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a b s t r a c t

During the past two years, a highly infectious virus known as COVID-19 has been damaging and
harming the health of people all over the world. Simultaneously, the number of patients is rising
in various countries, with many new cases appearing daily, posing a significant challenge to hospital
medical staff. It is necessary to improve the efficiency of virus detection. To this end, we combine
modern technology and visual assistance to detect COVID-19. Based on the above facts, for accurate
and rapid identification of infected persons, the BND-VGG-19 method was proposed. This method
is based on VGG-19 and further incorporates batch normalization and dropout layers between the
layers to improve network accuracy. Then, the COVID-19 dataset including viral pneumonia, COVID-
19, and normal X-ray images, are used to diagnose lung abnormalities and test the performance of
the proposed algorithm. The experimental results show the superiority of BND-VGG-19 with a 95.48%
accuracy rate compared with existing COVID-19 diagnostic methods.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Because of the outbreak of the new coronavirus COVID-19
n the past two years, people’s physical health worldwide has
een seriously affected. As the World Health Organization (WHO)
OVID-19 study [1] officially announced, COVID-19 is a severe
cute respiratory syndrome coronavirus 2 (SARS-CoV-2) that can
ause acute respiratory infections. Medical imaging such as X-
ays and computed tomography (CT) scans are critical in the
lobal effort against COVID-19. Artificial intelligence could im-
rove efficiency by correctly showing infections in X-ray and CT
mages, and computer-aided systems could help doctors make
linical judgments, such as disease diagnosis. However, many
esearch classifications on COVID-19 are specific to binary types,
hich are not rigorous enough for modern medicine. Most of the
raining data of them are supported by a large amount of dataset.
hen a new virus strikes, the problem of lack of data for training

s faced. Dealing with an emerging situation with little data
ollection to analyze, issues such as under-fitting and insufficient
eneralization ability was arising, leading to the risk of inaccurate
dentification. Therefore, this paper proposes a method suitable
or triple classification, which is ideal for few and unbalanced

∗ Corresponding author.
E-mail address: hmomu@sina.com (J. Huang).
ttps://doi.org/10.1016/j.knosys.2022.110040
950-7051/© 2022 Elsevier B.V. All rights reserved.
data. The feature is to add BN (Batch Normalization) and Dropout
layers based on the original VGG-19 and try different parameters
to get the best experimental results and then the best network
structure. In comparative experiments, we add the BN layer and
Dropout layer to the VGG-16 model and try different parameter
variations, and it consistently outperforms the test set on the
training set. At the same time, the experimental results of VGG-
19 without a BN layer or Dropout layer are compared. Finally,
the test data results of all experiments are given and compared.
The experimental results show that, in this case, the BND-VGG-19
method could classify and detect chest X-ray images well.

Our main contributions are presented as follows:

• A classification deep learning algorithm, BND-VGG-19, is
proposed for small and imbalanced datasets.

• The introduced algorithm BND-VGG-19 is to identify X-ray
images for COVID-19.

In detail, this paper presented the computational model and
experiments, organized as follows. Section 2 provides an
overview of general detection measures for COVID-19 and re-
lated research. The proposed network structure is detailed in
Section 3. The associated experiments and data are in Sections

4–5. Section 6 summarizes future research work and conclusions.

https://doi.org/10.1016/j.knosys.2022.110040
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2022.110040&domain=pdf
mailto:hmomu@sina.com
https://doi.org/10.1016/j.knosys.2022.110040
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. Related work

.1. Diagnosis of COVID-19

The latest measure of COVID-19, reverse transcription
olymerase chain reaction (RT-PCR), is to collect a specimen of
eople’s upper respiratory tract, then test by professional labora-
ory equipment. Initially, patients are unaware of being infected,
hich leads to a significant risk of contagion to the surroundings.

n addition, the RT-PCR approach cannot determine the severity of
he disease, since it requires the diagnosis of specialized medical
xperts, which is tricky and time-consuming. X-ray imaging is
simple method that can accurately identify COVID-19-positive
atients and is crucial in determining the severity of respiratory
ssues. Besides, the sensitivity of chest imaging for COVID-19
as officially recognized as an effective screening technique

or diagnosing pneumonia [2]. Ai et al. [3] pointed out that
edical scanning chest pictures can be employed to identify
OVID-19 clinically. Chest X-ray, chest CT and ultrasound were
emonstrated to be applicable in case management and screening
rocedures by examining respiratory preferences for COVID-19.
ost detection techniques are based on X-ray or CT images. X-ray

mages are a priority at this stage because they are well suited for
iagnostic purposes and easy to perform. Chest CT scans are not
s readily available as X-ray images, and they are more expensive
nd harmful than X-ray images from an economic and radiation
ose perspective. Therefore, chest X-ray images are used in this
tudy.

