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Abstract

Fourteen years after the first genome-wide association study (GWAS) of lung cancer was published, approximately 45 genomic loci
have now been significantly associated with lung cancer risk. While functional characterization was performed for several of these
loci, a comprehensive summary of the current molecular understanding of lung cancer risk has been lacking. Further, many novel
computational and experimental tools now became available to accelerate the functional assessment of disease-associated variants,
moving beyond locus-by-locus approaches. In this review, we first highlight the heterogeneity of lung cancer GWAS findings across
histological subtypes, ancestries and smoking status, which poses unique challenges to follow-up studies. We then summarize the
published lung cancer post-GWAS studies for each risk-associated locus to assess the current understanding of biological mechanisms
beyond the initial statistical association. We further summarize strategies for GWAS functional follow-up studies considering cutting-
edge functional genomics tools and providing a catalog of available resources relevant to lung cancer. Overall, we aim to highlight
the importance of integrating computational and experimental approaches to draw biological insights from the lung cancer GWAS
results beyond association.

Introduction
Lung cancer is the second most common cancer and the
leading cause of cancer death worldwide, accounting for
18% of the total cancer deaths (1). Although cigarette
smoking is the major risk factor for lung cancer, up to
25% of lung cancer cases also arise in never-smokers
(2,3). Further, the heritability of lung cancer has been
estimated as ∼ 8–20% by twin (4) and array-based
studies (5–8), and rare high-penetrance genetic variants
were identified for familial risk of lung cancer (e.g.
EGFR T790M, TP53 mutations in Li–Fraumeni syndrome)
(9–11), pointing to the genetic component of lung
cancer susceptibility. For over a decade, lung cancer
genome-wide association study (GWAS) successfully
identified ∼ 45 genomic loci (12–23). A substantial
proportion of these loci were private to different
subgroups in terms of histological subtypes, smoking
status and ancestries, suggesting complex biological
processes underlying diverse lung cancer subgroups.
However, mechanistic understanding of the GWAS
results in terms of what genes and functional variants
explain the significant statistical association is often
not straightforward for several reasons. First, the genetic
variant with the strongest association P-value in a given
locus (i.e. lead SNP) is not necessarily causal because

multiple co-inherited variants tied by linkage disequilib-
rium (LD) often present similar P-values that may not
be distinguished from the margin of error in the current
GWAS sample sizes. Second, the risk-associated variants
primarily reside in nonprotein-coding regions and
therefore the target genes of these variants may not be
apparent by the location and proximity. Third, the effect
of these variants on target genes might be detectable only
in specific biological contexts. Despite these challenges,
functional follow-up studies of individual lung cancer
risk loci provided insights into underlying biology
(24–31). Tapping into recent advances in functional
genomics tools and resources, post-GWAS strategies are
starting the transition to multi-loci approaches. Here
we summarize the notable heterogeneity of lung cancer
GWAS results, discuss published lung cancer post-GWAS
functional studies, and provide available functional
genomics tools and strategies relevant to lung cancer
GWAS functional characterization.

Heterogeneity of Lung Cancer GWAS
Findings
Histological subtypes
Lung cancer has two main histological subtypes—non-
small cell lung cancer (NSCLC) and small cell lung cancer
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(SCLC) (32). NSCLC accounts for ∼ 80% of lung cancer
cases and is further divided into multiple subtypes. Lung
adenocarcinoma (LUAD) and squamous cell carcinoma
(SQC) are the two most common subtypes of NSCLC.
LUAD, SQC and SCLC (the third most common subtype)
present significant differences in histological features
and the cell types and locations from which they arise.
LUAD arises from alveolar type II cells of the lung, while
SQC arises from flat squamous cells of central airways.
SCLC is characterized as a neuroendocrine carcinoma,
which starts in the bronchi or central airways (32).

Based on the GWAS catalog (accessed July 15, 2021,
searched by the term ‘lung cancer’ and filtered with
genome-wide significance P ≤ 5 × 10−8, Supplementary
Material, Table S1) and a newly published cross-ancestry
GWAS (Supplementary Material, Table S2), a total of 46
loci (by cytoband) were identified. Half of them (23 of 46)
are either only significant (P < 5 × 10−8 in one subtype) or
mainly significant (i.e. P < 5 × 10−8 in overall lung cancer
or NSCLC as well but not in the other subtype) in LUAD
(17 loci), SQC (5 loci) or SCLC (1 locus; Supplementary
Material, Table S3). A comprehensive summary of
the GWAS findings until 2018 was described before
(29)]. Notably, three recent large-scale GWASs included
subtype-stratified analyses mainly investigating LUAD
and SQC and less frequently for SCLC. A study including
11 273 LUAD, 7426 SQC and 2664 SCLC cases in European
populations identified 8 loci mainly significant in LUAD
(1p31, 3q28, 8p12, 9p21, 10q24, 11q23, 15q21 and 20q13)
and 3 in SQC (12p13, 13q13 and 22q12) (16). Another
GWAS of 15 581 LUAD and 8350 SQC in Chinese and
European populations identified 16 loci significant in
LUAD, but only those at 5p15.33, 6p21–22 and 15q25.1
were also significant in SQC (23). One locus at 9q33.2
was unique to SQC. The third study including 27 301
LUAD, 13 389 SQC and 3779 SCLC in European, Asian and
African populations identified 11 LUAD-, 4 SQC- and 1
SCLC-specific loci with heterogeneous effects (33). These
findings together suggested that the genetic factors
contributing to SCLC, LUAD and SQC risk are distinct
and may indicate different underlying mechanisms.

