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Abstract 

Objective:  To analyze the characteristics of global β-lactamase-producing Enterobacter cloacae including the distri-
bution of β-lactamase, sequence types (STs) as well as plasmid replicons.

Methods:  All the genomes of the E. cloacae were downloaded from GenBank. The distribution of β-lactamase encod-
ing genes were investigated by genome annotation after the genome quality was checked. The STs of these strains 
were analyzed by multi-locus sequence typing (MLST). The distribution of plasmid replicons was further explored 
by submitting these genomes to the genome epidemiology center. The isolation information of these strains was 
extracted by Per program from GenBank.

Results:  A total of 272 out of 276 strains were found to carry β-lactamase encoding genes. Among them, 23 varieties 
of β-lactamase were identified, blaCMH (n = 130, 47.8%) and blaACT​ (n = 126, 46.3%) were the most predominant ones, 
9 genotypes of carbapenem-hydrolyzing β-lactamase (CHβLs) were identified with blaVIM (n = 29, 10.7%) and blaKPC 
(n = 24, 8.9%) being the most dominant ones. In addition, 115 distinct STs for the 272 ß-lactamase-carrying E. cloacae 
and 48 different STs for 106 CHβLs-producing E. cloacae were detected. ST873 (n = 27, 9.9%) was the most common 
ST. Furthermore, 25 different plasmid replicons were identified, IncHI2 (n = 65, 23.9%), IncHI2A (n = 64, 23.5%) and 
IncFII (n = 62, 22.8%) were the most common ones. Notably, the distribution of plasmid replicons IncHI2 and IncHI2A 
among CHβLs-producing strains were significantly higher than theat among non-CHβLs-producing strains (p < 0.05).

Conclusion:  Almost all the E. cloacae contained β-lactamase encoding gene. Among the global E. cloacae, blaCMH 
and blaACT​ were main blaAmpC genes. BlaTEM and blaCTX-M were the predominant ESBLs. BlaKPC, blaVIM and blaNDM were 
the major CHβLs. Additionally, diversely distinct STs and different replicons were identified.
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Introduction
Enterobacter (E. cloacae) belongs to facultative anaerobic 
Gram-negative bacilli, grouping into the E. cloacae com-
plex group, the family  Enterobacterale [1]. Generally, 
such bacteria colonize soil and water as well as the ani-
mal and human gut, representing one of the most lead-
ing species described in clinical infections, particularly in 
vulnerable patients [2]. It has been reported that E. cloa-
cae is frequently associated with a multidrug resistance 
(MDR) phenotype, due to the inducible overproducing 
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AmpC β-lactamases and acquisition of numerous genetic 
mobile elements containing resistance [3]. More wor-
risome, the production of carbapenem-hydrolyzing 
β-lactamase (CHβLs) rendering ineffective almost all 
β-lactams families have been continually acquired, result-
ing in the production of super-resistant bacteria carbape-
nem-resistant Enterobacter cloacae (CREL) [4].

β-lactamase is a predominant resistance determi-
nant for β-lactam antibiotics in E. cloacae. To date, 
there are two classification schemes for β-lactamases, 
the more groupings in clinical laboratory generally 
correlate with broadly based molecular classifica-
tion, where β-lactamases are divided into class A, B, 
C and D enzymes based on the amino acid sequence 
[5]. Currently, the most problematic enzymes are plas-
mid-mediated AmpC β-lactamases (pAmpCs) with 
blaACT-like  ampC  genes  being highly prevalent [6], 
extended-spectrum β-lactamases (ESBLs) with blaSHV 
and blaCTX-M being widely distributed [7], and CHβLs, all 
of which are challenging antibiotic effectiveness.

