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Abstract

This paper studies a general framework for high-order tensor SVD. We propose a new

computationally efficient algorithm, tensor-train orthogonal iteration (TTOI), that aims to estimate

the low tensor-train rank structure from the noisy high-order tensor observation. The proposed

TTOI consists of initialization via TT-SVD [1] and new iterative backward/forward updates. We

develop the general upper bound on estimation error for TTOI with the support of several new

representation lemmas on tensor matricizations. By developing a matching information-theoretic

lower bound, we also prove that TTOI achieves the minimax optimality under the spiked tensor

model. The merits of the proposed TTOI are illustrated through applications to estimation and

dimension reduction of high-order Markov processes, numerical studies, and a real data example

on New York City taxi travel records. The software of the proposed algorithm is available online

(https://github.com/Lili-Zheng-stat/TTOI).
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I. Introduction

Tensors, or high-order arrays, have attracted increasing attention in modern machine

learning, computational mathematics, statistics, and data science. Some specific examples

include recommender systems [2], [3], neuroimaging analysis [4], [5], latent variable

learning [6], multidimensional convolution [7], signal processing [8], neural network [9],

[10], computational imaging [11], [12], contingency table [13], [14]. In addition to low-order

tensors (e.g., tensor with a relatively small value of order number), the high-order tensors

also commonly arise in applications in statistics and machine learning. For example, in

convolutional neural networks, parameters in fully connected layers can be represented as

high-order tensors [15], [16]. In an order-d Markov process, where the future states depend

on jointly the current and (d − 1) previous states, the transition probabilities form an order-(d
+ 1) tensor. For an order-d Markov decision process, the transition probabilities can be

represented by an order-(2d + 1) tensor, with additional d directions representing past d
actions. High-order tensors are also used to represent the joint probability in Markov random

fields [17].

Compared to the low-order tensors, high-order tensors encompass much more parameters

and sophisticated structure, while leading to inhibitive cost in storage, processing, and

analysis: an order-d dimension-p tensor contains pd parameters. To address this issue,

some low-dimensional parametrization is usually considered to capture the most informative

subspaces in the tensor. In particular, the tensor-train (TT) decomposition [18], [19], [20],

[1], [21] introduced a classic low-dimensional parameterization to model the subspaces and

latent cores in high-order tensor structures. TT decomposition has been used in a wide

range of applications in physics and quantum computation [22], [18], [21], [23], [24], signal

processing [8], and supervised learning [25] among many others. For example, the TT

decomposition framework is utilized in quantum information science for modeling complex

quantum states and handling the quantum mean value problem [22], [18], [21], [23]. The

TT-decomposition of a tensor X ∈ ℝp1 × ⋯ × pd is defined as below:

Xi1, ⋯, id = G1, i1, : G2, : , i2, : ⋯Gd − 1, : , id − 1, : Gd, id, :
⊤ = ∑

α1 = 1

r1

⋯ ∑
αd − 1 = 1

rd − 1
G1, i1, α1 G2, α1, i2, α2 ⋯Gd − 1, αd − 2, id − 1, αd − 1 Gd, id, αd − 1 .

(1)

Here, the smallest values of r1, …, rd−1 that enable the decomposition (1) are called the

TT-rank of X. [1] shows that the TT-rank rk = rank [X]k , i.e., the rank of the kth sequential

unfolding of X (see formal definition of sequential unfolding in Section II-A). G1 ∈ ℝp1 × r1,

Gk ∈ ℝrk − 1 × pk × rk, Gd ∈ ℝpd × rd − 1 are the TT-cores that multiply sequentially like a

“train”: Xi1, ⋯, id equals the product of i1th vector in G1, i2th matrix in G2, …, id − 1 matrix in

Gd − 1, and idth vector in Gd. For convenience of presentation, we simplify (1) to

X = 〚 G1, G2, …, Gd − 1, Gd 〛
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and denote r0 = rd = 1 throughout the paper. In particular, the TT rank and TT decomposition

reduce to the regular matrix rank and decomposition when d = 2. If all dimensions p and

ranks r are the same, the TT-parametrization involves O(2pr + (d − 2)pr2) values, which can

be significantly smaller than the ones for Tucker-decomposition O(rd + dpr) and the regular

parameterization O(pd).