Ancestry
While a larger proportion of GWASs was performed in
European populations, substantial discoveries were also
made in Asian populations. Based on the GWAS catalog,
a substantial proportion of the loci (25 of 46) are only
significant in either European (17 loci) or East Asian (8
loci) populations (Supplementary Material, Table S3).
Further, considerable heterogeneity was observed for
commonly detected loci in both European and East
Asian populations. For example, a recent study of 26 655
Chinese and 27 820 European individuals indicated
that the effect sizes (i.e. odds ratio) of the lead SNPs
in the loci at 3q28 and 5p15 were greater in Chinese
populations than in European ones. In contrast, the
opposite was true for the locus at 15q25.1 (23). Such
heterogeneity can potentially be attributed to differences

in the allele frequency: the risk allele G (rs55781567)
in the locus at 15q25.1 is ∼ 38% in EUR (European
populations in the 1000 Genomes Project) while it is
∼ 3% in EAS (East Asian). Other factors (e.g. genetic
interaction with environmental exposures and sample
size differences across studies) could also result in
discrepancies in GWAS results. Based on the largest-to-
date cross-ancestry GWAS, including 911 288 individuals
of European descent, 39 074 Asian descent and 6640
African descent (33), 44% (18 of 41 loci) of the identified
loci showed significance in all three ancestries. Ancestry-
specific signals were observed mainly in Europeans,
likely due to imbalanced sample sizes, but EAS or AFR
(African)-specific signals were also observed, including
those for the rare variants.

It should be noted that lung cancer GWAS in non-
European/East-Asian populations (e.g. African) is still
rare. In a GWAS of 5339 African American individuals,
two known loci originally discovered in European
and Asian populations (15q25.1 and 5p15.33) reached
genome-wide significance (34), but no new loci were
identified. Notably, there is no GWAS reported among
Hispanic/Latinx populations to date. Further studies with
larger sample sizes in underrepresented populations
are needed to dissect the heterogeneity across different
ancestries.

Smoking status
Approximately 25% of lung cancer diagnoses worldwide
occur in lifelong never-smokers (2,3). Studies have shown
considerable differences in characteristics between
never- and ever-smokers. Never-smokers with lung
cancer have been mainly female (35), mostly presented
LUAD (36) and constituted a higher proportion in Asian
populations compared with European or African popula-
tions (37). Besides, never-smokers developing lung cancer
tend to have more frequent somatic EGFR mutations and
show a better outcome after EGFR-inhibitor treatment
than ever-smokers (36). These observations suggest that
lung cancer among never-smokers presents distinct
features in the etiology and carcinogenic pathways.

Multiple GWAS for lung cancer in never-smokers has
been conducted. Lan and colleagues conducted a GWAS
in never-smoking Asian women (5510 cases and 4544
controls), which confirmed the loci reported in the stud-
ies of mainly smokers (5p15, 3q28 and 17q24.3) and iden-
tified new loci (10q25.2, 6q22.1 and 6p21.32) (22). Notably,
the smoking behavior-associated locus at 15q25.1 (the
strongest signal in European, mainly smoker popula-
tions) was not detected in this population. The signals
at 10q25.2 and 6q22.1 were later replicated in another
study, including smokers and nonsmokers from Chinese
and European populations (23). A GWAS with a larger
sample size (6877 cases and 6277 controls) identified a
locus at 12q13.13 that is specific to never-smoking Asian
women (38) and two independent signals (6p21.1 and
9p21.3). A follow-up study stratifying the cases based on
EGFR mutation status identified a locus only significant
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in EGFR mutation carriers (6p21.3) and two loci displaying
preferential association in EGFR mutation carriers versus
non-carriers (6p21.32 and 6q22.2) (39). A recent never-
smoker lung cancer GWAS in European populations (3636
cases and 6295 controls) replicated the association in a
region at 5p15 and did not show any genome-wide signif-
icant signal at the smoking-associated locus in 15q25.1
(40).

Despite these efforts in identifying unique loci associ-
ated with lung cancer in never-smokers, it is hard to tease
apart the effect of other factors such as ancestry, sex and
main histology from the smoking effect with the current
sample sizes.

Post-GWA studies of lung cancer risk loci
Beyond significant association from the initial GWAS,
statistical fine-mapping (to identify independent signals
and prioritize the most plausible variants among
multiple variants with similar P-values) and functional
analyses provided clues to the biological implications
of several lung cancer-associated loci. These loci can be
potentially linked to pathways involving smoking behav-
ior and nicotine metabolism, telomere biology, immune
response, DNA damage response and repair, cellular
stress response and cell cycle regulation. Notably, for
many of these loci, a robust connection among GWAS
signals, functional variants and target genes still needs
to be made for a comprehensive understanding of the
biological mechanisms.

Smoking behavior and nicotine metabolism
15q25.1

The locus at 15q25.1 is the first and the strongest locus
associated with lung cancer by GWAS in European pop-
ulations (41). GWAS in African American (42) and East
Asian (43) populations also reported this locus but with
a weaker association or tagged by independent variants
with higher effect allele frequencies than the European
lead SNP, rs55781567. There was no indication of an asso-
ciation between lung cancer and 15q25.1 among never-
smokers in both East Asian (22) and European popula-
tions (40).