Globally, blaCHβLs such as blaKPC (class A), blaNDM/VIM/

IMP (class B) and blaOXA-48 (class D) are of grave clini-
cal concern and proliferating [8]. It was reported that 
blaNDM-1 and blaNDM-5 were the main blaCHβLs,  ST93, 
ST171 and ST145 was the predominant sequence types 
(STs) for CREL in a tertiary Hospital in Northeast China 
during 2010–2019 [9]. Whereas in Japan, blaIMP-1 was 
the dominant blaCHβLs conferring carbapenem resistance 
[10], and blaVIM was the main blaCHβLs in France between 
2015–2018 [11]. However, the whole distribution of 
β-lactamase among global E. cloacae is unclear, and 
information on the clones of E. cloacae spreading inter-
nationally remains unknown. As we know that plasmids 
play an important role in horizontal gene transfer of anti-
microbial resistance genes (ARG), and the identification 
of replicon types is helpful to analyze plasmid character-
istics. Further, the association between plasmid replicons 
and different resistant determinants is essential to under-
stand the role of plasmids in transmission of ARG [12]. 
For instance, IncN plasmids have been reported to be the 
predominant replicon types for blaIMP-4-carrying strains 
[13], however, the prevalence of plasmid replicons among 
these bacteria were unknown. Notably, the association 
between IncIγ plasmid encoding blaCMY-2 ß-lactamase 
and the international ST19 was observed in multidrug-
resistant Salmonella Typhimurium [14]. Whether or not 
this phenomenon could be observed in E. cloacae needs 
to be confirmed.

With the extensive use and development of antibacte-
rial drugs, β-lactamases have evolved rapidly. Meanwhile, 
due to the rapid development of whole-genome sequenc-
ing (WGS) technology, the number of sequenced bacte-
rial genomes has grown enormously, new β-lactamase 

variants continue to be described. As a common oppor-
tunistic pathogen [15], the information on the distribu-
tion of β-lactamase among E. cloacae was limited.

In this study, we first explored the distribution of 
β-lactamase including pAmpCs, blaESBLs and blaCHβLs 
among E. cloacae isolates based on a global database. For 
β-lactamase positive strains, the sequence types (STs) 
and the distribution of plasmid replicons were further 
investigated. Furthermore, the prevalent characteristics 
of β-lactamase-producing E. cloacae were analyzed.

Materials and methods
Acquisition of E. cloacae genomes and strain information
A total of 296 E. cloacae genomes were downloaded in 
batches from NCBI using Aspera software on 16th, Dec 
2021 [16]. The genomic quality of these 296 strains was 
further filtered by Checkm and Quast software [17, 18]. 
The high-quality genome was defined as “complete-
ness > 90% and containment < 5%”. Meanwhile, the quan-
tity of contigs is required to be “ ≤ 500, and N50 ≥ 40,000”. 
Twenty genomes that did not meet the above conditions 
were filtered out. The investigated strains were collected 
from different years shown in Figure S1A, the collected 
dates of 58 strains were “blank” meaning that the infor-
mation was missing. These strains were submitted by 32 
countries, mainly from USA (n = 58), France (n = 30), 
United Kingdom (n = 27), China (n = 24), Japan (n = 18), 
Singapore (n = 13) and Nigeria (n = 12), other coun-
tries were also involved (Figure S1B). The countries of 
26 strains remained unknown. Notably, 158 out of 272 
strains were hosted by Homo sapiens (n = 158, 58.1%), 
mainly from gastrointestinal tract (n = 57, 21.0%).

Investigation of β‑lactamase among global E. cloacae
To avoid differences in genome gene prediction by differ-
ent annotation methods. All the 276 genomes were anno-
tated by Prokka software [19], which is a fast prokaryotic 
genome annotation software. All the strains containing 
β-lactamase encoding genes were further analyzed.

Analysis on the sequence type of β‑lactamase carrying E. 
cloacae
The self-made Perl program was used to extract the 
nucleotide coding sequence of genes from each genome 
sequence file (GBK format) [20]. The allele sequences 
and allelic profiles of 7 conserved genes of E. cloacae 
were downloaded from website https://​pubml​st.​org/. 
The sequence of the genome was set as “query”, the seven 
conserved gene sequence files were set as “subject “(data-
base). Blastn alignment analysis was then implemented 
between query and subject. The thresholds set were 
as follows: E-value = 1e-5, identity = 100%, matching 
length = subject gene length.

https://pubmlst.org/
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Investigation of plasmid replicons among ß‑lactamase 
positive E. cloacae
To analyze the distribution of plasmid replicons among 
β-lactamase-carrying E. cloacae. The genomes were sub-
mitted into the website and PlasmidFinder (https://​cge.​
cbs.​dtu.​dk/​servi​ces/​Plasm​idFin​der/) was used to analyze 
the presence of plasmid replicons (Identity: 90%; Cover-
age: 90%).