.2. Classification of COVID-19

Li et al. [4] proposed an efficient mining algorithm called
ettree for NMSP Mining (NetNMSP), which has three key steps:
omputing support, generating candidate patterns, and deter-
ining NMSP. NMSP and frequent patterns could be mined in
ARS-CoV-1, SARS-CoV-2, and MERS-CoV to distinguish differ-
nces among viral sequences. Ozturk et al. [5] began with the
arknet-19 model and progressively increased the number of
ilters to 8, 16, and 32. Furthermore, 17 convolutional layers were
dded to the proposed model. Each DN (Darknet) layer starts with
convolutional layer followed by Batch Norm and LeakyReLU
perations, while each 3 Conv layer repeats the same settings
hree times in a sequential manner. Sethy et al. [6] proposed a
eep learning-based technique for detecting coronavirus-infected
ndividuals using X-ray pictures. The support vector machine clas-
ifies X-ray pictures from other coronavirus-affected images using
epth characteristics. That is resnet50 plus the SVM-achieved
ccuracy. Wu et al. [7] introduced the OPP-Miner algorithm to
ine patterns with the same trend (subsequence with the same

elative order). The algorithm has high utility in analyzing the
OVID-19 epidemic by identifying key trends and improving clus-
ering performance. Pereira et al. [8] provided a classification
pproach incorporating multi-class and hierarchical categoriza-
ion. In the model, early and late fusion strategies are investigated
o use numerous texture descriptors and the underlying classifier
imultaneously. For COVID-19 detection, Ashour et al. [9] devel-
ped an ensemble-based BoF classification algorithm. Integration
s offered in this model for the BoF classification stage. The
ethod is evaluated and compared to other categorization sys-

ems for various numbers of visual words. Widodo et al. [10] used
hree architectural layers in their deep learning system (UBNet
3). Initially, an architecture with seven convolutional and three
NN layers (UBNet v1) is built to discriminate between normal
nd pneumonia pictures. Secondly, pictures of bacterial and viral
neumonia are classified using four layers of convolution and
hree layers of ANN (UBNet v2). Finally, UBNet v1 is applied
2

to differentiate images of patients infected with the COVID-19
virus from those images infected with pneumonia virus. Yousri
et al. [11] offered to use the updated cuckoo search optimization
algorithm (CS) that used fractional-order calculus (FO), and four
independent heavy-tailed distributions are recommended instead
of Levy flights. All of these used the Mittag-Leffler distribution,
Corsi distribution, Pareto distribution, and Weibull distribution.
The proposed FO-CS version is validated using 18 UCI datasets
as the first series of studies. Toraman et al. [12] proposed a
unique neural network-based convolutional CapsNet to identify
the COVID-19 virus utilizing chest X-ray images and a capsule
network. Das et al. [13] developed an Inception Net for detect-
ing New Hall pneumonia infection. Their model is shortened at
the point where three Inception modules and one element size
block are kept from the start, and then maximum pooling and
global average pooling layers are cascaded to minimize the output
dimension. Experimentation is used to choose the truncation
points that produced the best categorization results. The work
of Hasan et al. [14] employed preprocessing to reduce the effect
of intensity fluctuations between CT slices. The background of CT
lung images is separated using a histogram threshold, and feature
extraction is performed for each CT lung scanning. The collected
features are classified using a Long Short Term Memory (LSTM)
neural network classifier.

Sun et al. [15] used three convolutional neural networks
(LeNet-5, VGG-16, and ResNet-18) as the basic classification
model for chest X-ray image detection of COVID-19, normal,
and pneumonia. The accuracy and precision of LeNet-5, VGG-
16, and ResNet-18 are improved after optimizing the model’s
hyperparameters using a biogeographic-based philosophy. Apos-
tolopoulos et al. [16] performed only transfer learning on VGG19.
The study by Horry et al. [17] was performed based on VGG-16
and VGG-19 using transfer learning and fine-tuning, respectively.