In most of the existing literature, the TT-decomposition was considered under the

deterministic settings, and the central goal was often to approximate the nonrandom

high-order tensors by low-dimensional structures [26], [27], [1]. However, in modern

applications in data science such as Markov processes, Markov decision processes, and

Markov random fields, the (transition) probability tensor computed based on data is often

a random realization of the underlying true tensor. In these cases, the estimation of the

underlying low-dimensional parameters hidden in the noisy observations can be more

important: an accurate estimation of the transition tensor renders reliable prediction for

future states in high-order Markov chains and better decision-making in high-order Markov

decision processes; an accurate estimation of probability tensor sheds light on the underlying

relationship among different variables in a random system [17]. To achieve such a goal, it

is crucial to develop dimension reduction methods that can incorporate TT-decomposition

into probabilistic models. Since singular value decomposition (SVD) is one of the most

important dimension reduction methods involving probabilistic models for matrices, and

there is no counterpart of it for high-order tensors, we aim to fill this void by developing a

statistical framework and a computationally feasible method for high-order tensor SVD in

this paper.

A. Problem Formulation

This paper focuses on the following high-order tensor SVD model. Suppose we observe an

order-d tensor Y that contains a hidden tensor-train (TT) low-rank structure:

Y = X + Z,      Y, X, Z ∈ ℝ ⊗k = 1
d pk . (2)

Here, X is TT-decomposable as (1) and Z is a noise tensor. Our goal is to estimate X
and the TT cores of X based on Y. To this end, a straightforward idea is to minimize the

approximation error as follows,

X = arg min
A is decomposable as (1) 

Y − A
F

2 . (3)

However, the approximation error minimization (3) is highly non-convex and finding the

global optimal solution, even if the rank r1 = ⋯ = rd−1 = 1, is NP-hard in general [28].

Instead, a variety of computationally feasible methods have been proposed to approximate

the best tensor-train low-rank decomposition in the literature. TT-SVD, a sequential singular

value thresholding scheme, was introduced by [1] to be discussed in detail later. [1] also

proposed TT-rounding via sequential QR decompositions, which reduces the TT-rank while

ensuring approximation accuracy. [29] introduced the alternating minimal energy algorithm

to reconstruct a TT-low-rank tensor approximately based on only a small proportion of

revealed entries of the target tensor. [30, Section L.2] proposed a sketching-based algorithm
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for fast low TT rank approximation of arbitrary tensors. [26] studied the tensor-train

decomposition for functional tensors. [31] proposed the FastTT algorithm for fast sparse

tensor decomposition based on parallel vector rounding and TT-rounding. [32] studied

dynamical approximation with TT format for time-dependent tensors. [33] proposed the

alternating least squares for tensor completion in the TT format. [34] studied the completion

of low TT rank tensor and the applications to color image and video recovery. [35] studied

the Riemannian optimization methods for TT decomposition and completion. Also see

[36] for a TT decomposition library in TensorFlow. To our best knowledge, the estimation

performance of most procedures here remains unclear. Departing from these existing work,

in this paper, we make a first attempt to minimize the estimation error of X in addition to

achieving the minimal approximation error under possibly random settings.

B. Our Contributions

Under Model (2), we make the following contributions to high-order tensor SVD in this

paper.

First, we propose a new algorithm, Tensor-Train Orthogonal Iteration (TTOI), that

provides a computationally efficient estimation of the low-rank TT structure from the

noisy observation. The proposed algorithm includes two major steps. First, we obtain

initial estimates G1
(0), G2

(0), …, Gd − 1
(0) , Gd by performing forward sequential SVD based on

matricizations and projections. This step was known as TT-SVD in the literature [1]. Next,

we utilize the initialization and perform the newly developed backward updates and forward
updates alternatively and iteratively. The TTOI procedure will be discussed in detail in

Section II.