Statistical analysis
The differences on the distribution of major resistant 
determinants and plasmid replicons among blaCHβLs-
carrying strains and strains without blaCHβLs was ana-
lyzed by Chi-square test. Distribution difference on 
resistant determinants and plasmid replicons among 
all the β-lactamase-producing and among the blaCHβLs-
carrying strains were checked by McNemar test. The dis-
tribution rates were statistically different when p value 
was less than 0.05.

Results
The distribution of β‑lactamase among global E. cloacae
In total, 272 out of 276 strains were found to carry 
β-lactamase encoding genes. There were 23 varie-
ties of ß-lactamase being found, blaCMH (n = 130, 

47.8%) and blaACT​ (n = 126, 46.3%) were the most pre-
dominant ones. Other ß-lactamase encoding genes 
included blaTEM (n = 90, 33.1%), blaOXA (n = 51,18.8%), 
blaCTX-M (n = 48, 17.6%), blaVIM (n = 29, 10.7%), blaKPC 
(n = 24, 8.8%), blaSHV (n = 23, 8.5%), blaNDM (n = 22, 
8.1%), blaIMI (n = 17, 6.3%), blaMIR (n = 11, 4.0%), bla-
LAP-2 (n = 10, 3.7%), blaIMP (n = 7, 2.6%), blaDHA (n = 7, 
2.6%), blaGES (n = 4, 1.5%), blaCMY (n = 3,1.1%), blaFOX-5 
(n = 3,1.1%), blaVEB-3 (n = 2, 0.7%), blaNMC-A (n = 2, 
0.7%), blaCARB (n = 2, 0.7%), blaFLC-1 (n = 1, 0.4%), 
blaORN-1 (n = 1, 0.4%) and blaSCO-1 (n = 1, 0.4%).

In detail, the variants of pAmpCs including blaCMH, 
blaACT​ and blaMIR were shown in Fig. 1, with blaCMH-6 
(n = 41, 15.1%) and blaACT-59(n = 34, 12.5%) being 
the most frequent ones. Multiple variants of blaESBLs 
including blaCTX, blaTEM, blaOXA and blaSHV were also 
found (Fig. 2). Among them, blaCTX-M-15 (n = 33, 12.1%) 
and blaSHV-12 (n = 19, 7.0%) were the most common 
ones.

Overall, 9 genotypes of blaCHβLs including blaNDM, 
blaIMP, blaOXA, blaKPC, blaVIM, blaFLC-1, blaNMC-A, blaGES 
and blaIMI were found among 106 strains (Fig. 3). Besides 
the blaCHβLs in the Fig. 3, other ones including blaOXA-48 
(n = 3, 2.9%) and blaOXA-181 (n = 2, 1.9%), blaNMC-A (n = 2, 
1.9%) and blaFLC-1 (n = 1, 1.0%) were also identified.

Fig. 1  Variants of the predominant plasmid-mediated AmpC β-lactamases (pAmpCs) among Enterobacter cloacae. 1A, variants of blaCMH; 1B, 
variants of blaMIR; 1C, variants of blaACT​; 1D, variants of other pAmpCs

https://cge.cbs.dtu.dk/services/PlasmidFinder/
https://cge.cbs.dtu.dk/services/PlasmidFinder/
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The distribution of blaACT​, blaSHV and blaTEM were 
obviously higher among blaCHβLs-carrying E. cloacae 
comparing to the prevalence of these genes among the 
strains without blaCHβLs (p < 0.05), whereas blaCMH and 
oxacillin-hydrolyzing-blaOXA were much more prevalent 
among E. cloacae strains without blaCHβLs than blaCHβLs-
carrying ones (p < 0.05) (Table 1).