The abovementioned are some methods of classification of
COVID-19, but most of them are for binary classification. Nev-
ertheless, COVID-19 is three classifications, which shows that
it is insufficient from a medical point of view. At the same
time, the datasets used in these methods are balanced with the
mass of data. However, for an emerging virus, the data at their
disposal was limited. A deficient and imbalanced dataset could
replicate the data models in the face of a new unknown virus.
Therefore, our proposed method concerning three classifications
of COVID-19 used an inherently deficient and imbalanced dataset.

3. Materials & Methods

3.1. BN (Batch Normalization)

Ioffe et al. [18] proposed a new mechanism called Batch Nor-
malization, which reduced the variation in the distribution of
nodes within a deep network, sped up the training of neural
networks, and made it possible to use saturated non-linear by
reducing the dependence of gradients on parameter size or initial
values, in addition to Batch Normalization by preventing the
network from falling into saturated patterns. Firstly, the BN layer
calculates the sample mean and variance and normalizes the
sample data. Then, two parameters γ and β were introduced to
erform the translation and scaling. The network trains, learns,
nd reconstructs the two parameters γ and β through the BN

layer and learns its feature distribution. Therefore, including BN
layers could speed up training, allow the network to be trained
with a higher learning rate, improve the generalization ability
of the network, and allow for shuffling the order of training
samples (so that it is impossible to select the same photo multiple
times for training). Thereby, the accuracy of the network could be
improved.
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Fig. 1. Network structure.

Fig. 2. CVOID-19 dataset (From left to right: COVID-19, viral pneumonia,
Normal).

3.2. Dropout

A Dropout technique was introduced by Srivastava et al. [19].
ropout is a strategy for dealing with over-fitting by mixing
redictions from several different large neural networks at the
est. Because of the slow training speed of the complex network,
t is challenging to mix predictions from separate large neural
etworks to combat over-fitting. During deep learning network
raining, neural network units are randomly and briefly popped
ut of the network with a fixed probability. Dropout is unpre-
ictable training for each mini-batch is a new network and only
emporary for stochastic gradient descent. Time-consuming and
rone to over-fitting is an intractable problem in most networks.
ropout solves the over-fitting problem by changing the previous
etwork to a slimmer one, as shown in Fig. 1 below.

.3. COVID-19 dataset

Pavlova et al. [20] created the dataset using COVID-19 X-ray
maging data from the Italian Society of Medical, Interventional
adiology (SIRM) and the Novel Coronavirus 2019 dataset, in-
luding 43 different studies. This paper uses 219 COVID-19 chest
-ray images, 1341 normal images, and 1345 viral pneumonia
mages. All those are in Portable Network Graphics (PNG) format
ith 1024*1024 pixels, which can be easily converted to the
equired pixels for popular Convolutional Neural Networks (CNN),
s illustrated in Fig. 2. In our experiments, we train a total of
790 chest X-ray images divided into three groups. Meanwhile, as
hown in Table 1, 80% COVID-19 dataset as the training dataset
nd 20% COVID-19 dataset as the validation set for training are

ategorized.

3

Table 1
The arrangements of datasets.
Class COVID-19 Health Pneumonia Total

Train 175 1040 1040 2255
Validation 44 260 260 2132
Total 219 1300 1300 4790

Table 2
VGG-16 Network structure.
NO. Layers Type 0utput

1 2D Convolution_1 of Block_1 3 × 3 64, 224, 224
2 2D Convolution_2 of Block_1 3 × 3 64, 224, 224

Max pool

3 2D Convolution_1 of Block_2 3 × 3 128, 112, 112
4 2D Convolution_2 of Block_2 3 × 3 128, 112, 112

Max pool

5 2D Convolution_1 of Block_3 3 × 3 256, 56, 56
6 2D Convolution_2 of Block_3 3 × 3 256, 56, 56
7 2D Convolution_3 of Block_3 3 × 3 256, 56, 56

Max pool

8 2D Convolution_1 of Block_4 3 × 3 512, 28, 28
9 2D Convolution_2 of Block_4 3 × 3 512, 28, 28
10 2D Convolution_3 of Block_4 3 × 3 512, 28, 28

Max pool

11 2D Convolution_2 of Block_5 3 × 3 512, 14, 14
12 2D Convolution_3 of Block_5 3 × 3 512, 14, 14
13 2D Convolution_4 of Block_5 3 × 3 512, 14, 14