To see why the TTOI iterations yield better estimation than the classic TT-SVD method,

recall that TT-SVD first performs singular value thresholding on Y 1, i.e., the unfolding of

Y, without any additional updates (see detailed procedure of TT-SVD and formal definition

of Y 1 in Section II-A), which can be inaccurate since Y 1, a p1 − by − ∏k = 2
d pk matrix,

has a great number of columns. In contrast, TTOI iteration utilizes the intermediate outcome

of the previous iteration to substantially reduce the dimension of Y 1 while performing

singular value thresholding. In Figure 1, we provide a simple simulation example to show

that even one TTOI iteration can significantly improve the estimation of the left singular

subspace of G1 (left panel) and the overall tensor X (right panel). Therefore, a one-step

TTOI, i.e., the initialization with one TTOI iteration, can be used in practice when the

computational cost is a concern.

We develop theoretical guarantees for TTOI. In particular, we introduce a series of

representation lemmas for tensor matricizations with TT format. Based on them, we develop

a deterministic upper bound of estimation error for both forward and backward updates in

TTOI iterations. Under the benchmark setting of spiked tensor model, we develop matching

upper/lower bounds and prove that the proposed TTOI algorithm achieves the minimax

optimal rate of estimation error. To the best of our knowledge, this is the first statistical

optimality results for high-order tensors with TT format. We also prove for any high-order
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tensor, TTOI iteration has monotone decreasing approximation error with respect to the

iteration index.

Moreover, to break the curse of dimensionality in high-order Markov processes, we study

the state aggregatable high-order Markov processes and establish a key connection to TT

decomposable tensors. We propose a TTOI estimator for the transition probability tensor

in high-order state-aggregatable Markov processes and establish the theoretical guarantee.

We conduct simulation experiments to demonstrate the performance of TTOI and validate

our theoretical findings. We also apply our method to analyze a New York taxi dataset. By

modeling taxi trips as trajectories realized from a citywide Markov chain, we found that the

Manhattan traffic zone exhibits high-order Markovian dependence and the proposed TTOI

reveals latent traffic patterns and meaningful partition of Manhattan traffic zones. Finally, we

discuss several applications that our proposed algorithm is applicable to, including transition

probability tensor estimation in high-order Markov decision processes and joint probability

tensor estimation in Markov random fields.

C. Related Literature

In addition to the aforementioned literature on TT decomposition, our work is also related

to a substantial body of work on matrix/tensor decomposition and SVD, spiked tensor

model, etc. These literature are from a range of communities including applied mathematics,

information theory, machine learning, scientific computing, signal processing, and statistics.

Here we try to review existing literature in these communities without claiming this

literature survey is exhaustive.

First, the matrix singular value thresholding was commonly used and extensively studied

in various problems in data science, including matrix denoising [37], [38], [39], matrix

completion [40], [41], [42], [43], principal component analysis (PCA) [44], Markov

chain state aggregation [45]. Such the task was also widely considered for tensors of

order-3 or higher. In particular, to perform SVD and decomposition for tensors with

Tucker low-rank structures, [46], [47] introduced the higher-order SVD (HOSVD) and

higher-order orthogonal iteration (HOOI). [48] established the statistical and computational

limits of tensor SVD, compared the theoretical properties of HOSVD and HOOI, and

proved that HOOI achieves both statistical and computational optimality. [49] introduced

the sequentially truncated higher-order singular value decomposition (ST-HOSVD). [50]

introduced a thresholding & projection based algorithm for sparse tensor SVD. A non-

exhaustive list of methods for SVD and decomposition for tensors with CP low-rank

structures include alternating least squares [51], [52], eigendecomposition-based approach

[53], enhanced line search [54], power iteration with SVD-based initialization [6],

simultaneous diagonalization and higher-order SVD [55].

In addition, the spiked tensor model and tensor principal component analysis (tensor PCA)

are widely discussed in the literature. [56], [57], [58], [59], [60], [61] considered the

statistical and computational limits of rank-1 spiked tensor model. [62] studied the statistical

and computational phase transitions and theoretical properties of the approximate message

passing algorithm (AMP) under a Bayesian spiked tensor model. [63], [64] developed the
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regularization-based methods for tensor PCA. [65], [66], [67], [68] studied the robust tensor

PCA to handle the possible outliers from the tensor observation.

