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Abstract

We aimed to develop a novel deep-learning based method for automatic coronary artery calcium 

(CAC) quantification in low-dose ungated computed tomography attenuation correction maps 

(CTAC). In this study, we used convolutional long-short -term memory deep neural network 

(conv-LSTM) to automatically derive coronary artery calcium score (CAC) from both standard 

CAC scans and low-dose ungated scans (CT-attenuation correction maps). We trained convLSTM 

to segment CAC using 9543 scans. A U-Net model was trained as a reference method. Both 

models were validated in the OrCaCs dataset (n=32) and in the held-out cohort (n=507) without 

prior coronary interventions who had CTAC standard CAC scan acquired contemporarily. Cohen’s 

kappa coefficients and concordance matrices were used to assess agreement in four CAC score 

categories (very low: <10, low:10–100; moderate:101–400 and high >400). The median time to 

derive results on a central processing unit (CPU) was significantly shorter for the conv-LSTM 

model- 6.18s (inter quartile range [IQR]: 5.99, 6.3) than for UNet (10.1s, IQR: 9.82, 15.9s, 

p<0.0001). The memory consumption during training was much lower for our model (13.11Gb) 

in comparison with UNet (22.31 Gb). Conv-LSTM performed comparably to UNet in terms 

of agreement with expert annotations, but with significantly shorter inference times and lower 

memory consumption
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1. INTRODUCTION

Positron emission tomography (PET) is well established in diagnostic evaluation known and 

suspected coronary artery disease[1]. Studies have shown that the information on coronary 

artery calcification severity (CAC) predicts major adverse cardiac events independently 

from perfusion deficits and therefore, can improve risk stratification in comparison with 

PET alone. The common practice of CT attenuation correction (CTAC) provides technical 

possibility for contemporary coronary Calcium Score (CAC) assessment in patients 

undergoing PET study with acceptable agreement with standard CAC scores[2] without 

the need for a dedicated CAC scan, but at a cost of more difficult and time-consuming 

manual quantification. Several methods allowing for fully automatic CAC scoring in low 

dose chest CT[3], including CTAC maps [4] have been developed. We aimed to evaluate the 

performance of a convolutional long-short memory deep neural network (convLSTM) in 

CAC score quantification from CTAC maps, an architecture that was not previously used in 

such application.

2. METHODS

Our method involved the use of two conv-LSTM models, the first of which was trained to 

segment calcium, while the second model was trained to segment the heart silhouette. The 

combination of two models allowed us to reduce the model overcalling that was frequently 

caused by bone structures. The same two-stage approach was used with the reference UNet 

model with 3 adjacent slices for fair comparison, that has been successfully used in this 

application by several research teams[3,5,6].

Proposed architecture (Figure 1) is based on a modified version of hierarchical multi-scale 

attention[7] for semantic segmentation. The temporal information from 3 adjacent slices is 

aggregated in form of an attention map and fed along with the spatial information from the 

main segmentation block. The network was built using the PyTorch library[12].

Training data

the data originated from three centers (The University of Calgary, Calgary, Canada; Yale 

University, New Heaven, CT, USA and Saint Luke Hospital, Kansas City, MO, USA) 

participating in the multi-center REgistry of Fast Myocardial Perfusion Imaging with 

NExt generation SPECT (REFINE SPECT) [8] that included both standard ECG-gated 

non-contrast scans (n=1827) and ungated CT attenuation correction maps (n=7716).

All the training cases have been annotated on-site by two readers the with at least 5 years of 

experience in CAC scoring. A train-validation-internal testing spilt of 80: 10: 10 was used 

with equal number of cases from each CAC category in the internal validation and testing 

sets. The heart segmentation models were trained on a separate dataset with 419 ungated 

chest CT with expert annotated heart masks.

Preprocessing involved min-max thresholding between −800 Hounsfield Units (HU) and 

1200 HU. The final output was a 3 class segmentation mask (Background, Coronary 

Calcium, Non Coronary Calcium). To counter the large class imbalance, we used subset 
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sampling of the majority class as well as focal loss[9] as cost function between the ground 

truth expert reader annotation and network generated mask.

Training was performed with the Adam optimizer[10] and Kaiming He initialization[11]. The 

learning rate started at 10−3 and was dynamically reduced as the validation loss plateaued. 

Early stopping was utilized to reduce any form of overfitting. We used the internal testing set 

(10% of the training data) to optimize the model’s hyperparameters.