Max pool

14 FC1 Fully connected 4096
15 FC2 Fully connected 4096
16 FC3 Fully connected 1000

Soft max

3.4. VGG

Simonyan and Zisserman [21] devised the VGG deep convo-
lutional neural network model, which got its name from the
acronym of the author’s research group at the University of
Oxford. VGG adopts a deeper network topology and smaller con-
volution kernels to ensure the perceptual field of view. In con-
volutional layers, the number of variables is minimized. Smaller
pooling kernels enable more comprehensive data collection. More
channels can extract more information, VGG has six different
network structures, but each group contains five groups of con-
volutions. Each group uses 3 × 3 convolution kernel size ‘1’ and
‘0’ padding, where each followed by 2 × 2 max pooling with
stride 2, followed by three fully connected layers. The first layer
of the VGG network has 64 channels, and each subsequent layer
is doubled to a maximum of 512 channels. VGG-19 contains
nineteen layers, and VGG-16 contains sixteen layers divided into
a total of five blocks by a max pooling layer. Their structure
diagrams are shown in Tables 2 and 3.

3.5. BND-VGG-19

For an emerging virus, the available data is limited, which
means that the dataset is small and unbalanced. The VGG model
has a relatively deep network structure, a smaller convolution
kernel, and a pooling sampling domain. It can control the number
of parameters while obtain more image features, avoid over-
computation and over-complex structures. According to the
dataset’s characteristics, a BN layer was added to the network.
The problem of increased learning difficulty caused by the dis-
tribution of distinct layers during the training process could
be alleviated. It can speed up the training and convergence of
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Table 3
VGG-19 Network structure.
NO. Layers Type Output

1 2D Convolution_1 of Block_1 3 × 3 64, 224, 224
2 2D Convolution_2 of Block_1 3 × 3 64, 224, 224

Max pool

3 2D Convolution_1 of Block_2 3 × 3 128, 112, 112
4 2D Convolution_2 of Block_2 3 × 3 128, 112, 112

Max pool

5 2D Convolution_1 of Block_3 3 × 3 256, 56, 56
6 2D Convolution_2 of Block_3 3 × 3 256, 56, 56
7 2D Convolution_3 of Block_3 3 × 3 256, 56, 56
8 2D Convolution_4 of Block_3 3 × 3 256, 56, 56

Max pool

9 2D Convolution_1 of Block_4 3 × 3 512, 28, 28
10 2D Convolution_2 of Block_4 3 × 3 512, 28, 28
11 2D Convolution_3 of Block_4 3 × 3 512, 28, 28
12 2D Convolution_4 of Block_4 3 × 3 512, 28, 28

Max pool

13 2D Convolution_1 of Block_5 3 × 3 512, 14, 14
14 2D Convolution_2 of Block_5 3 × 3 512, 14, 14
15 2D Convolution_3 of Block_5 3 × 3 512, 14, 14
16 2D Convolution_4 of Block_5 3 × 3 512, 14, 14

Max pool

17 FC1 Fully connected 4096
18 FC2 Fully connected 4096
19 FC3 Fully connected 1000

Soft max

Table 4
Precision, Recall, based on BND-VGG-19.

Precision Recall

COVID-19 0.83 0.82
Normal 0.95 0.90
Vail pneumonia 0.90 0.91

the network and, further, prevent the gradient from exploding.
Meanwhile, the decay learning rate is configured to improve the
generalization ability of the entire network. Dropout forces a
neural unit to work with other randomly selected neural units to
significant effect. Therefore, the method of adding dropout layers
is applied to remove the joint fitness between neuron nodes,
enhance the generalization ability and reduce over-fitting.

Hence, a BN layer is inserted after each convolution kernel.
dropout layer is added after each module and each fully con-
ected layer. In the VGG-19 network, without calculating the fully
onnected layer, the max-pool layer is used as the dividing line,
nd the remaining sixteen layers of the network are categorized
nto five blocks. Two convolutional layers and one pooling layer
onstitute the first two blocks, while four convolutional layers
nd one pooling layer constitute the last three modules. The
etwork is then adjusted as described above; as shown in Fig. 3,
lock-1 and Block-2 consist of two convolutional layers, two BN
ayers, one pooling layer, and one dropout layer; in Fig. 4, Block-3,
lock-4, and Block-5 each has four convolutional layers, four BN
ayers, one pooling layer, and one dropout layer. Fig. 5 shows the
verall network model of BND-VGG-19.

. Experiments and results

.1. Experiment A

A VGG19 model with a BN-only layer added is used to classify
-ray photographs into three groups: COVID-19, viral pneumonia,
nd normal. When using Relu as the activation function, the

atch size is 32, and the epoch is 40. Train with two GPUs. The

4

Table 5
The accuracy and loss.

