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Abstract

Non-coding genetic variants outside of protein-coding genome regions play an important role in genetic and epigenetic regulation.
It has become increasingly important to understand their roles, as non-coding variants often make up the majority of top findings
of genome-wide association studies (GWAS). In addition, the growing popularity of disease-specific whole-genome sequencing (WGS)
efforts expands the library of and offers unique opportunities for investigating both common and rare non-coding variants, which
are typically not detected in more limited GWAS approaches. However, the sheer size and breadth of WGS data introduce additional
challenges to predicting functional impacts in terms of data analysis and interpretation. This review focuses on the recent approaches
developed for efficient, at-scale annotation and prioritization of non-coding variants uncovered in WGS analyses. In particular, we
review the latest scalable annotation tools, databases and functional genomic resources for interpreting the variant findings from WGS
based on both experimental data and in silico predictive annotations. We also review machine learning-based predictive models for
variant scoring and prioritization. We conclude with a discussion of future research directions which will enhance the data and tools
necessary for the effective functional analyses of variants identified by WGS to improve our understanding of disease etiology.
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Introduction

Genetic variants have been shown to associate with various types
of diseases and phenotypic traits across populations (1). Many of
the genetic variant associations reside in the non-coding, gene-
regulatory regions of the genome, such as enhancers and pro-
moters (2,3), and illustrate the importance of their regulatory
mechanisms and functional implications. In recent years, whole-
genome sequencing (WGS) has emerged as a primary means of
capturing and analyzing genetic variants at both the population-
scale (4-7) and personal genome level (8-10). WGS can detect
millions of variants per genome and capture several variant types,
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including single-nucleotide variants (SNVs), insertion-deletions
(INDELs), copy number variants and structural variants (SVs).
Interpretation and prediction of the functional effects of WGS-
identified variants, non-coding variants in particular, remain
difficult (11-15). While likely functional candidates among
variants in the protein-coding regions can be identified directly
by changes to the protein sequences or splicing, interpreting
non-coding variants is more difficult as they may affect both
genetic and epigenetic mechanisms that impact the gene
expression and regulation (e.g. enhancer elements, transcription
factor-binding, deoxyribonucleic acid (DNA) methylation and
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chromatin accessibility) often in a tissue-/cell-type-specific
manner (16-18). For rare, low-frequency variants, conventional
single-variant genome-wide association (GWAS) testing has
limited statistical power—a large number of samples is needed
to recruit sufficient carriers. Resolution of GWAS for causal
variant finding is further affected by the linkage disequilibrium,
where the neighboring variants often display similar associations
with the tested GWAS condition. Thus, characterizing effects of
non-coding regulatory variants requires the integration of WGS
or GWAS results with tissue- and cell-type-specific regulatory
activity data and LD information. The goal of this integrated
approach is to identify the causal variants, regulatory elements,
target genes and specific tissue/cell types they affect.

Population-level GWAS analyses can help to identify trait- or
disease-associated variants and loci (19). Follow-up post-GWAS
analyses, such as statistical fine-mapping (12), can more precisely
identify the causal variants from GWAS-identified loci, while
colocalization analyses (20) can identify target genes, and SNV-
enrichment analyses can prioritize trait- or disease-relevant tis-
sues and cell types (11). Many of such variant analyses utilize the
functional annotation data to provide biological context, identify
affected genes and molecular mechanisms and enhance statisti-
cal power.