This locus includes three nicotinic acetylcholine
receptor (nAChR) subunit genes (CHRNA5, CHRNA3 and
CHRNB4), and variants on or near these genes are also
associated with smoking status (44,45) and nicotine
addiction (46). Although these variants are in high
LD among Europeans (47), fine-mapping in African-
Americans refined the association signal to the variants
on or near CHRNA5 including a missense variant,
rs16969968 (D398N, R2 = 0.9089 with rs55781567; Fig. 1A)
(42). Experimental data in human embryonic kidney
(HEK293) cells (24) suggested that the smoking behavior-
associated A allele (398N) decreases the response of
nAChR to agonists (e.g. acetylcholine and nicotine) in
the presence of high external calcium, which may lead
to distinct downstream cellular signaling (Fig. 1B). An
fMRI study showed that reduced connectivity in the

anterior cingulate cortex to ventral striatum circuits was
associated with smoking and addiction severity among
individuals with D398N substitution (48). In mice, the
D398N substitution will cause a partial loss of nAChR
function, along with increased nicotine intake (24,49).
rs16969968 and other variants were expression quantita-
tive trait loci (eQTL) for CHRNA5 levels in tumor-adjacent
normal lung tissues in European populations, which
was replicated in two additional lung tissue datasets
(27). Beyond simple overlap of GWAS and eQTL P-values
for a single variant, a transcriptome-wide association
study (TWAS) using GTEx lung tissues formally found
a significant association between imputed CHRNA5
expression levels based on genotypes of multiple local
variants and lung cancer risk (31) (Fig. 1A). Lung cancer
risk-associated alleles of these SNPs were correlated with
lower CHRNA5 levels.

CHRNA3 eQTLs were also significant in GTEx lung tis-
sues with lower levels being correlated with the risk (31).
In an experimental assessment for CHRNA3, rs6495309
(reported in the Chinese population, weak LD R2 = 0.0175
with rs55781567 in EUR) (41), a variant in the promoter
region was shown to affect the Oct-1 binding affinity,
and risk allele C resulted in an increased expression of
CHRNA3 in lung tissues (opposite from TWAS; Fig. 1C).
Moreover, epigenetic silencing of CHRNA3 (25) leads to
inhibition of apoptosis and Ca2+ influx in the presence
of nicotine in lung cancer cells. These findings suggested
that variants at 15q25.1 may influence lung cancer risk
via both nAChR protein function and the expression of
these genes.

In addition to nAChR subunit genes, a few other genes
in the region have gained functional support in lung
cancer development. Proliferation and apoptosis assays
demonstrated that knock-down of PSMA4 (Proteasome α-
4 Subunit Isoform 1) significantly decreased the growth
and increased the apoptosis of lung cancer cell lines
(50). Consistently, higher levels of PSMA4 in normal lung
tissues were associated with lung cancer risk in a TWAS
study (31). In the same study, IREB2 (Iron Responsive
Element Binding Protein 2) was the gene most strongly
associated with lung cancer at 15q25.1, where lower
levels are associated with the risk. Further, knock-down
of IREB2 increased DNA damage in the immortalized lung
fibroblasts, suggesting a potential mechanism through
DNA damage and repair pathways (31). Another study
found that the risk allele C of rs2036534 (R2 = 0.1803 with
rs55781567 in EUR) was associated with increased IREB2
expression in lung tumors (Fig. 1A) (51). Together, these
findings provide strong support for nAChR genes under-
lying this locus and suggest a more complex mechanism
involving other genes in tumorigenesis beyond smoking
behavior.

Telomere biology
5p15.33

The locus at 5p15.33 is a well-known multi-cancer
locus (52,53) and was associated with lung cancer
across different populations (12,14,16). The most robust
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Figure 1. Summary of the functional findings from lung cancer GWAS locus at 15q25.1. (A) Summarized findings around genes IREB2, PSMA4, CHRNA5
and CHRNA3. (B) Experimental findings of rs16969968 in CHRNA5. (C) Regulatory activity of rs6495309 on CHRNA3 identified by luciferase reporter assay.
Lung cancer risk-associated alleles are shaded in red and protective alleles in blue.

signal is tagged by rs2736100, which was consistently
observed in European and East Asian populations among
smokers and never-smokers. A functional study found
that rs2736100 displayed a potential enhancer activity
by luciferase reporter assays in lung cells, and the lung
cancer risk-associated C allele was correlated with higher
expression of TERT (Telomerase Reverse Transcriptase)
in normal and lung tumor tissues (Fig. 2A) (54). TERT
encodes a catalytic subunit of the telomerase complex,
which enables the cells to circumvent senescence
once reactivated and promotes cancer development by
sustaining telomere length and chromosomal integrity
(55). Notably, rs2736100-C allele is correlated with longer
telomere length in peripheral white blood cells (Fig. 2A)
(56). Moreover, genetically predicted longer telomere
length (57) and longer telomere length in leukocytes are
associated with increased lung cancer risk (58).

GWAS in diverse populations and stepwise conditional
analyses have identified additional independent signals
(still significant when conditioning on the lead SNP as
a covariate in the regression) in this locus (40,54,59–61),
suggesting that there are multiple functional variants
contributing to lung cancer risk through TERT or other
genes. A multi-cancer meta-analysis including lung can-

cer in this locus identified six independent regions (52).
Functional characterization of one of them identified
rs36115365 as a functional variant (tagged by rs37004)
which is located in an intergenic region between TERT
(∼18 kb telomeric from the SNP) and CLPTM1L (Cleft Lip
and Palate Transmembrane Protein 1-Like; ∼5 kb cen-
tromeric from the SNP) (53). The lung cancer-protective
C allele of rs36115365 preferentially recruits a transcrip-
tion factor, ZNF148, which increases TERT expression,
but not CLPTM1L, in lung cancer cell lines. Depletion of
ZNF148 in a lung cancer cell line also reduced telomerase
activity and increased telomere length. Notably, the same
rs36115365-C allele increases the risk of pancreatic and
testicular cancer but decreases the risk of lung cancer
and melanoma, although the variant functionality on
TERT was consistently shown in different cancer cell
types.