The sequence types of β‑lactamase‑carrying E. cloacae
Totally, there were 115 distinct STs for the 272 
β-lactamase-carrying E. cloacae (Fig.  4). ST873 (n = 27, 
23.5%) was the most frequent one followed by ST456 
(n = 11, 9.6%). ST1 (n = 9, 7.8%), ST93 (n = 5, 4.3%) and 
ST976 (n = 5, 4.3%) were less common. The STs of 41 
strains remained unknown and 12 strains belonged to 
novel STs. Other 110 STs were scattered (Fig. 4).

Furthermore, 48 different STs were identified for 
blaCHβLs-carrying E. cloacae (Fig. 5). And ST873 (n = 27, 
25.7%) and ST456 (n = 11,10.5%) was the most common 
ones. Diverse STs were identified for blaCHβLs-carrying E. 
cloacae (Fig. 6). Interestingly, all the 23 blaVIM-4-carrying 
E. cloacae, and 3 out of 6 blaVIM-1- carrying E. cloacae 

isolates were assigned into ST873 (Fig. 6A). Whereas 19 
blaKPC-2 ones were assigned to 13 STs (Fig.  6B), and 17 
blaNDM-1 ones were assigned into 14 STs (Fig.  6C). Fur-
thermore, 9 distinct STs for 17 blaIMI- carrying strains 
(Fig.  6D), 7 different STs for 7 blaIMP-carrying ones 
(Fig.  6E) and 2 STs for 5 strains carrying carbapenem-
hydrolyzing blaOXA (Fig. 6F) were identified. Of note, 27 
out of 34 blaACT-59 were found to be carried by ST873 
strains.

The plasmid replicons of CHβLs‑carrying E. cloacae
Totally, 25 different plasmid replicons were identified. 
IncHI2 (n = 65, 23.9%), IncHI2A (n = 64, 23.5%) and 
IncFII (n = 62, 22.8%) were the most common ones fol-
lowed by IncCol (n = 48, 17.6%), IncFII (n = 41, 15.1%) 
and IncR (n = 28, 10.3%). IncFIA (n = 20, 7.4%), IncN 
(n = 18, 6.6%), IncX3 (n = 12, 4.4%), IncC (n = 8, 2.9%), 
IncHI1B (n = 8, 2.9%), IncM1 (n = 7, 2.6%), IIncHI1A 
(n = 6, 2.2%), IncP6 (n = 5, 1.8%), pKPC-CAV1193 
(n = 4, 1.5%), IncQ1 (n = 3, 1.1%), IncL (n = 3, 1.1%), 
IncX5 (n = 2, 0.7%), IncX4 (n = 1, 0.4%), IncM2 (n = 1, 
0.4%), IncN2 (n = 1, 0.4%), IncP1 (n = 1, 0.4%), IncA 

Fig. 2  Variants of the predominant extended-spectrum β-lactamases (ESBLs) among Enterobacter cloacae. 2A, Variants of blaSHV; 2B, Variants of 
blaCTX-M; 3B, Variants of blaOXA; 4B, Variants of blaTEM
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(n = 1, 0.4%), repA (n = 1, 0.4%) and repB (n = 1, 0.4%) 
were also found. It was worth mentioning that no plas-
mid replicons were found among 97 strains, 62 (22.8%) 
out of which only contained one blaCMH, 21 (7.7%) ones 
carried blaCHβLs.

Notably, the prevalence of replicons IncHI2 and 
IncHI2A among blaCHβLs -carrying strains were sig-
nificantly higher than that among the strains without 
blaCHβLs (p < 0.05), whereas no significant difference 
on the prevalence of plasmid replicons IncCOI, IncFII, 

IncFIB and IncR among these two groups were 
observed (Table 2).