Testing data

Data was evaluated on a held-out cohort of 507 consecutive patients that underwent 

PET scans with CT attenuation correction in 2018 in Cedars-Sinai Medical Center, Los 

Angeles, USA. The inclusion criterion was availability of contemporarily performed ECG-

gated CAC scan with expert readers annotation. The exclusion criteria were history of 

percutaneous coronary intervention (PCI) or coronary artery bypass grafting. Additionally, 

the models were evaluated on a publicly available dataset with dedicated CAC scans 

(OrCaSc challenge[13], n=32).

Linearly weighted Cohen’s kappa coefficients, concordance indices and concordance 

matrices were used to assess agreement between expert readers annotations and model’s 

predictions in four CAC score categories (CAC=0, very low: CAC 1–100; moderate: 

CAC 101–400 and high: CAC >400). Z-test was used to assess the statistical significance 

of differences in Kappa values. Time to of inference was assessed on 1024 samples,16 

slices each and the medians were compared using Wilcoxon rank-sum test. P-values <0.05 

considered as statistically significant.

3. RESULTS

The median time to derive results on a central processing unit (CPU) was significantly 

shorter for the conv-LSTM model- 6.18s (inter quartile range [IQR]: 5.99, 6.3) than 

for UNet (10.1s, IQR: 9.82, 15.9s, p<0.0001). The time to derive results on a graphics 

processing unit (GPU; NVIDIA RTX 2080 Ti) was also shorter for convLSTM 111.23 

milliseconds (IQR 110.8, 111.7) vs. 113.6 milliseconds (IQR 113.5,113.5) for UNet. 

The preprocessing took 2.24s on average regardless of the used model. The memory 

consumption during training was much lower for our model (13.11Gb) in comparison with 

UNet (22.31 Gb).

The agreement did not differ significantly between two evaluated approaches (Figure 2). 

Linearly weighted Kappa values were comparable between convLSTM and UNet. For 

the agreement on standard CAC scans the Cohen’s Kappa of our model was 0.84 (95% 

Confidence Interval [CI]: 0.81, 0.88 while UNet achieved Kappa of 0.86 (95% CI: 0.83, 

0.89, p=0.47). For the CTAC scans, the Cohen’s Kappa for convLSTM was 0.64 (95% CI: 

0.64, 0.72) while for UNet it was 0.67 (95% CI: 0.62.0.71, p=0.61). The agreement on 

publicly available OrCaCs dataset (n=32) yielded higher Kappa values for our model - 0.89 

(95% CI 0.79 0.99) in comparison with UNet (0.77, 95% CI 0.64, 0.90) but the difference 

was not statistically significant at p=0.31)
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4. NEW OR BREAKTHROUGH WORK PRESENTED

We worked on imitating radiologist approach of aggregating information from adjacent 

slices and creating an attention network in a hierarchical format. This approach is designed 

to avoid overfitting, due to the reduced number of internal weights. As a result, the 

model trains and infers faster with much lower memory consumption. The application of 

convolutional LSTM to CAC scoring has not been previously described.

5. CONCLUSIONS

We have developed a novel architecture for calcium scoring and evaluated the agreement 

with expert readers annotations in both gated and ungated cardiac CT scans, as well as in a 

publicly available OrCaCs dataset. The main advantage of this approach is the significantly 

reduced memory consumption for training and almost 2x faster inference times on CPU. 

This is crucial for the deployment of calcium scoring software on clinical workstations, that 

may not always be equipped with a high-end GPU. The agreement between our model’s 

predicted CAC scores and expert annotations was not significantly different from that of 

UNet.

6. INFORMATION ON OTHER SUBMISSIONS

We are currently working on evaluation of prognostic values of DL-CAC scores in CTAC 

scans in the population of patients undergoing PET scan. This work will share the common 

architecture and will include the Figure 1 from the current abstract as a supplementary 

material.
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Figure 1. Architecture of the convolutional long-short term deep neural network.
Our solution consists of two networks, first of which (A) was trained for segmentation of 

the heart silhouette while the second network (B) was trained to segment the coronary artery 

calcium using expert annotations. The heart mask was applied to the final CAC prediction to 

reduce spurious bone overcalling.
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Figure 2. Agreement between deep learning models predictions and expert readers in four 
calcium score classes for convLSTM and Unet.
First column – agreement between expert annotated CAC scans and DL scores obtained 

from the CAC scans.

Second column – agreement between expert annotated CAC scans and DL prediction 

on contemporarily acquired CTAC maps CAC – coronary artery calcium, CTAC – CT 

attenuation correction, DL – deep learning
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Figure 3. Agreement between expert annotations and DL predictions on the OrCaCs dataset.
CAC – coronary artery calcium, CTAC – CT attenuation correction, DL – deep learning
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