Functional annotation of some fine-mapped variants
(62) also suggested the involvement of CLPTM1L in this
locus. rs31489 was significantly associated with CLPTM1L
levels in normal lung tissues (14), with risk allele
C associated with higher expression (Fig. 2A). Consistent
with this observation, higher expression levels of
CLPTM1L were reported in LUAD tissues compared to
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Figure 2. Summary of the functional findings from lung cancer GWAS loci at 5p15.33, 6p21 (MHC) and 6p22.1. (A) Summarized findings around genes
TERT and CLPTM1L. (B) Conditional fine-mapping analyses on the MHC region at 6p21. (C) Regulatory mechanisms of rs17079281 on DCBLD1 expression
and its functional consequences. Lung cancer risk-associated alleles are shaded in red and protective alleles in blue.

normal lung tissues (63). Functional studies demon-
strated that CLPTM1L is required for K-Ras induced
lung tumorigenesis in a mouse model (64), and knock-
down of CLPTM1L sensitized lung tumor cells for
genotoxic stress-induced apoptosis (63). These studies
suggested that knock-down of CLPTM1L could serve as
a potential treatment to impede the growth of KRAS-
mutated tumors (65). These data support TERT as the
most plausible lung cancer susceptibility gene in this
locus but also support the involvement of CLPTM1L.
Given the complexity of genetic signals in this locus,
comprehensive identification of multiple functional
variants and their respective target genes using high-
throughput approaches will be needed.

Immune response
Major histocompatibility complex region

In the genomic loci encompassing major histocompati-
bility complex (MHC) on chromosome 6, heterogeneous
lung cancer association signals have been identified.
Namely, significant associations were independently
found for the loci at 6p21.33 for SQC in Europeans
(16) and at 6p21.32 for lung cancer of never-smoking
women in East Asian populations (22). MHC is a region

of high gene density shaped by demographic and
selective dynamics, resulting in high density of genetic
variants, high polymorphisms in protein products of
MHC genes (66), LDs spanning longer physical distances
than elsewhere in the genome (67), and clustered genes
with related functions (68,69). To fine-map the GWAS
signals based on genetic variants in the MHC region
to amino acid and serotype levels, Ferreiro-Iglesias and
colleagues (70) utilized high-density SNP genotyping data
and imputed allelic and amino acid polymorphisms of
classical human leukocyte antigen (HLA) genes both
in European and Asian populations (Fig. 2B). From the
European dataset, significant associations were limited
to SQC, and HLA-B∗0801 was the top risk-associated
allele, which is in high-LD with the previous GWAS lead
SNP in this region, rs3117582 (R2 = 0.76). This signal
was refined to the 163rd amino acid of HLA-B∗0801
within the peptide-binding groove that is important for
T cell receptor recognition. HLA-B∗0801 is a part of the
ancestral haplotype 8.1 which is commonly associated
with a higher risk of immune-related diseases in
European populations. After conditioning on HLA-B∗0801,
the HLA-DQB1∗06 allele group exhibited an independent
protective effect, and DQB1∗0603, showing the strongest
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association in the group, has been associated with
multiple cancers in the same direction (71,72). In Asian
populations, significant associations were found in LUAD,
including two independent HLA alleles (located in HLA-
DQB1∗0401 and HLA-DRB1∗0701) and one variant near
HLA-A (rs2256919; Fig. 2B) (70). A separate fine-mapping
study performed HLA amino acid and serotype impu-
tation in Asian populations (73). This study identified
independent associations of rs12333226 (an eQTL locus
with HLA-A and HLA-H in monocytes) and HLA-A∗11,
as well as bi-allelic coding variants of HLA-DRB1 that
are in LD with a previously reported SNP, rs2395185
(R2 = 0.51). Notably, no overlap of signals was observed
between European and Asian populations in the MHC
region, which suggests a hypothesis that exposures to
different antigens in two populations could have shaped
the roles of different susceptibility alleles contributing
to two lung cancer histological types. Studying potential
tumor antigen and HLA interaction and their implication
in immunotherapy might be beneficial in the treatment
strategy for different types of lung cancer.

Cell cycle regulation
6q22.1

The locus at 6q22.1 was initially identified in lung cancer
of Asian never-smoking women (22) and later replicated
in two trans-ancestry GWAS, including smokers and
never-smokers, displaying a stronger association in
LUAD (23,33). The two nearest genes in this locus are
DCBLD1 (Discoidin, CUB and LCCL domain containing
1) and ROS1 (ROS proto-oncogene 1, receptor tyrosine
kinase). Recurrent somatic fusion of ROS1 is one of the
known driver events of NSCLC tumorigenesis, especially
in Asian never-smokers. While there have not been
findings linking lung cancer-associated variants to ROS1
function, TWAS of both European (31) and Chinese
(74) populations showed that lower levels of DCBLD1
in lung tissues are correlated with lung cancer risk.
Wang and colleagues (26) further prioritized rs17079281
(R2 = 0.3784, D′ = 0.9928 with the Asian GWAS lead SNP
rs9387478) in the DCBLD1 promotor, based on a high func-
tionality score from RegulomeDB (75). They found that
rs17079281-T allele exhibited a higher binding affinity
to transcription factor YY1 than the risk-associated C
allele. T > C CRISPR editing in lung cells reduced YY1
binding and increased DCBLD1 expression. Knockdown
and over-expression of DCBLD1 in lung cancer cell lines
indicated that DCBLD1 promotes cell proliferation and
cell cycle progression. DCBLD1 knockdown also reduced
tumor growth in mouse xenografts, which is consistent
with the tumor-promoting role of DCBLD1 (Fig. 2C). Given
that there are multiple high-LD variants with the GWAS
lead SNP spanning the regulatory regions of DCBLD1
and ROS1, functional assessment of these variants and
their target genes will help rule out the role of ROS1 and
establish a robust link between the genetic signal and
DCBLD1.