Variant annotations are useful for identifying the relevant
variants and prioritizing them for further investigation (21-25).
However, the scale and heterogeneity of functional genomics
(FG) datasets and genomic annotations necessitate systematic,
integrative methods for such functional characterization of WGS
genetic variants (11,13,14,26). For example, large-scale projects,
such as Encyclopedia of DNA Elements (ENCODE) (27), Roadmap
Epigenomics (28), Genotype-Tissue Expression (GTEx) (29) and
FANTOMS (18), have together compiled hundreds of thousands of
experimental datasets across >1000 tissues, cell types and bio-
logical conditions, each with millions to billions of records across
the genome. Additionally, modern population-level WGS studies
such as UK Biobank (6) (500000 individuals with >2500 pheno-
types), Trans-Omics for Precision Medicine (TOPMed) (4) (~200 000
individuals; Freeze 9) and specific disease-focused studies, such
as Alzheimer’s Disease Sequencing Project (30) and International
Cancer Genome Consortium-Accelerating Research in Genomic
Oncology (31), all provide extensive WGS data to be probed for
the causal or regulatory roles of variants.

To process such large-scale data, scalable methods and
computational frameworks have been developed to annotate
WGS-identified genetic variants and genomic regions (Fig. 1),
including robust and easy-to-use software annotation tools
(Annotation tools section), annotation databases (Annotated
variant databases section) and experimental data repositories
(Common annotation data resources section). Together, these
databases and toolkits facilitate the systematic interpretation of
hundreds of millions of genotypes across millions of subjects. In
this review, to address the challenges of analyzing non-coding
variants, we discuss the functional annotation and analysis
frameworks for WGS variants in each of these contexts as
well as address machine learning prediction-based approaches
that leverage these resources to provide insights into variant
pathogenicity (Machine learning approaches section). We also
discuss future research directions that are needed to overcome
the existing challenges and improve the scalability and effec-
tiveness of functional analyses of WGS-identified variants which
in turn will serve to improve our understanding of the disease
etiology.

Results
Common annotation data resources

Interpreting the functional relevance for millions of WGS-
identified variants involves interrogating multiple, diverse tissue-
or cell-type-specific functional genomic and annotation datasets.
If this is the case, individual results across such heterogeneous
data sources and data types must be subsequently linked and
summarized. These steps are made difficult by the heterogeneity
and breadth of data types and experimental assays used to
generate these data and the specific tissue and cell-type contexts
of individual datasets (26).

Recent, large-scale efforts are directed toward experimentally
capturing a variety of ‘omics data (including transcriptomics,
epigenetics, interaction data, proteomics and metabolomics)
within single cell- or tissue-specific contexts. Several initiatives
have made significant inroads into systematically assembling
these data, many of which have been established for more than
a decade and have become cornerstones for human genetics
research (18,27-29). The ENCODE consortium (27) has generated
an extensive collection of primary datasets identifying functional
elements (e.g. transcription factor-binding sites, open chromatin
regions) by employing a variety of experimental assays, such as
chromatin immunoprecipitation with massively parallel DNA
sequencing (34), assay for transposase-accessible chromatin
using sequencing (ATAC-seq) (35) and DNase-seq (36), across a
common set of cell and tissue types. The GTEx project (29) focuses
on the cell- and tissue-specific profiling of gene expression and
the identification of expression quantitative trait loci (QTL) to link
genetic variants with their target genes in the same biological
contexts (29). Other examples of these primary annotation
resources are provided in Table 1.

Despite the massive effort involved in assembling these large-
scale FG datasets, they are still limited in that data are sparse or
non-existent for a broad swathe of biological conditions, tissues
and cell-types. Recent works, such as EpiMap (37), attempt to rem-
edy this by training models on the available data and by imputing
missing data from the available incomplete data. Moreover, due to
the sheer size and complexity of these data sources, use of these
resources is not straightforward. Methods that use these data
need to robustly handle different protocols, different tissues and
cell-type contexts at a large scale (see Annotation tools section for
a review of such approaches). Additionally, methods are needed
to integrate this genomic knowledge with the genetic data in
the context of genetic findings and their interpretation (11) (see
Annotation tools section).

