD69-PE/Cy7 (clone H1.2F3, Biolegend, Cat# 104512, dilution 1:100)

anti-mouse CD25-PE (clone PC61, Biolegend, Cat# 102008, dilution 1:100)

anti-mouse CD45.1-PerCP (clone A20, Biolegend, Cat# 110726, dilution 1:100)

anti-mouse CD45.2-PerCP (clone 104, Biolegend, Cat# 109826, dilution 1:100)

anti-mouse Thy1.1-APC/Cy7 (clone OX-7, Biolegend, Cat# 202520, dilution 1:100)

anti-mouse Thy1.1-APC (clone OX-7, Biolegend, Cat# 202526, dilution 1:100)

anti-mouse Thy1.2-PE (clone 30-H12, Biolegend, Cat# 105308, dilution 1:100)

anti-mouse TCR beta-APC (clone GL3, Biolegend, Cat# 109211, dilution 1:100)

anti-mouse IFN gamma-APC (clone XMG1.2, Biolegend, Cat# 505810, dilution 1:100)

anti-mouse IFN gamma-PE/Cyanine7 (clone XMG1.2, Biolegend, Cat# 505826, dilution 1:100)
anti-mouse IL-17A-APC (clone TC11-18H10.1, Biolegend, Cat# 506916, dilution 1:100)

anti-mouse IL-17A-PE/Cyanine7 (clone TC11-18H10.1, Biolegend, Cat# 506922, dilution 1:100)
anti-mouse IL-4-APC (clone 11B11, Biolegend, Cat# 504105, dilution 1:50)

anti-mouse/human/rat ABAT-FITC or purified (clone B-12, Santa Cruz Biotechnology, Cat# sc-393769, dilution 1:50)
anti-mouse FoxP3-Alexa Fluor® 647 (clone MF-14, Biolegend, Cat# 126407, dilution 1:100)
anti-Hu/Mo ROR gamma (t) (clone AFKJS-9, eBioscience, Cat# 17-6988-82, dilution 1:50)
anti-Hu/Mo Phospho STAT3 (Tyr705) (clone LUVNKLA, eBioscience, Cat# 12-9033-42, dilution 1:50)
anti-Hu/Mo Phospho STATS (Tyr694) (clone SRBCZX, eBioscience, Cat# 12-9010-42, dilution 1:50)
P-S6Ribosomal Protein-Pacific Blue (5235/236) (clone D57.2.2E, Cell Signaling, Cat# 85205, dilution 1:50)
anti-Alexa Fluro 647 BrdU (Biolegend, Cat# 364114, dilution 1:100)

Pyronin Y (Sigma-Aldrich, Cat# 92-32-0, dilution 1:100)

Reactivity of above antibodies are commercially available and validated for indicated applications, all information on manufacturer's
homepage:

https://bxcell.com/

https://www.biolegend.com/

https://www.scbt.com/home

https://www.thermofisher.com/us/en/home/life-science/antibodies/ebioscience

https://www.cellsignal.com/

https://www.sigmaaldrich.com/US/en

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals

Wild animals
Field-collected samples

Ethics oversight

C57BL/6 (WT), Flippase (B6.12954Gt(ROSA)26Sortm1(FLP1)Dym/Rainl), OT-II (B6.Cg-Tg(TcraTerb)425Cbn/)), CD45.1+ (B6.SIL-
PtprcaPepcb/BoyJ), Ragl-/- (B6.12957-Ragltm1Mom/J), IL17A-IRES-GFP-KI (C57BL/6-1117atm1Bcgen/J), FoxP3GFP+ (C57BL/6-
Tg(Foxp3-GFP)90Pkraj/)), and Gabrb3fl (B6;129-Gabrb3tm2.1Geh/J) mice were obtained from the Jackson Laboratory (JAX, Bar
Harbor, ME). Mice with one targeted allele of ABAT on the C57BL/6 background (ABATtm1a(EUCOMM)Hmgu) were generated by The
European Conditional Mouse Mutagenesis Program (EUCOMM). The mice were first crossed with a transgenic Flippase strain
(B6.129S4Gt(ROSA)26Sortm1(FLP1)Dym/RainJ) to remove the LacZ-reporter allele and then crossed with the CD4-Cre strain to
generate T cell-specific ABAT knockout strain (ABAT cKO). OT-Il mice were crossed with CD4Cre ABAT cKO mice to generate the OT- Il
CD4Cre ABAT cKO mice. OT-ll mice were crossed with Thy1.1+ mice (B6.PL-Thyla/CyJ) to generate the OT-Il Thy1.1 mice. Gabrb3fl
mice were crossed with the CD4-Cre strain to generate T cell-specific Gabrb3 knockout strain (Gabrb3 cKO). Both male and female
mice, with age-matched (6-12 weeks old) were used in the experiments. Mice were housed under controlled conditions: rodent
housing rooms are kept at 73 degree Fahrenheit, with alarms set at 69 and 78 degrees, 30—70% relative humidity, and 12:12 light-
dark cycle. Food and water was available for all animals. Low Fat diet were provided (Envigo 2920, the irradiated form of 2020X*).
Mice were maintained and euthanized (by carbon dioxide asphyxiation followed by cervical dislocation) under protocols approved by
the Institutional Animal Care and Use Committee of the Research Institute at Nationwide Children’s Hospital (IACUC; protocol
number AR13-00055). *https://insights.envigo.com/hubfs/resources/data-sheets/2020x-datasheet-0915.pdf

This study does not include any wild animal.
This study does not include samples collected from the field.