DNA damage repair and cellular stress response
13q13.1

BRCA2 (Breast Cancer gene 2), in the locus at 13q13.1,
encodes a key regulator of homologous recombination
(HR) that protects the genome from double-strand DNA
damage during DNA replication. Pathogenic mutations
in BRCA2 were first associated with breast and ovarian
cancer risk, but not with lung cancer risk (76). Wang
et al. reported a rare variant, rs11571833 (minor allele
frequency, MAF 1% in EUR; OR = 2.47) associated with
lung cancer risk in this locus with a relatively large effect
size, which is mainly driven by the association with SQC
rather than LUAD (15). The association of rs11571833 was
confirmed by several other studies in European popula-
tions for SQC and SCLC (16,77,78) and by the recent trans-
ancestry GWAS, where two intronic variants, rs11571818
and rs11571815 in LD (R2 = 1, EUR), were significant in
lung cancer and SQC, respectively (33).

rs11571833 transverses A > T in the last exon of BRCA2,
resulting in a premature stop codon (K3326X). Given
that K3326X carriers were reported with normal levels
of BRCA2 mRNA in blood, this genotype might gener-
ate a truncated BRCA2 protein by escaping nonsense-
mediated decay (78). Although the stop codon is ∼ 20
amino acids downstream of a RAD51-binding domain
(79,80), which is critical to BRCA2 functions in DNA dam-
age repair, the functional impact of the truncated pro-
tein has not been assessed in experimental systems (e.g.
effects on nuclear localization of BRCA2 (81)). Given that
rs11571833 is associated with lung cancer and other
cancers linked with strong genotoxic stresses (e.g. smok-
ing, ultraviolet radiation) (78,82), investigating the role of
this variant in impaired DNA repair function interacting
with genotoxic stress conditions will provide a deeper
biological understanding to the genetic findings in this
locus.

22q12.1

In this locus, a rare coding variant in CHEK2 (cell cycle
checkpoint kinase 2), rs17879961, was significantly
associated with SQC (MAF < 3% in Finish Europeans;
OR = 0.38) (15). The association was replicated in later
studies of SQC and overall lung cancer in European
(16) and multi-ancestry populations (33) as well as in
a meta-analysis of aerodigestive squamous cancers
in Europeans (83). rs17879961 is a missense variant
(p.Ile157Thr, I157T) within CHEK2 which encodes a cell
cycle check point kinase that triggers growth arrest or
apoptosis when DNA damage occurs. Ile157 is located in a
critical position of the forkhead-associated (FHA) domain
that is required for CHEK2 dimerization and subsequent
kinase activation, and I157T substitution impairs this
process (84). Although the impaired CHEK2 activation is
considered to compromise downstream phosphorylation
of CHEK2 substrate proteins, the I157T substitution is
correlated with reduced lung cancer and aerodigestive
squamous cancer risk. In contrast, the I157T substitution
is associated with increased breast cancer risk (85,86) and
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is also found in Li–Fraumeni cancer syndrome families
not caused by TP53 mutations (87). One speculative
explanation for the protective effect of rs17879961 in
smoking-related cancers is that CHEK2-mediated stem
cell apoptosis results in frequent renewal/replacement
of stem cells in a seemingly mutagenic environment
(e.g. constant exposure to tobacco smoke), which might
increase the mutation rates in stem cell populations,
eventually leading to cancer development. Therefore,
compromised CHEK2 activity might be linked to a
reduced risk of smoking-related cancers (88). However,
this hypothesis needs to be tested in experimental
systems incorporating exposures and in tumor-evolution
analysis.

12p13.33

The locus at 12p13.33 was initially associated with
SQC in European populations (16,89,90) tagged by SNPs
on or near RAD52 (recombination repair gene 52),
which encodes a key regulator of HR-related genomic
instability. In a follow-up study, two SQC-associated
variants (rs6413436 and rs10744729) were cis-eQTLs of
RAD52 expression in lung tissues, where the risk alleles
are correlated with higher RAD52 levels (91). These two
SNPs are in weak LD (R2 = 0.215 and 0.2873, D′ = 0.9278
and 0.9456, respectively) with the lead SNP (rs7953330)
that later reached genome-wide significance in an
SQC GWAS (16). Consistent with these findings, higher
RAD52 levels in normal lung tissues were associated
with lung cancer risk by TWAS (31). RAD52 levels
were increased in SQC tumors compared to normal
tissues, and somatic amplification of RAD52 region was
reported in SQC tumors from TCGA (91). Experimental
data suggested that depletion of RAD52 in mouse
immortalized bronchial epithelial cells attenuated the
cell proliferation rate and induced senescence (91).
RAD52 plays an essential role in DNA repair pathways
(92) and maintaining tumor genome integrity (91).
RAD52-dependent synthetic lethality of HR-deficient
cancer cells (e.g. BRCA2, BRCA1 or PALB2) was also
reported (93,94). Further studies are warranted to identify
functional variants in this locus and characterize their
roles in increasing RAD52 expression in the context of
tobacco smoking and SQC-specific somatic alterations.