These needs have led to the development of aggregate
databases that curate, integrate and summarize functional
data from the primary sources into ready-to-use catalogs of
genomic elements important to function or regulation, including
RefSeq Functional Elements (38), Ensemble Regulatory Build (39),
ENCODE Screen (40), Functional Genomics Repository (FILER) (26)
and the FAVOR Essential Database (http://favor.genohub.org/).
For example, ENCODE Screen (40) provides a catalog of candidate
regulatory elements based on integrating open chromatin, histone
marks, transcription factor-binding and related information.
The FILER database (26) provides a large-scale collection of
harmonized, indexed FG and annotation datasets that can be
searched interactively via the web or programmatically queried
using an application programming interface (API). The Ensembl
regulatory build (39) focuses on annotating transcription factor-
binding sites, open chromatin regions, promoters and enhancers.
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Figure 1. Functional analysis of (non-coding) WGS variants at scale. WGS-identified variants are annotated using a combination of primary and
secondary annotation databases, annotation tools and machine learning approaches (see Table 1 and the corresponding Results—Discussion sections
for the summary and descriptions of these approaches). Post-annotation analyses are conducted to identify likely candidate, causal variant and to
prioritize variants (illustrated in the diagram by filter and rank steps applied to annotated variants). Analysis results can further add to the annotation
resources (illustrated in the figure by feedback loops from machine learning-based analyses). WGS-identified variants: Variants identified from analysis
of user WGS or GWAS data or data retrieved from biobanks, genotyping and sequencing archives and disease-specific sequencing initiatives. Primary
annotation: Archival: experimentally derived data that are archival in nature, such as nucleotide and protein sequences, regulatory elements identified
via WGS that are submitted directly by researchers; Aggregate: aggregate databases of harmonized and standardized primary data that are often
indexed and associated with an API to facilitate scalable programmatic access (see Common annotation data resources section). Secondary annotation:
databases of variant annotations curated from the literature or derived from harmonization and analysis of primary data and annotations, often themed
with annotations selected to serve specific community needs (see Annotated variant databases section). Annotation tools: standalone software or web-
based interfaces designed to efficiently query and map genomic features from primary annotation resources and variant annotations from secondary
resources against user-supplied lists of WGS-identified variants (see Annotation tools section). Machine learning approaches: primarily tools designed
for learning from existing data such as annotations, sequence and other features and creating predictive models for characterizing variant effects and
functions (see Machine learning approaches section).

Overall, current aggregate databases share several limitations
and can be further improved in the future, e.g. by capturing tissue
sample information at single-cell or individual cell-type resolu-
tion and by expanding the coverage for tissues, environmental
conditions and developmental stages.

Annotation tools

WGS-identified variants and loci are often evaluated for their
biological impact by mapping against known regulatory elements,
such as open chromatin, promoter, enhancer or transcription
factor-binding sites, at looking for overlap at the variant's
genomic position. As highlighted in the Common annotation
data resources section, such assessments involve querying across
a large number of massive and often heterogenous functional
genomic datasets. Here, we review several popular methods and
annotation tools for rapidly searching large data collections to
identify the relevant genomic features. A comprehensive listing
of these tools is available in Table 1.

Genomic feature overlap-based annotation

Several popular tools developed to address these issues and iden-
tify overlap with genes and genomic loci of interest or make

genome-wide interrogations have been adopted to facilitate the
functional annotation of variants using the same primary data
sources. For example, Bedtools (41) is a well-established tool that
provides a full range of functions for annotating and comparing
sets of genomic intervals stored in BED (42), GFF (http://gmod.
org/wiki/GFF3) and other standard file formats. Another popular
toolkit, Tabix (43), enables the fast retrieval of genomic records in
specified genomic loci by indexing position-sorted files.