The distribution of blaSHV was consistent with plasmid 
replicon IncR, and prevalence of blaCTX-M was in accord-
ance with the prevalence of IncFII, IncFIB and IncHI2A 
(p > 0.05). Additionally, the prevalence of oxacillin-hydro-
lyzing-blaOXA and IncFIB as well as IncCOI was accord-
ant (Table  3). Moreover, the prevalence of blaKPC and 
blaVIM were consistent with the distribution of IncCOI, 
IncFII, IncFIB, IncHI2 and IncHI2A, and no differences 

Fig. 3  Variants of the predominant carbapenem-hydrolyzing β-lactamase (CHβLs) among Enterobacter cloacae. 3A, carbapenemase detected in this 
study. 3B, Variants of blaVIM; 3C, Variants of blaKPC; 3D, Variants of blaNDM; 3E, Variants of blaIMI; 3F, Variants of blaIMP; 3G, Variants of blaGES

Table 1  The differences on the distribution of resistant determinants among blaCHβLs positive and blaCHβLs negtive Enterobacter 
cloacae 

CHβLs Carbapenem-hydrolyzing β-lactamase
a  Continuity correction

blaCHβLs positive strains 
(n = 106)

blaCHβLs negative strains 
(n = 166)

Chi-square value P value

blaCMH (n = 130) 41 (38.7%) 89 (53.6%) 5.873 0.016

blaACT​ (n = 126) 60 (56.7%) 66 (39.8%) 7.382 0.007

blaOXA (n = 51) 3 (2.8%) 27 (16.3%) 10.569a 0.001

blaCTX-M (n = 48) 18 (17.0%) 29 (17.5%) 0.011 0.917

blaSHV (n = 23) 16 (15.1%) 5 (3.0%) 13.255 0.000

blaTEM (n = 90) 61 (57.5%) 29 (17.5%) 46.932 0.000
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were observed on the distribution of blaIMI, blaNDM and 
those of IncCOI, IncFII and IncFIB (p > 0.05) (Table 4).

Discussion
β-lactamase is a primary resistance determinant, widely 
disseminating on mobile genetic elements across the 
opportunistic pathogens including E. cloacae [21]. 
Exploring the spread characteristics of β-lactamase 
among E. cloacae based on the global genome database of 
GenBank is quite important for illustrating the resistance 
characteristics of such strains and guiding rational drug 
use in clinic.

Our analysis showed that the number of E. cloacae 
has been continuously increasing since the genome of 
first one was submitted in 2003. More than 32 countries 
all over the world submitted the genomes, indicating 
the representativeness of these strains. To note, the host 
of these β-carrying E. cloacae strains were predominantly 
Homo sapiens, with the gastrointestinal tract being the 

major isolation resource, suggesting that Homo sapiens 
were the dominant host and gastrointestinal tract was 
predilection seat. Importantly, 106 blaCHβLs-carrying E. 
cloacae strains isolated during 2010–2020 were scattered 
among global 27 countries and 5 continents, indicating 
a rapid emergence and wide distribution of such strain, 
which alerts us the urgency of implementation of preven-
tion and control measures.

Our analysis showed that blaCMH was the most frequent 
β-lactamase gene. However, literature search with blaCMH 
as the key word showed that blaCMH-1 was first detected 
in E. cloacae as a novel blaAmpC gene at a Medical Center 
in Southern Taiwan [22]. Since then, blaCMH-2 and 
blaCMH-3 were sequentially identified in India and Europe 
[22, 23]. Thereafter, no blaCMH was reported in PubMed 
database albeit genomic analysis showed the widest distri-
bution of these enzyme. To our surprise, the most preva-
lent blaCMH-6, blaCMH-4, blaCMH-5 and blaCMH-3 were not 
identified among E. cloacae at all. Moreover, blaORN-1, 

Fig. 4  The sequence types of 272 β-lactamase-producing Enterobacter cloacae 
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identified in the chromosome of Raoultella. ornithino-
lytica in 2004  [24, 25], has never been reported in E. 
cloacae. Interestingly, blaCARB-2 as a carbenicillin-hydro-
lyzing enzyme, has been identified within multiple strains 

including Klebsiella. pneumonia [26], Achromobacter 
xylosoxidan [27], Escherichia. coli [28], Acinetobacter pit-
tii [29] and E. cloacae [30] in a variety of countries, how-
ever, was quite rare in our study. Which may be related 