BN-only Dropout-only VGG16+BN+Dropout BND-VGG-19

Val accuracy 0.8271 0.4517 0.8110 0.9548
Val loss 0.4455 0.8941 1.4384 0.1888

Fig. 3. Block-1 and Block-2 of BND-VGG-19.

alidation accuracy obtained for the VGG19 model with a BN-only
ayer added is 0.82, and its validation loss is 0.44. The results are
isted in Table 5.

.2. Experiment B

A VGG-19 model with a Dropout-only layer added is used
o classify X-rays into three groups: COVID-19, viral pneumonia,
nd normal. When using Relu as an activation function, Dropout
0.1, Batch Size is 32, and epoch is 45. Train with two GPUs.

he validation accuracy obtained for the VGG-19 model with a
ropout-only layer added is 0.40, and its validation loss is 0.89.
he results are listed in Table 5.

.3. Experiment C

The VGG-16 model with added BN layer and Dropout layer
s used to classify X-ray photos into COVID-19, viral pneumonia,
nd normal. When using Relu as an activation function, Dropout
s 0.1, Batch Size is 32, and epoch is 40. The validation accuracy
btained for the VGG-16 model with added BN layer and Dropout
ayer is 0.81, and its validation loss is 1.43. The results are listed
n Table 5.

.4. Experiment D

The BND-VGG-19 model is used to classify chest X-ray images
nto three groups: COVID-19, viral pneumonia, and normal. Relu
s used as the activation function in the training process. The
ropout is 0.1, the learning rate is set to update dynamically, the
atch Size is 32, and the epoch is 40. It takes two GPUs to train
n total. The validation accuracy obtained by BND-VGG-19 is 0.95,
nd the validation loss is 0.18, in Table 5. The results of training
he curve of accuracy and loss values are shown in Fig. 6. The
recision and recall are displayed in Table 4.

. Evaluation & Discuss

.1. Evaluation

In the evaluation, the accuracy value (ACC), precision value,
nd recall rate are provided, and their formulas are given. TP
eans that the positive class is predicted to be positive, TN means

hat the negative class is predicted to be negative, FP means that
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Fig. 4. Block-3, Block-4 and Block-5 of BND-VGG-19.
Fig. 5. BND-VGG-19.
Fig. 6. The accuracy and loss of BND-VGG-19.
he negative class is predicted to be positive, and FN means that
he positive class is predicted to be a negative class.

CC =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Then we compare the results of this work with other existing
methods. Table 6 compares the experimental results of all three
classes of networks using VGG as the base model. In Table 7,
the results of different algorithms for triple classification are
presented.
5

5.2. Discuss

Few studies conducted prior to this study using imbalanced
datasets. In general, when modeling imbalanced data, the model
may fail to generalize, or the model may be biased towards
classes with a large number of data. Therefore, in this study, the
dataset situation when people face an unknown virus for the first
time is restored. In the comparison test, it shows that adding
the BN layer and the Dropout layer dramatically improves the
accuracy, and it is desirable to use a deeper VGG-19. However,
the proposed BND-VGG-19 also has limitations. From the experi-
mental results, the category performance of COVID-19 is inferior
to the other two categories’ performance. Thus the generalization
ability of the algorithm still has spaces for improving.
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Table 6
Compare the proposed COVID-19 diagnostic method with other methods.
NO. Study Type of images Number of cases Method used Accuracy (%)

1 Wang et al. [22] X-ray 53 COVID-19 COVID-Net 92.40
5526 Pneumonia
8066 Healthy

2 Xu et al. [23] CT 219 COVID-19 ResNet + Location 86.07
224 Pneumonia Attention
758 Normal

3 El Asnaoui & Chawki X-ray & CT 1493 COVID-19 Inception_Resnet_V2 92.18
[24] 2780 Pneumonia DensNet201 88.09

1538 Normal Resnet50 87.54
Mobilent_V2 85.47
Inception_V3 88.03
VGG-16 74.84

4 Ozturk et al. [25] X-ray 125 COVID-19 DarkCovidNet 87.02
500 Pneumonia
500 Normal

5 Perumal et al. [26] X-ray & CT 2538 COVID-19 Haralick+ 93.80
1345 Pneumonia VGG16, Resnet50 89.20
1349 Normal Inception V3 82.40