Whereas Bedtools and Tabix were designed to query genomic
features across a limited number of annotation files, more
recent approaches, such as Giggle (44) and VarNote (45), attempt
to address the scalability problems introduced by WGS and
allow efficient querying across larger collections of genomic
data. The FILER (26) aggregate FG and annotation database
and its API, mentioned in Common annotation data resources
section, leverages Giggle to demonstrate the feasibility of
designing a large-scale FG and annotation repository with
a scalable interface for simultaneously efficiently querying
thousands of genomics datasets with billions of genomic
features. Similarly, VannoPortal (46), VarNote-based variant
portal, provides the ability to dynamically query its collection
of functional genomic and annotation data to annotate variants
genome-wide.
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Differently from such dynamic overlap methods, the Func-
tional Annotation of Variants—Online Resource (FAVOR) (http://
favor.genohub.org/), provides a downloadable database of pre-
calculated essential annotation scores for a pre-specified set
of variants/genomic positions. These annotation scores can be
queried directly or using the FAVOR annotator, an R package that
facilitates annotation of variants at scale. RegulationSpotter (50),
another web-based tool for variant annotation, also provides a
region-based regulatory score based on 122 different genomic
features and supports single-variant or batch inputs to facili-
tate the analysis of WGS data. In contrast to these web-based
tools, the standalone SparkINFERNO (13) provides a scalable,
high-throughput analysis pipeline that retains the flexible, cus-
tomizable aspects of genomic-overlap tools. Implemented as an
extensible, modular analytical system using the Apache Spark
(68) distributed computing and data processing framework, it
efficiently queries across a broad spectrum of FG datasets. It
provides summary text and graphical reports of relevant regula-
tory elements, tissue contexts and plausible target genes to help
prioritize and infer causal variants for lead GWAS signals.

Overall, commonly used annotation tools (e.g. Bedtools, Tabix
and Giggle) will benefit from further improvements in computa-
tional complexity and indexing/preprocessing strategies to pro-
cess increasingly larger FG data collections used for WGS variant
annotation.

Variant aggregation and rare variant analysis

Single-variant analyses have limited statistical power to detect
the disease risk-association for low-frequency and rare variants
with confidence. To improve the power of association testing for
these types of variants, several methods have been developed
which aggregate them in biologically relevant regions and then
evaluate the association for each of the region. By computing
tissue-specific GWAS variant enrichments (11), variant set-based
testing can also be used to provide tissue or epigenetic context for
the observed associations. However, the output of these aggrega-
tion tools depends heavily on how the biologically relevant regions
are defined.

STAAR (69) uses fixed sliding windows as well as gene-based
windows, prioritized based on annotation principal components,
multidimensional summaries of in silico variant annotations. This
allows STAAR to increase the power for analyzing rare variants
in WGS while minimizing type I error rates for both quantitative
and dichotomous phenotypes. STAAR is computationally scalable
for large WGS, population-scale studies and accounts for the
relatedness and population structure using sparse Genetic Relat-
edness Matrices. On the other hand, eSCAN (70), a recent update
to SCANG (71), uses dynamic sliding windows with pre-defined
regulatory regions specified as input. Taking another approach,
DeepWAS (72) defines variant sets based on their effects on func-
tional units (FUs), which are combinations of cell type, epigenetic
feature (transcription factor-binding sites/DNase hypersensitive
sites/histone marks) and treatment. The user must input, along
with the genotypes, DeepSEA (73) predictions of the effects of
variants on FUs, phenotypes and covariates. FunSPU (74) selects
variants by integrating multiple association tests and functional
annotations to identify genome-wide functionally significant loci.
By scaling contributions to the test statistic for specific variant
and annotation combinations, FunSPU is adaptive at both the
variant and annotation levels. This method increases the sta-
tistical power of rare variants, even when data are limited, and
addresses the noise introduced by non-informative annotations.

Personal genome analysis

While population-level effects of individual genetic variants and
their association with the condition of interest are commonly
assessed by GWAS analyses, methods for capturing the individual-
specific phenotypic effects of genetic variants are only just
becoming of interest. Openness weighted association studies
(OWAS) (65) is a novel approach which was developed to fill
this gap and works by integrating the external LD reference
and in silico-predicted individual-level chromatin accessibility
data to prioritize genes of interest from GWAS analyses of
personal genomes. OpenCausal (64) is another new approach
that combines personal genomes and tissue-specific transcription
factor expression to train an aggregate model to prioritize non-
coding variants and predict causal variants. The model is trained
on ATAC-seq data from ENCODE samples and then is used to
predict variants with the greatest impacts on the chromatin
accessibility of regulatory elements based on sequence and
transcription factor-binding.