Different from Tucker and CP decompositions, which have been a pinpoint in the enormous

existing literature on tensors, we focus on the TT-structure associated with high-order

tensors for the following reasons: (1) Tucker and CP decompositions do not involve the

sequential structure of different modes, i.e., the Tucker and CP decompositions still hold

if the d modes are arbitrarily permuted. While in applications such as high-order Markov

process, high-order Markov decision process, and fully connected layers of deep neural

networks, the order of different modes can be crucial; (2) the number of entries involved in

the low-Tucker-rank parameterization grows exponentially with respect to the order d (rd);

(3) methods that explore CP low-rank structure can be numerically unstable for high-order

tensors in computation as pointed out by [27]. In comparison, the TT-structure incorporates

the order of different modes sequentially and involves much fewer parameters for high-order

tensors, which renders it more suitable in many scenarios.

In Section V, we will further discuss the application of TTOI on high-order Markov

processes and state aggregation. This problem is related to a body of literature on dimension

reduction and state aggregation for Markov processes that we will discuss in Section V.

D. Organization

The rest of the article is organized as follows. In Section II, after a brief introduction of

the notation and preliminaries, we introduce the procedure of the tensor-train orthogonal

iteration. The theoretical results, including three representation lemmas, a general estimation

error bound, and the minimax optimal upper and lower bounds under the spiked tensor

model, are provided in Sections III and IV. The application to high-order Markov chains

is discussed in Section V. The simulation and real data analysis are provided in Sections

VI-A and VI-B, respectively. Discussions and further applications to Markov random fields

and high-order Markov decision processes are briefly discussed in Section VII. All technical

proofs are provided in Section A.

II. Procedure of Tensor-Train Orthogonal Iteration

A. Notation and Preliminaries

We first introduce the notation and preliminaries to be used throughout the paper. We

use the lowercase letters, e.g., x, y, z, to denote scalars or vectors. We use C, c,

C0, c0, … to denote generic constants, whose actual values may change from line to

line. A random variable z is σ-sub-Gaussian if Eet(z − Ez) ≤ eσ2t2/2 for any t ∈ ℝ. We

say a ≲ b or a = O(b) if a ≲ Cb for some uniform constant C > 0. We write

a = O(b) if a = O(b logC′(b)) for constant C′ > 0. The capital letters, e.g., X, Y,

Z, are used to denote matrices. Specifically, Op, r ≔ U ∈ ℝp × r:U⊤U = Ir  is the set

of all p-by-r matrices with orthogonal columns. For U ∈ Op, r, let U⊥ ∈ Op, p − r be the

orthonormal complement of U, and let PU = UU⊤ denote the projection matrix onto

the column space of U. For any matrix A ∈ ℝp1 × p2, let A = ∑i = 1
p1 ∧ p2siuivi⊤ be the
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singular value decomposition, where s1(A) ≥ ⋯ ≥ sp1 ∧ p2(A) ≥ 0 are the singular values

of A in non-increasing order. Define smin(A) = sp1 ∧ p2(A), SVDr
L(A) = u1…ur ∈ Op1, r,

and SVDr
R(A) = v1…vr ∈ Op2, r be the smallest non-trivial singular value, leading r left

singular vectors, and leading r right singular vectors of A, respectively. We also write

SVDL(A) = SVDp1 ∧ p2
L (A) and SVDR(A) = SVDp1 ∧ p2

L (A) as the collection of all left and

right singular vectors of A, respectively. Define the Frobenius and spectral norms of A

as A F = ∑i = 1
p1 ∑j = 1

p2 Aij
2 = ∑i = 1

p1 ∧ p2si2(A) and A = s1(A) = maxx ∈ ℝp2 Ax 2/ x 2. For

any two matrices U ∈ ℝm1 × n1 and V ∈ ℝm2 × n2, let

U ⊗ V =

U11 ⋅ V … U1n1 ⋅ V

⋮ ⋮
Um11 ⋅ V … Um1n1 ⋅ V

∈ ℝ m1m2 × n1n2

be their Kronecker product. To quantify the distance among subspaces, we

define the principle angles between U, U ∈ Op, r as an r-by-r diagonal matrix:

Θ(U, U) = diag arccos s1 , …, arccos sr , where s1 ≥ ⋯ ≥ sr ≥ 0 are the singular values of

U⊤U. Define the sinΘ norm as

sinΘ(U, U)
= diag sin arccos s1 , …, sin arccos sr = 1 − sr2 .