Fig. 5  The sequence types of 106 carbapenem-hydrolyzing β-lactamase-producing Enterobacter cloacae 

Fig. 6  The sequence types of dominant carbapenem-hydrolyzing β-lactamase-producing Enterobacter cloacae. 6A, the sequence types (STs) 
of blaVIM-carrying strains; 6B, The STs of blaKPC-carrying strains; 6C, STs of blaNDM-carrying strains; 6D, STs of blaIMI-carrying strains; 6E, STs of 
blaIMP-carrying strains; 6F, STs of blaOXA-carrying strains
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to its clinical importance. blaLAP-2 as a narrow-spectrum 
β-lactamase was also rare in our study, albeit it has been 
reported [31] [32]. Furthermore, blaSCO-1 was a novel 
plasmid-mediated class A β-lactamase with carbenicilli-
nase characteristics in E. coli [33], has not been reported 
in E. cloacae until now. As we know that blaACT​ was also 
a plasmid-encoded ampC gene [34]. Although the preva-
lence of blaACT​ was secondary to blaCMH in our study, dis-
tribution of exact blaACT​-variants was not so high. Note 
worthily, the most common blaACT-59 in our study has 
never been reported. Which may be due to the limitation 
of screening methods. It was reported that blaVEB-3 was 
encoded by the chromosome and located in an integron, 
and only 2 blaVEB-2 genes were detected in our study. 

However, outbreak of infection caused by blaVEB-3-carry-
ing-E. cloacae has been reported in China [35],

Additionally, blaKPC, blaVIM, blaNDM, blaIMI and 
blaIMP were the major blaCHβLs accounting for carbap-
enem resistance in global E. cloacae. Among them, 
blaKPC-2 and blaVIM-4 were the most predominant ones. 
Which is a light different from previous report showing 
blaKPC-2 and blaIMP-8 was the main blaCHβLs within E. 
cloacae in China [36]. Noteworthily, 28 blaVIM-4-carry-
ing E. cloacae ST873 were only found in Homo sapiens 
in France, indicating that there was a clonal dissemi-
nation of such strain among Homo sapiens in France 
during 2010–2020, which was not reported previ-
ously, albeit nosocomial infections caused by E. cloacae 
ST873 in 2 hospitals in France has been reported [37]. 
As a novel blaCHβLs, blaFLC-1 belongs to Ambler class A 
β-lactamases, has been identified an E. cloacae Com-
plex isolated from food products [38]. Interestingly, 
such enzyme displayed a distinctive substrate profile, 
hydrolyzing penicillin, narrow- and broad-spectrum 
cephalosporins, aztreonam, and carbapenems but not 
extended-spectrum cephalosporin. In addition, blaNMC-

A, a class A blaCHβL, has been frequently detected in E. 
cloacae [39, 40] [41, 42], albeit we just found 2 blaNMC-

A in this study. As blaCHβLs, blaGES-24 seems to have a 
broader host than blaGES-2 although we only found 2 
blaGES-2 and 1 blaGES-24 in this study. To date, all reports 
on blaIMI-1 focus on E. cloacae, indicating that E. cloa-
cae may be the best host for blaIMI.

Table 2  The differences on the distribution of plasmid replicons 
among blaCHβLs positive and blaCHβLs negtive Enterobacter cloacae 

CHβLs Carbapenem-hydrolyzing β-lactamase

blaCHβLs 
positive 
strains 
(n = 106)

blaCHβLs 
negtive 
strains 
(n = 166)

Chi-square P value

IncCOI (n = 41) 21 (19.8%) 20 (12.4%) 3.046 0.081

IncFII (n = 62) 28 (26.4%) 34 (37.3%) 1.294 0.255

IncFIB (n = 58) 29 (27.4%) 29 (17.5%) 3.771 0.052

IncHI2 (n = 65) 37 (34.9%) 28 (16.9%) 11.574 0.001

IncHI2A 
(n = 64)