Animal protocols were approved by the Institutional Animal Care and Use Committee of the Research Institute at Nationwide
Children’s Hospital.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Flow Cytometry

Plots
Confirm that:

|X| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|X| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Instrument
Software

Cell population abundance

Gating strategy

For development analysis, spleen, lymph nodes and thymus were passed through 70 micron filters; for EAE infiltrating T cell
analysis, the CNS (brain and spinal cord), spleen, and peripheral lymph nodes were collected and mashed to make the single-
cell solution. The cell suspension was centrifuged on a 30%/70% Percoll gradient at 500 g for 30 min to isolate mononuclear
cells from the CNS.

All cells were stained in PBS containing 2% (w/v) BSA and the appropriate antibodies from Biolegend. For analyzing
intracellular cytokine IFN-gamma and IL-17A, T cells were stimulated for 4 hrs with eBioscience™ Cell Stimulation Cocktail
(eBioscience) before being stained with cell-surface antibodies. Cells were then fixed and permeabilized using FoxP3 Fixation/
Permeabilization solution according to the manufacturer's instructions (eBioscience). Cell proliferation was assessed by CFSE
staining per the manufacturer's instructions (Invitrogen). Cell viability was evaluated by 7AAD staining per the manufacturer's
instructions (Biolegend). For analyzing DNA/RNA content, cells were collected and stained with surface markers before being
fixed with 4% paraformaldehyde for 30 min at 4°C, followed by a step of permeabilization with FoxP3 permeabilization
solution (eBioscience). Cells were stained with 7AAD for 5 min and then stained with pyronin-Y for 30 min before being
analyzed by flow cytometer with PerCP channel for 7AAD (DNA) and PE channel for pyronin-Y (RNA). Protein synthesis assay
kit (Item No.601100, Cayman) was used for analyzing protein content. Briefly, cells were incubated with O-propargyl-
puromycin (OPP) for 1 hr, then were fixed and stained with 5 FAM-Azide staining solutions before being analyzed by flow
cytometer with FITC channel. For analyzing cell cycle profile, cells were incubated with 10 pg/mL BrdU for 1 hr, followed by
cell surface staining, fixation, and permeabilization according to Phase-Flow Alexa Fluro 647 BrdU Kit (Biolegend).

Novocyte
FlowJo version 10.6

Bulk cell isolation including naive CD4 T cells and naive tTreg cells were performed using kits (MojoSort, BioLegend)
individually, ensuring a purity of >90%-95% defined as the ratio of target cells and total cells. For RNAseq, WT and ABAT cKO
T cells were activated and harvested at 36 hrs separately, used for RNA extraction (around 100-500 ng/ul/sample). For
Metabolon assay, differentiated CD4 subsets such as TH1, TH17 and iTreg for 72 hrs, FACS determined to ensure a purity of
about 70% defined as the ratio of IFN gamma (TH1), IL17A (TH17) and FoxP3 (iTreg) and total cells. For in vitro Treg cell
suppression assays, differentiated iTreg for 72 hrs, FACS determined to ensure a purity of about 70% FoxP3 (iTreg) cells, co-
cultured with Tconv cells in indicated ratio as described in Methods. Brifely, purity of cell fractions were determined by flow
cytometry ensuring a appropriate purity based on the experiment purpose. No cell sorting were performed at this time.

Gating strategies are shown respectively: For analysis of alive cells (Fig 2j, Fig 5b, Fig 5e, Fig S3a, Fig S3e, Extended Data Fig
9a, and Fig 9b): PerCP-7AAD gating for alive cells (Fig 2j upper) followed by analysis of GFP-surface expressed IL17A, or
detected CFSE cell proliferation, or CD25/CD69 cell activation marker; for analysis of CD4+ T cell proliferation, infiltrating and
intracellular cytokines (Fig 4c, Fig 4g, Fig 4i, Fig 4k, Fig 5f, Fig 5h, Extended Data Fig 2b, Fig 4a-d, Fig 5, Fig 6b, Fig 8b, Fig 9c,
and Fig 10): FSC-SSC-H gating was used as preliminary gating for lymphocyte population followed by analysis of CD4+ T cells,
then checked the intracellular cytokines expression (gating strategy in Supplementary Information); for in vivo adaptive
transfer experiment, gating strategy for flow cytometry analysis was preliminarily performed by gating for CD45.2 stain
marker (Extended Data Fig 6a, OVA antigen-specific), by gating for TCR-beta (Extended Data Fig 6d, homeostatic), and then
checked the cell ratio, proliferation or cytokines expression; for Treg cell suppression assay, gating strategy for flow
cytometry analysis was preliminarily performed by gating for CD45.2 stain marker to distinguish the Tconv cells, then
separated WT cells and KO cells by Thy1.1 marker and Thy1.2 marker (Fig 6e), and then checked the proliferation.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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