11q22.3

A rare high-effect size coding variant, rs56009889, in ATM
(Ataxia-Telangiectasia Mutated) was initially associated
with LUAD in a rare-variant analysis (MAF < 1%) of Euro-
pean case–control sets (95) and was replicated in a recent
cross-ancestry GWAS (33). The variant frequency was
higher in LUAD, females, light-smokers and somatic EGFR
mutation carriers in a separate dataset (95). rs56009889
is extremely rare in all populations except Jewish-
descent individuals, where it has a MAF of 2%. Because
of its higher prevalence in this population, several
homozygotes, all with lung cancer, were observed. This
variant results in L2307F substitution in the conserved
FRAP-ATM-TRRAP (FAT) domain of ATM preceding

the kinase domain (96). Given that ATM is a key
kinase regulating DNA damage response signaling, the
variant effect on ATM function in the context of lung
cancer development should be investigated. Additional
rare deleterious mutations of ATM (that cause Ataxia
Telangectasia in homozygotes) identified by exome
sequencing are also associated with increased LUAD
or lung cancer risk (97–99). Findings of low-frequency
medium-penetrance variants in ATM further support
the contribution of DNA damage response and repair
pathways in lung cancer susceptibility.

3q28

Multiple variants in the locus at 3q28 were associated
with lung cancer risk, especially in LUAD, including
rs4488809 (18) and rs11375254 (23) identified in Asian
GWAS. Association of the same signal was observed
in Asian female never-smokers (22) and European
populations (15). rs4488809 (intron 1 of TP63, tumor
protein p63) is associated with TP63 expression in normal
lung tissues (100) and lung tissue TWAS showed that
lower TP63 levels are correlated with the risk (31). TP63
encodes a TP53 family member protein which plays
a key role in cellular differentiation, stress response
and cancer development (101). The transactivation (TA)
isoforms of TP63 (TAp63) are induced when the cells
are exposed to DNA damage, transactivating the target
genes of TP53 tumor suppressor and thus affecting DNA
damage response (102). On the other hand, chromosomal
regions encompassing TP63 are amplified in squamous
cell carcinomas of different organs including lung SQC,
which is correlated with increased transcripts of �N
isoform of TP63 (�Np63) (103,104). �Np63 is localized
to basal cells of squamous epithelium and has roles
in stem cell maintenance (104). Although the known
functions of TP63 isoforms have relevance in lung cancer,
statistical fine-mapping and subsequent functional
assessment of the candidate variants will be needed to
identify functional variants linking genetic signals to
TP63 expression and/or function.

Future Directions of Lung Cancer Post-GWA
Studies
While functional studies of several loci improved
our understanding of lung cancer susceptibility, most
reported GWAS loci remain unexplored, and numerous
new signals are being discovered with emerging GWAS
in larger and more diverse populations. We summarize
key considerations in lung cancer GWAS follow-up
studies, including emerging high-throughput functional
approaches and available lung cancer-relevant resources.

Identification of functional variants
Prior to experimental testing of individual variants
from GWAS loci, statistical fine-mapping can prioritize
variants that are most likely to be responsible for
the association (i.e. credible causal variants, CCV)
from genetically linked variants and further identify
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independent signals that might be hindered by the
primary signal (reviewed in (105)). For example, stepwise
conditional analyses of complex lung cancer loci in
diverse populations identified multiple independent
signals (e.g. 5p15.33 locus). Bayesian fine-mapping, on
the other hand, provides posterior inclusion probability
of each variant for capturing likely causal variants.
An advantage of Bayesian methods is that functional
annotations can be used as a prior to weight the
variants to narrow down CCV based on lung cancer-
relevant molecular features. Because GWAS variants are
mostly non-protein-coding, cis-regulation is considered
the main mechanism. We summarize the available
functional annotation resources in Supplementary
Material, Table S4, which profiled cis-regulatory genomic
regions in lung-relevant tissue/cell types (e.g. gene
promoters, enhancers and transcription factor binding
sites). Algorithms are also available to estimate the
impact of protein-coding variants on protein structure
and function (summarized in (106)).

One challenge in fine-mapping is its general require-
ment of (preferably in-sample) LD matrix drawn from
a large number of individuals to accurately represent
the GWAS population’s LD structure. This issue becomes
even more challenging with emerging multi-ancestry
GWAS, including those in lung cancer (23,33) and
warrants more advanced algorithms. At the same time,
multi-ancestry GWAS provides an opportunity for cross-
ancestry fine-mapping (107,108). For example, given that
African ancestry populations have significantly narrower
LD, fine-mapping could achieve a substantial reduction
in CCV size assuming that the causal variants are shared
across populations. This strategy was applied to resolving
the large LD blocks in the 15q25.1 region (42).

Beyond fine-mapping and functional annotation,
reporter assays based on the measurement of enzy-
matic activity have been widely utilized to investigate
the regulatory potential of DNA sequences for gene
transcription one variant at a time (e.g. luciferase assay)
(109). For lung cancer loci, heuristic selection of variants
(e.g. using R2 or P-value cutoff) followed by luciferase
assays have been mainly used, in part due to the
experimental burden of testing multiple variants. Recent
advancements such as Massively Parallel Reporter
Assays (MPRA) scale-up conventional reporter assays by
adopting massively parallel sequencing and thus can
test transcriptional regulatory activities of thousands of
variants from multiple loci (110–112). Given that fine-
mapping provides limited prioritization power, especially
in high-LD regions, MPRA and similar high-throughput
methods could break the LD tie and efficiently identify
functional variants.

Identification and characterization
of susceptibility genes
Molecular QTL-based approaches

Molecular QTL identifies genetic variants that contribute
to inter-individual differences in molecular traits and

thus can identify candidate susceptibility genes from
GWAS loci. Various molecular traits could be assessed
for QTL analyses, including expression (eQTL), splicing
(sQTL), protein (pQTL), DNA methylation (meQTL),
microRNA (miQTL), chromatin accessibility (caQTL),
histone modification (hQTL), RNA stability QTL and so
on. We summarize available lung and related tissues
QTL datasets in Table 1.