37 (57.5%) 27 (16.3%) 12.493 0.000

IncR (n = 27) 9 (8.5%) 19 (11.4%) 0.612 0.434

Table 3  The differences on the distribution of plasmid replicons and resistant determinants among the β-lactamase producing 
Enterobacter cloacae 

a  Oxacillin-hydrolyzing-OXA

blaCMH (n = 130) blaACT (n = 126) blaOXA
a (n = 43) blaCTM-M (n = 47) blaSHV (n = 21) blaTEM (n = 90)

IncCOI (n = 48) 0.000 0.000 0.609 1.000 0.000 0.000

IncFII (n = 62) 0.000 0.000 0.037 0.137 0.000 0.012

IncFIB (n = 58) 0.000 0.000 0.146 0.272 0.000 0.041

IncHI2 (n = 65) 0.000 0.000 0.023 0.038 0.000 0.005

IncHI2A (n = 64) 0.000 0.000 0.031 0.053 0.000 0.003

IncR (n = 28) 0.000 0.000 0.006 0.007 0.347 0.000

Table 4  The differences on the distribution of plasmid replicons and resistant determinants among the blaCHβLs -carrying Enterobacter 
cloacae 

CHβLs Carbapenem-hydrolyzing β-lactamase

Plasmid replicons blaKPC (n = 24) blaIMI (n = 17) blaVIM (n = 29) blaNDM (n = 22)

IncCOI (n = 21) 0.736 0.627 0.268 1.000

IncFII (n = 28) 0.652 0.080 1.000 0.451

IncFIB (n = 29) 0.551 0.058 1.000 0.337

IncHI2 (n = 37) 0.085 0.008 0.200 0.036

IncHI2A (n = 37) 0.085 0.008 0.200 0.036
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The higher prevalence of blaTEM and blaSHV among 
blaCHβLs-carriers in our study was in accordance with 
a previous report to some degree, which showed that 
blaCTX-M, blaTEM and blaSHV were mostly detected 
concurrently with blaCHβLs [43]. Albeit no distribution 
difference of blaCTX-M was observed. Notably, the sig-
nificantly higher distribution of blaCMH among non-
CHβLs-producers may indicate that blaCMH may be 
the predominant gene conferring β-lactams among the 
strains without blaCHβLs.

Furthermore, the multiple STs identified in our study 
displayed a genetic diversity of β-lactamase produc-
ing E. cloacae. It seemed that clonal dissemination for 
such strain was rare except for blaVIM-4-carrying ST873 
ones, suggesting that the spread of CREL was mainly 
mediated by mobile elements such as plasmids.

Additionally, variously distinct plasmid replicons 
detected in our study indicate their dissemination poten-
tial for resistant determinants. Noteworthily, the obvi-
ously higher prevalence of IncHI2 and IncHI2A among 
blaCHβLs-carrying strains may suggest association 
between blaCHβLs and IncHI2. It was reported that IncHI2 
widely detected in global CRE genomes, was termed as 
’super-plasmids’ resulting from the large size and prolific 
carriage of resistance determinants [44]. And the consist-
ent distribution of such plasmid and blaKPC and blaVIM 
may indicate a good cost fitness between them.

There were several limitations in this study. First, the 
number of E. cloacae was relatively small which may result 
from the reason that E. cloacae was only little part of E. 
cloacae complex. Second, the resistance profiles of these 
strains were not available for us to compare the differ-
ence between the genotypes and phenotypes. Some of the 
strain information were missing, which was not beneficial 
for us to fully illustrate the characterization of E. cloacae. 
Third, some new enzymes are devoid of further pheno-
typic descriptions because they were directly obtained 
from whole-genome sequencing studies. Anyway, it is 
currently difficult to draw an accurate global picture of 
this bacteria, highlighting the need for more comprehen-
sive genome sequence data and genomic analysis.

In summary, almost all the E. cloacae contained 
β-lactamase encoding gene. Among the global E. cloa-
cae, blaCMH and blaACT​ were main blaAmpC genes. BlaTEM 
and blaCTX-M were the predominant ESBLs. BlaKPC, 
blaVIM and blaNDM were the major CHβLs. Addition-
ally, diversely distinct STs and different replicons were 
identified.
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