The boldface calligraphic letters, e.g., X, Y, Z, are used to denote tensors. For an order-d

tensor1 X ∈ ℝ ⊗i = 1
d pi and 1 ≤ k ≤ d − 1, we define X k ∈ ℝ p1 × ⋯ × pk × pk + 1⋯pd  as the

sequential unfolding of X with rows enumerating all indices in Modes 1, …, k and columns

enumerating all indices in Modes (k + 1), ⋯, d, respectively. That is, for any 1 ≤ k ≤ d and 1

≤ ik ≤ pk,

[X]k ξ1 i1, …, id; k , ξ2 i1, …, id; k = Xi1…id,

where ξ1(i1, …, id; k) = (ik − 1)p1 ⋯ pk−1 + (ik−1 − 1)p1 ⋯ pk−2 + ⋯ + i1
and ξ2(i1, …, id; k) = (id − 1)pk+1 ⋯ pd−1 + (id−1 − 1)pk+1 ⋯ pd−2 + ⋯ + ik+1.

Following the convention of reshape function in MATLAB, we define the reshape of

any matrix X of dimension p1 ⋯ pk × pk+1 ⋯ pd as an inverse operation of tensor

matricization: X = Reshape X, p1, p2, …, pd  if X = X k. For any two matrices A ∈ ℝq1 × q2q3

and A ∈ ℝq1q2 × q3, we denote A = Reshape A, q1q2, q3  and A = Reshape A, q1, q2q3  if and only

if

A i2 − 1 p1 + i1, i3 = Ai1, i3 − 1 p2 + i2,      ∀1 ≤ ij ≤ qj, j = 1, 2, 3.
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We also define the tensor Frobenius norm of X as X F
2 = ∑i1 = 1

p1 ⋯∑id = 1
pd Xi1, …, id

2 . For

any matrix A ∈ ℝp1 × p2 and any tensor B ∈ ℝp1 × ⋯ × pd, let vec(A) and vec(B) be the

vectorization of A and B, respectively. Formally, for any 1 ≤ k ≤ d and 1 ≤ ik ≤ pk,

vec(B) id − 1 p1⋯pd − 1 + id − 1 − 1 p1⋯pd − 2 + ⋯ + i1 = Bi1, …, id .

B. Procedure of Tensor-Train Orthogonal Iteration

We are now in position to introduce the procedure of Tensor-Train Orthogonal Iteration

(TTOI). The pseudocode of the overall procedure is given in Algorithm 1. TTOI includes

three main parts: we first run initialization, then perform backward update and forward
update alternatively and iteratively.

• Part 1: Initialization. First, we obtain an initial estimate of TT-cores

G1, G2, …, Gd − 1, Gd. This step is the tensor-train-singular value decomposition

(TT-SVD) originally introduced by [1].

i. Let R1
(0) be the unfolding of Y along Mode 1. We compute the top-r1

SVD of R1
(0). Let U1

(0) ∈ Op1, r1 be the first r1 left singular vectors of R1
(0)

and calculate R1
(0) = U1

(0) ⊤
R1

(0) ∈ ℝr1 × p2…pd . Then, U1
(0)

 is an initial

estimate of the subspace that G1 lies in and R1
(0) can be seen as the

projection residual.

ii. Next, we realign the entries of R1
(0) ∈ ℝr1 × p2…pd  to

R2
(0) ∈ ℝ r1p2 × p3…pd , where the rows and columns of R2

(0) correspond

to indices of Modes-1, 2 and Modes-3, …, d, respectively. Then, we

evaluate the top-r2 SVD of R2
(0). Let U2

(0)
 be the first r2 left singular
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vectors of R2
(0) and evaluate R2

(0) = U2
(0) ⊤

R2
(0) ∈ ℝr2 × p3…pd. Again,

U2
(0)

 is an estimate of the singular subspace that G2 lies on and R2
(0) is

the projection residual for the next calculation.