To formally assess the overlap between QTL and GWAS
signals, colocalization approaches compare the associa-
tion patterns of GWAS and QTLs and investigate whether
the same variants drive both signals (e.g. COLOC (113),
eCAVIAR (114)). TWAS, on the other hand, utilizes the
local genetic variants that contribute to gene expres-
sion in eQTL datasets to impute gene expression levels
for the case and control individuals from the GWAS
dataset. Association test between genetically predicted
gene expression levels and the trait (e.g. PrediXcan (115),
FUSION (116)) could find transcriptome-wide significant
associations, including the loci that were underpowered
in the GWAS itself based on the individual SNP-based
testing. TWAS and colocalization were performed for
two lung cancer GWAS datasets in recent studies. Bossé
and colleagues (31) performed TWAS integrating lung
eQTL (n = 1038) with lung cancer GWAS summary statis-
tics (16) (both datasets in EUR) and identified candidate
susceptibility genes for 37% of GWAS loci and further
identified novel loci. Zhu and colleagues (74) performed
cross-tissue TWAS integrating eQTL of 44 GTEx tissue
types (∼85% EUR) with lung cancer GWAS data from Chi-
nese populations using UTMOST (117). They identified
multiple candidate genes from both known and novel
loci in lung and other tissue types, and a subset of them
was also supported by colocalization. Given that TWAS
and colocalization models are typically based on the
assumption that the allele frequencies and LD structures
are the same between GWAS and QTL datasets, lung
QTL resources in non-European populations are critically
needed.

A critical consideration in QTL-based and functional
annotation approaches in selecting the most relevant
tissue type(s), where lung cancer susceptibility variants
and genes are functional. There are multiple agnostic
approaches that combine GWAS statistics with tissue-
specific transcriptomic and epigenomic annotations to
identify the most relevant tissues or cell types. Stratified
LD score regression (S-LDSC) considers LD structure and
heritability of all variants regardless of association cut-
off to estimate the heritability attributable to different
functional annotations. A recent study using S-LDSC in
multiple solid cancers did not find significantly enriched
tissue types for lung cancer using European GWAS statis-
tics (6) perhaps due to a low heritability captured in
the current size of GWAS and lack of cell-type-specific
annotation datasets. Indeed, lung tissue consists of over
50 cell types (118), and multiple epithelial cell types are
considered the cells of lung cancer origin (LUAD: alveolar
type II, bronchiolar epithelial club and bronchioalveolar

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac140#supplementary-data
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Table 1. Available QTL-based datasets for lung cancer post-GWAS studies

Resources Brief information Data storage/links

GTEx v8 Samples were collected from 54 tissues across 838 donors, mainly for eQTL
and sQTL datasets, including 515 lung samples

https://gtexportal.org/home/

Hao et al. Lung eQTL datasets from 1111 European ancestry individuals who
underwent lung resectional surgery (non-tumor lung tissue samples). The
majority were smokers or former smokers

https://pubmed.ncbi.nlm.nih.gov/23209423/

Luo et al. Human small (n = 112) and large airway (n = 40) epithelial cells eQTL datasets Data stored in NCBI GSE5057 and GSE40364
Shi et al. Histologically normal human lung tissues (n = 210) meQTL datasets of

European ancestry individuals. Mostly smokers (n = 206)
Data stored in dbGAP phs000093.v2.p2 and
GSE52401

Morrow et al. Lung meQTL datasets from 116 European ancestry individuals (90 COPD
cases and 36 controls). All were smokers

https://pubmed.ncbi.nlm.nih.gov/29313708/

PancanQTL Comprehensive database for cis-eQTLs and trans-eQTLs in 33 cancer types
from TCGA, including LUAD (n = 514) and LUSC (n = 500)

http://gong_lab.hzau.edu.cn/PancanQTL/

Table 2. Available single-cell RNA-seq datasets for human lung

Resources Sample information Data storage/links

Reyfman
et al.

Donor lung biopsies (n = 8) and lung explants from patients with
pulmonary fibrosis (n = 4), systemic sclerosis (n = 1), polymyositis (n = 1)
and chronic hypersensitivity pneumonitis (n = 1)

https://doi.org/10.1164/rccm.201712-2410OC

Braga et al. Asthmatic lungs (n = 9, aged from 49 to 65 years old) and normal lungs
from deceased organ donors (n = 11, aged from 44 to 65 years old)

https://asthma.cellgeni.sanger.ac.uk/

Travaglini
et al.

Normal lung tissues from 3 patients with focal lung tumors (aged from
46 to 75 years old)

https://hlca.ds.czbiohub.org/

Maynard
et al.

Metastatic lung tumor samples from biopsies (n = 30) (aged from 39 to
77 years old, all with LUAD except 1 SQC)

https://doi.org/10.1016/j.cell.2020.07.017

Guo et al. NSCLC tumors and adjacent non-tumor lung samples from 14 patients
(LUAD, n = 11; SQC, n = 3; aged from 45 to 78 years old)

http://lung.cancer-pku.cn

Kim et al. Normal lung (n = 11), early-stage lung tumor (n = 11), advance stage lung
tumor (n = 4), lymph node metastases (n = 7), normal lymph node (n = 10),
pleural effusion (n = 5), brain metastases (n = 10)

https://pubmed.ncbi.nlm.nih.gov/32385277/

Habermann
et al.