Annotated variant databases

Recognizing the complexity and computational overhead involved
in annotating variants at genome-wide scales, many groups have
developed secondary, aggregate databases of derived variant
annotations. Most provide some combination of pre-computed
annotations (including mapped regulatory elements, predicted
causal roles and predicted pathogenicity scores) for genetic
variants and basic genomic information (e.g. variant type, closest
gene and allele frequencies) (46,52). These databases usually
have a web-based front end, allowing researchers, or clinicians
and other non-bioinformaticians to easily look up, browse or
visually inspect the functional information for a variant or group
of variants of interest. Many also provide APIs or standalone
software and database downloads which allow researchers to
query the resources in batch and integrate data queries into
analysis pipelines.

These include resources, such as the web-based front ends for
the FAVOR Essential Database (http://favor.genohub.org/) and the
VannoPortal (46) previously mentioned in the Annotation tools
section, as well as searchable variant reference databases, e.g.
dbSNP (56) and gnomAD (57), and general-interest curated variant
databases, e.g. ClinVar (53,54) and NHGRI-EBI GWAS Catalog (1)).
Also available are more topical resources directed to specific
research communities. These include disease-specific annotation
resources that annotate at scale sets of variants identified from
GWAS or relevant literature sources such as the Type 2 Diabetes
Knowledge Portal (https://t2d.hugeamp.org/) or GenomeNexus
(67) for cancer-related variants. VariCarta (75) and ADVP (55)
provide curated catalogs of variants found in the autism spectrum
disorder and Alzheimer’s disease studies, respectively. Open
Target Genetics (51) focuses on providing statistical evidence (e.g.
QTL, GWAS association and colocalization information) for links
between genetic variants and potential drug targets. LincSNP
3.0 (76) documents disease- or phenotype-associated variants in
human long non-coding ribonucleic acids (RNAs) and circular
RNAs or their regulatory elements and provides online tools
for data retrieval and analysis as well as interactive browsing.
Additional variant databases and associated access (web, API and
downloads) are listed in Table 1.

Machine learning approaches

WGS-based machine learning approaches constitute another set
of important tools available for characterizing the variant effects
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and functions. Several of the tools and databases mentioned in
previous sections depend on some machine learning component,
e.g. OpenCausal (64), DeepWAS (72) and EpiMap (37), to train
models that impute missing data or predict potential regulatory
impacts and prioritize WGS variants. Machine (and by extension
deep) learning approaches to variant annotation or functional
prediction are usually either semi-supervised or unsupervised.
Semi-supervised deep learning models using pseudo-labeling
have been shown to have some advantages when working with
limited datasets. For example, Jia and others (77) introduce
an effective approach that leverages a semi-supervised neural
network, using both labeled and unlabeled data, to efficiently
identify non-coding mutations in human diseases. In contrast,
the recently proposed multi-dimensional annotation-class
integrative estimation (MACIE) (63) uses a novel unsupervised
framework for synthesizing multiple annotations to predict the
likelihood of each variant’s functional impact. Precomputed
scores against all variants in the human genome are available for
download.

Other standalone tools focus on the issue of cell and tis-
sue specificities of variant regulation. These include GenoNet
(78) and PO-EN (62), which both use semi-supervised learning to
leverage functionally validated data and chromatin features to
predict the tissue-specific function of novel variants. Similarly,
TURF (79) uses a random forest model that uses features from
functional genomic annotations to compute the tissue-specific
regulatory impact scores for sets of variants. Scores for all SNVs
from the NHGRI-EBI GWAS Catalog (1) are available for down-
load, and TURF is currently being integrated into RegulomeDB
v2.0 (79,80).