iii. We apply Step (ii) on R2
(0) to obtain U3

(0) ∈ Or2p3, r3 and

R3
(0) ∈ ℝr3 × p4⋯pd ; …; apply Step (ii) on Rd − 2

(0)  to obtain

Ud − 1
(0) ∈ Ord − 2pd − 1, rd − 1 and Rd − 1

(0) ∈ ℝrd − 1 × pd. Then we reshape

matrix Uk
(0) ∈ ℝ pkrk − 1 × rk to tensor Uk

(0) ∈ ℝrk − 1 × pk × rk for k = 2,

…, d − 1. Now, U1
(0), U2

(0), …, Ud − 1
(0) , Rd − 1

(0) ⊤  yield the initial estimates

of TT-cores of X and we expect that

X ≈ X(0) = 〚 U1
(0), U2

(0), ⋯, Ud − 1
(0) , Rd − 1

(0)
〛 .

The initialization step is summarized to Algorithm 1(a) and illustrated in Figure

2. In summary, we perform SVD on some “residual” Rk
(0) sequentially for k = 1,

…, d − 1. As will be shown in Lemma III.3, Rk
(0) satisfies

Rk
(0) = Ipk ⊗ Uk − 1

(0) ⊤ ⋯ Ip2⋯pk ⊗ U1
(0) ⊤ Y k,

where Y k ∈ ℝ p1⋯pk × pk + 1⋯pd  is the kth sequential unfolding of Y (see

definition in Section II-A). This quantity plays a key role in the backward update

next.

The initialization step mainly focuses on the left singular spaces of X k while

ignoring the information included in the right singular spaces. Due to this fact,

we develop the following new backward update that utilizes both the left and

right singular space estimates from the previous step to refine our estimates.

Similarly, we can also perform a forward update to further improve the outcome

of backward update, and then iteratively alternate between backward and forward

updates. The detailed descriptions of these two updates are presented as follows,

and a further explanation is given in Remark II.1.

• Part 2: Backward update. For iterations t = 1, 3, 5, …, we perform backward

update, i.e., to sequentially obtain V d
(t), …, V 2

(t)
 based on the intermediate results

from the (t − 1)st iteration (0th iteration is the initialization). The pseudocode

of backward update is provided in Algorithm 1(b). The calculation in Algorithm

1(b) is equivalent to

V d
(t) = SVDR Rd − 1

(t − 1) ,
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V k
(t) = SVDR Rk − 1

(t − 1) V d
(t) ⊗ Ipk…pd − 1 ⋯ V k + 1

(t) ⊗ Ipk
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for k = d − 1, …, 2, and

V 1
(t) = Y 1 V d

(t) ⊗ Ip2…pd − 1 ⋯ V 3
(t) ⊗ Ip2 V 2

(t) ∈ ℝp1 × r1 .

Here,

Rk
(t − 1) = Uk

(t − 1) ⊤
Ipk ⊗ Uk − 1

(t − 1) ⊤ ⋯ Ip2⋯pk ⊗ U1
(t − 1) ⊤ Y k

are the projection residual term in the intermediate outcome of the (t − 1)st

iteration. Then, we reshape V k
(t) ⊤ ∈ ℝrk − 1 × pkrk  to Vk

(t) ∈ ℝrk − 1 × pk × rk. The

backward up-dated estimate is

X(t) = 〚 V 1
(t), V2

(t), …, Vd − 1
(t) , V d

(t)
〛

Remark II.1 (Interpretation of backward update). The backward updates utilize
and extract the right singular vectors of the intermediate products of the (t − 1)st
iteration,

Rk
(t − 1) = Uk

(t − 1) ⊤
Ipk ⊗ Uk − 1

(t − 1) ⊤ ⋯ Ip2⋯pk ⊗ U1
(t − 1) ⊤ Y k,

as opposed to the entire data Y k. Such a dimension reduction scheme is the

key to the backward update: it can simultaneously reduce the dimension of
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the matrix of interest, Y k, and the noise therein, while preserving the signal

strength. Different from the initialization in Step 1, the backward update utilizes
the information from both the forward and backward singular subspaces of the
tensor-train structure of X. See Section III for more illustration.