Explanted lung samples from individuals with pulmonary fibrosis
(n = 20) and nonfibrotic controls (n = 10)

https://pubmed.ncbi.nlm.nih.gov/32832598/

stem cells (119,120), SQC: tracheal basal cell progeni-
tors, SCLC: neuroendocrine cells (121)). Current QTL and
other annotation data are mainly using bulk lung tissues
and hence may not capture cell-type and context (e.g.
cell state, cell–cell interaction)-specific gene regulation,
which could result in limited utility in explaining GWAS
loci. For example, colocalization analysis of the most
recent lung cancer GWAS and eQTL data from eight types
of bulk tissue in GTEx identified susceptibility genes
for ∼ 50% of the GWAS loci (33). To address the limi-
tations of bulk-tissue approaches, emerging single-cell-
based human lung datasets can be explored (Table 2).
These datasets profiled cell-type-specific lung transcrip-
tomes and identified previously unknown lung cell types
(e.g. transitional states from stem cells to differentiated
cells) (122,123). S-LDSC and similar agnostic approaches
(124) could be applied to these single-cell human lung
datasets to prioritize relevant cell types.

Other functional assays

While QTL-based approaches require a large collection
of samples, other experimental approaches using cell-
based systems could identify lung cancer susceptibility

genes and characterize their functions. Chromatin
interaction analyses can identify susceptibility genes
from GWAS loci by detecting physical interactions
between GWAS variants and target gene promoters (e.g.
Hi-C, HiChIP (125), Capture-Hi-C (126)) based on long-
range cis-regulation via chromatin looping (127). This
cell-based approach is particularly valuable in assessing
low-frequency variants that might have insufficient
statistical power in typical QTL datasets and can also
incorporate diverse cellular contexts (e.g. stimulation,
cell states) that might not be captured in QTL datasets.
These approaches have successfully identified hundreds
of candidate susceptibility genes from breast cancer
GWAS loci (128,129).

Genome-editing technologies could test the variant
effect on its target gene expression/function or assess
candidate gene function in cell-based systems (130).
Unlike the reporter assays, genome-editing investigates
the impact of variants on their endogenous target genes
in a physiologically relevant context (131). Wang and
colleagues (26) used CRISPR editing to switch the geno-
type of a lung cancer-associated variant in a lung cell
line and assess the allelic effect on transcription factor

https://gtexportal.org/home/
https://pubmed.ncbi.nlm.nih.gov/23209423/
https://pubmed.ncbi.nlm.nih.gov/29313708/
http://gong_lab.hzau.edu.cn/PancanQTL/
https://doi.org/10.1164/rccm.201712-2410OC
https://asthma.cellgeni.sanger.ac.uk/
https://hlca.ds.czbiohub.org/
https://doi.org/10.1016/j.cell.2020.07.017
http://lung.cancer-pku.cn
https://pubmed.ncbi.nlm.nih.gov/32385277/
https://pubmed.ncbi.nlm.nih.gov/32832598/
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binding and target gene expression. CRISPR-mediated
high throughput screens adopting knock-out, activation
(CRISPRa) or inhibition (CRISPRi) can test thousands
of candidate genes or variants using a guide-RNA
panel followed by massively parallel sequencing (132).
An autoimmune disease locus was investigated using
CRISPRi- and CRISPRa-tiling to efficiently narrow down
functional variants affecting the target gene expression
(133). For CRISPR-based approaches, compatibility of the
cell type to lentiviral transduction and drug selection
process (132) and p53-dependent cellular toxicity caused
by Cas9-induced DNA double-strand breaks (134) should
be considered.

Other functional assays relevant to lung cancer could
be performed to characterize target gene function in
tumorigenesis. Cellular phenotypes related to tumori-
genesis (cell proliferation, migration, invasion, altered
metabolism, DNA damage repair and apoptosis (135)) can
be investigated in vitro or in vivo models (136). For exam-
ple, endogenous DNA damage levels of lung cells upon
knockdown or overexpression of candidate genes were
used to screen multiple genes from lung cancer GWAS
loci in recent studies (31,33). Importantly, experimen-
tal systems should reflect the lung cancer-relevant bio-
logical contexts, including frequent somatic alterations
(e.g. EGFR, KRAS), cell types (primary or cancer) and
exposures.

Concluding Remarks
Post-GWAS functional studies will help improve etiologi-
cal insights and biological understanding of lung tumori-
genesis in general. Insights from investigating the inter-
action among susceptibility genes and exposures (e.g.
smoking) and somatic driver events will further pro-
vide clues to better prevention and potential therapy.
For example, understanding how large-effect-size lung
cancer-associated coding variants (e.g. BRCA2, CHEK2 and
ATM) contribute to early stages of lung tumorigenesis
could shed light on potential therapeutic approaches
tapping into synthetic lethality of DNA damage repair
pathways in a subset of patients.

It is possible that functional studies could contribute
to better predicting lung cancer risk via incorporation
into a polygenic risk score (PRS). Previous studies proved
that, beyond age and smoking pack years, PRS is an
independent and effective predictor of lung cancer risk
(23). Although cumulative effects of PRS and modifiable
risk factors improved the performance (137), the dis-
criminative power of the current risk-prediction model is
still far from the requirement in clinical practice. Func-
tional annotations can further improve PRS by assign-
ing priors to effect sizes and reducing the inflation of
association statistics in the high-LD region. For exam-
ple, incorporating genomic and epigenomic features into
PRS (138) or prioritizing cell-type-specific regulatory vari-
ants (139) improved prediction accuracy in multiple dis-
eases. In lung cancer, restricting the GWAS variants based

on biological pathways improved the performance of
prediction models (140). It is expected that PRS could
be improved by post-GWAS findings, which could help
construct clinical risk prediction models that benefit
smokers and never-smokers via targeted lung cancer
screening programs.

Supplementary Material
Supplementary Material is available at HMGJ online.
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