6 Elzeki et al. [27] X-ray 2210 COVID-19 CXRVN 93.07
2340 Pneumonia
1480 Normal

7 MAHMUD et al. [28] X-ray 305 COVID-19 CovXNet 89.6
305 Pneumonia
305 Normal

8 Yang N et al. [29] X-ray COVID-19 GLCM + SVM 85.95
Pneumonia GLRLM + SVM 83.80
Normal NGLDM + SVM 80.65

GLZLM + SVM 79.25
Histogram + SVM 81.65

9 Pham, Tuan D [30] X-ray COVID-19 Data augmentation 74.50 ± 4.40
Pneumonia + AlexNet
Normal Data augmentation 78.97 ± 3.70

+ GoogleNet
Data augmentation 78.52 ± 7.56
+ SquzzezNet
Data augmentation 86.13 ± 10.16
+ ShuffleNet
Data augmentation 83.45 ± 7.36
+ NasNet-Mobile
Data augmentation 85.23 ± 8.25
+ NasNet-Large

10 Song et al. [31] CT 777 COVID-19 ARENET 93.00
505 Pneumonia
708 Normal

11 Toraman et al. [32] X-ray COVID-19 CapsNet 84.22
Pneumonia
Normal

12 Pham [33] X-ray 438 COVID-19 AlexNet+Dl 96.46
438 Pneumonia GoogleNet+Dl 96.20
438 Normal SqueezeNet+DL 96.25

13 Dalia Yousri et al. [11] X-ray 134 COVID-19 FO-CS(ml) 84.67
500 Pneumonia
500 Normal

14 Proposed Study X-ray 219 COVID-19 BND-VGG-19 95.48
1300 Pneumonia
1300 Normal
6. Conclusion and future work

As of today, the COVID-19 virus continues spreading, the num-
er of infections is rising, and hospital workloads has spaces for
mproving, and experts worldwide are still working together to
ollect data and study possible treatment options. One of the
ost urgent during this global pandemic is the detection of sus-
ected cases requires further hospital testing to confirm infection.
o break through this bottleneck, doctors are stepping up the
evelopment of diagnostic tests that are not yet routinely used.
herefore, this paper proposed a deep learning convolutional
eural network for detection and identification based on chest
6

X-rays to determine whether the infection is COVID-19, viral
pneumonia, or normal.

In this paper, the BND-VGG-19 method was used to mea-
sure chest X-ray images, which belongs to the three-category
method. The experiment used two GPUs and took only forty
minutes to train for 40 epochs. Compared with other algorithms,
the network’s complexity and time calculation cost are efficient.
The experimental results showed that using the BND-VGG-19
method, and the accuracy rate reaches 95.48%. The experimental
result of BND-VGG-16 is only 81.10%. In future experiments,
we shall consider the dynamic balance between accuracy max-
imization and the number of network layers when deepening
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Table 7
Comparison of this method with other methods containing VGG-19 (3-Class).
NO. Study Type of images Number of cases Method used Accuracy (%)

1 Apostolopoulos X-ray 224 COVID-19 Transfer learning 93.48
& Mpesiana [16] 700 Pneumonia + VGG-19

504 Normal

2 Fayemiwo et al. [34] X-ray 1300 COVID-19 DTL + VGG-19 92.92
1300 Pneumonia
1300 Normal

4 Sitaula et al. [35] X-ray COVID-19 MBoDVW + VGG-16 84.37
Pneumonia
Normal

5 Horry et al. [17] X-ray 130 COVID-19 VGG-19 87.00
140 Pneumonia
400 Normal

6 Rahaman et al. [36] X-ray 260 COVID-19 Transfer learning 89.30
300 Pneumonia + VGG-19
300 Normal

7 El Asnaoui K & Chawki Y [24] X-ray & CT 1493 COVID-19 VGG-19 72.52
2780 Pneumonia
1538 Normal

8 Pham, Tuan D [30] X-ray COVID-19 Data augmentation 83.22 ± 5.85
Pneumonia VGG-19
Normal

9 Proposed Study X-ray 219 COVID-19 BND-VGG-19 95.48
1300 Pneumonia
1300 Normal
the number of network layers. In addition, there is still room
for improving accuracy, such as further optimization to improve
the study’s accuracy when encountering larger datasets. Future
research will use chest CT scans to construct more sensitive
diagnostic modalities. While obtaining many professional medical
photos, the method can also be used to detect other diseases,
thereby improving the recognition efficiency as early as possible
and reducing the workload of doctors.
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