• Part 3: Forward Update. For iteration t = 2, 4, 6, …, we perform forward

update, i.e., to sequentially obtain U1
(t), …, Ud

(t)
 based on the intermediate

results from the (t − 1)st iteration. Essentially, the forward update can be

seen as a reversion of the backward update by flipping all modes of tensor

Y. The pseudocode of this procedure is collected in Algorithm 1(c). Recall

Y 1 V d
(t − 1) ⊗ Ip2…pd − 1 ⋯ V 3

(t − 1) ⊗ Ip2 V 2
(t − 1)

 is the intermediate product

from the (t − 1)st update. We sequentially compute

U1
(t) = SVDL [Y]1 V d

(t − 1) ⊗ Ip2…pd − 1 ⋯ V 3
(t − 1) ⊗ Ip2 V 2

(t − 1) ;

U1
(t) = SVDL Ipk ⊗ Uk − 1

(t) ⊤ ⋯ Ip2⋯pk ⊗ U1
(t) ⊤ [Y]k ⋅ V d

(t − 1) ⊗ Ipk + 1…pd − 1
⋯ V k + 2

(t − 1) ⊗ Ipk + 1 V k + 1
(t − 1)

for k = 2, …, d − 1, and

Ud
(t) = Ud − 1

(t) ⊤
Ipd − 1 ⊗ Ud − 2

(t) ⊤
⋯ Ipd − 1…p2 ⊗ U1

(t) ⊤
[Y]d − 1

⊤
∈ ℝpd × rd − 1 .

Reshape Uk
(t) ∈ ℝ pkrk − 1 × rk to Uk

(t) ∈ ℝrk − 1 × pk × rk for k = 2, …, d − 1. Then,

compute

X(t) = 〚 U1
(t), U2

(t), …, Ud − 1
(t) , Ud

(t)
〛

We will explain the algebraic schemes in the TTOI procedure through several

representation lemmas in Section III-A. We will also show in Theorem III.2 that

the objective function Y − X(t)
F
2
 is monotone decreasing with respect to the

iteration index t. In the large-scale scenarios that performing iterations is beyond

the capacity of computing, we can reduce the number of iterations, and even

to tmax = 1, i.e., the one-step iteration, which have often yielded sufficiently

accurate estimation as we will illustrate in both theory and simulation studies.

Such the phenomenon has been recently discovered for HOOI in the Tucker

low-rank tensor decomposition [69].

Remark II.2 (Computational and storage costs of TTOI). We consider the
computational and storage costs of TTOI on the p-dimensional, rank-r, order-d,
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and dense tensor. Since computing the first r singular vectors of an m × n matrix

via block power method requires O(mnr) operations, initialization costs O pdr
operations, each iteration of TTOI, including forward and backward updates,
costs O(pdr). Therefore, the total number of operations of TTOI with T iterations

is O pdr + O T pdr , which is not significantly more than the number of elements

of the target tensor. Moreover, TTOI requires O(pd) storage cost, which is not
significantly more than the storage cost of the original tensor.

III. Theoretical Analysis

This section is devoted to the theoretical analysis of the proposed procedure. For

convenience, we introduce the following two abbreviations for matrix sequential products:

for Mi ∈ ℝ piri − 1 × ri, 1 ≤ i ≤ d − 1 and Bj ∈ ℝ rjpj × rj − 1, 2 ≤ j ≤ d, we denote

Mprod, k
(L) = Ip2⋯pk ⊗ M1 ⋯ Ipk ⊗ Mk − 1 Mk

∈ ℝ p1⋯pk × rk,      ∀1 ≤ k ≤ d − 1,

Bprod, k
(R) = Bd ⊗ Ipk⋯pd − 1 ⋯ Bk + 1 ⊗ Ipk Bk

∈ ℝ pk⋯pd × rk − 1,      ∀2 ≤ k ≤ d .

Equivalently, Mprod, k
(L)  and Bprod, k

(R)  can be defined sequentially as

Mprod, 1
(L) = M1,

Mprod, k + 1
(L) = Ipk + 1 ⊗ Mprod, k

(L) Mk + 1,      1 ≤ k ≤ d − 2,

Bprod, d
(R) = Bd,

Bprod, k
(R) = Bprod, k + 1

(R) ⊗ Ipk Bk,      2 ≤ k ≤ d − 1.