Another method, DriverPower (66), utilizes a combination of
gradient boosting machine and linear models to predict and prior-
itize coding and non-coding variants affecting cancer progression
in tumor tissues. DeepHiC (59) is an example of a method aimed
at predicting a specific (chromatin interaction) functional con-
sequence for variants. This deep learning model combines high-
throughput chromatin conformation capture (Hi-C) data (81) and
interacting DNA sequence information to determine whether a
non-coding variant has a functional impact on chromatin interac-
tion. DeepHiC can also identify the potential target gene affected
by the variant.

Machine learning methods have also been developed to
address the problem of integration, and summarizing annotations
to facilitate the interpretation of annotation results. Most of
these approaches integrate annotations into an aggregated
pathogenicity or functional score (58,60,61). JARVIS (58) uses
sequence data, epigenomic annotations and intolerance to
variation to predict pathogenicity, as defined in the ClinVar (53,54)
database, with single base resolution. In contrast, CADD (60,61)
also predicts pathogenicity but is trained on synthetic data to
avoid possible bias in ClinVar submissions. CADD scores are
available for all possible human SNVs, and GenoNet, PO-EN and
Jarvis additionally allow users to re-train the model with their
own data.

Discussion

The large-scale nature of WGS data, compared with GWAS, allows
for the detection of common and rare variants as well as SVs asso-
ciated with disease at an unprecedented scale. However, interpret-
ing WGS results is challenging due both to the sheer size of the
data and the diversity and unharmonized nature of annotation
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and FG data resources. Attempts to address these issues have
resulted in a broad spectrum of databases, annotation tools and
integrative machine learning approaches for the interpretation
and prioritization of WGS variants. Here, we review and summa-
rize the most recent and most widely adopted toolkits, organizing
them by the commonalities in design and purpose.

To date, the majority of methods and resources developed for
annotating non-coding variants have focused on SNVs. However,
SVs (larger SVs, usually >1 kb in length) also greatly impact the
functions of the genes encoded in the genome and are responsible
for diverse human diseases (82-85). SVs are gaining more atten-
tion, thanks to the development of better detection software and
technical advances such as long-read sequencing (86). Therefore,
several new methods (87-90) have been proposed to effectively
annotate and characterize the functional effects and pathogenic-
ity for the identified SVs.

Although there is a significant increase in the number and
variety of FG datasets being generated, widespread use of exper-
imental data-based annotation is often limited by the sparsity of
available data for particular tissues, cell types and other genomic
features of interest. Further developments of predictive biology
approaches that address these gaps in experimental data and
annotations (such as the imputation-based approach taken by
EpiMap) (37) are warranted.

To efficiently use these annotation resources, efforts need
to be taken for newly developed approaches to scale well and
take on resources to annotate variants in an efficient way. Cur-
rently, standardization of variant annotations, and a gold standard
of annotation resources, are lacking, e.g. in terms of standard
pipelines for generating annotations, annotation data formats
and common interfaces for querying and accessing data. Estab-
lishing gold standard annotation resources will be extremely
beneficial, as any new tools developed can then be compared
with the same reference standards. Additionally, benchmarking
experiments need to be performed so that practitioners and users
will know what to expect of the performance or running times
of new tools in their analyses. These tools should be targeted at
leveraging both high-performance computing and cloud environ-
ments for efficient processing and analyses but should stream-
line their use and deployment (e.g. by distributing as Docker or
Singularity containers and/or providing flexible programmatic
access via APIs or easy-to-use web-based interfaces). Importantly,
systematic translation of WGS variant findings to gene/drug tar-
gets, while remaining challenging (91,92), represents an impor-
tant direction for future research as genetic support measurably
impacts the success of drug targets (93).

With these improvements, we foresee that more approaches
will be available to elucidate the impact of different kinds of
non-coding variants (such as singletons and ultra-low frequency
variants) on disease etiology and mechanisms.
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