A. Representation Lemmas for high-order tensors

Since the computation of high-order tensors with tensor-train structures involves extensive

tensor algebra, we introduce the following three lemmas on the matrix representation of

high-order tensors. These lemmas play a fundamental role in the later theoretical analysis.

Lemma III.1 (Representation for sequential matricization of TT-decomposable tensor).

Suppose X = 〚 G1, G2, …, Gd − 1, Gd 〛. Then the sequential matricization of X can be

written as
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X k = Ip2⋯pk ⊗ G1 Ip3⋯pk ⊗ G2 2 ⋯ Ipk ⊗ Gk − 1 2
⋅ Gk 2 Gk + 1 1 Gk + 2 1 ⊗ Ipk + 1 ⋯ Gd − 1 1 ⊗ Ipk + 1⋯pd − 2
Gd

⊤ ⊗ Ipk + 1⋯pd − 1 .
(4)

Lemma III.2 (Representation of tensor reshaping). For any tensor T ∈ ℝ ⊗k = 1
d pk and 1 ≤ i

< j ≤ d − 1, we have

T j = Ipi + 1⋯pj ⊗ [T]i A pi + 1⋯pj, pj + 1⋯pd ,

T i = A pi + 1⋯pj, p1⋯pi ⊤ T j ⊗ Ipi + 1⋯pj

Here, we define ek
(ij) as the kth canonical basis of ℝij and

A(i, j) =

e1
(ij) ei + 1

(ij) ⋯ ei(j − 1) + 1
(ij)

e2
(ij) ei + 2

(ij) ⋯ ei(j − 1) + 2
(ij)

⋮ ⋮ ⋱ ⋮
ei

(ij) e2i
(ij) ⋯ eij

(ij)

∈ ℝ i2j × j . (5)

Lemmas III.1 and III.2 can be proved by checking each entry of the corresponding

matricizations. In addition, the following lemma provides a representation of sequential

reshaping tensor, in particular for Rk
(t) and Rk

(t), the key intermediate outcomes in TTOI

procedure.

Lemma III.3 (Representation of sequential reshaping tensor). Suppose T ∈ ℝ ⊗k = 1
d pk,

Mi ∈ ℝ ri − 1pi × ri for 1 ≤ i ≤ d − 1, Bi ∈ ℝ piri × ri − 1 for 2 ≤ i ≤ d, where r0 = rd = 1.

Consider the following sequential multiplication:

Forward sequential multiplication: Let S1 = T 1. For k = 1, …, d − 1, calculate

Sk = Mk
⊤Sk ∈ ℝrk × pk + 1⋯pd ,

Sk + 1 = Reshape Sk, rkpk + 1, pk + 2⋯pd  if k < d − 1.

Then for any 1 ≤ k ≤ d − 1,
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Sk = Ipk ⊗ Mprod, k − 1
(L) ⊤ T k,       Sk = Mprod, k

(L) ⊤ T k . (6)

Here, Ipk ⊗ Mprod, k − 1
(L) ⊤ = Ip1 if k = 1.

Backward sequential multiplication: Let W d − 1 = T d − 1. For k = d − 1, …, 1, calculate

W k = W kBk + 1 ∈ ℝ p1⋯pk × rk

W k − 1 = Reshape W k, p1⋯pk − 1, pkrk       if k > 1.

Then for any 1 ≤ k ≤ d − 1,

W k = T k Bprod, k + 2
(R) ⊗ Ipk + 1 ,       W k = T kBprod, k + 1

(R) .

Here, Bprod, k + 2
(R) ⊗ Ipk + 1 = Ipd if k = d − 1.

In particular, Rk
(0), Rk

(0) in Algorithm 1(a) and Rk
(t), Rk

(t)(t ∈ 2, 4, 6, … ) in Algorithm 1(c)

satisfy

Rk
(t) = Ipk ⊗ U(t)

prod, k − 1
(L) ⊤

Y k,

Rk
(t) = U(t)

prod, k
(L) ⊤

Y k,      ∀1 ≤ k ≤ d − 1.
(7)

The proof of Lemma III.3 is provided in Section A–H.

B. Deterministic Upper Bounds for Estimation Error of TTOI

Now we are in position to analyze the performance of TTOI. The following Theorem III.1

introduces an upper bound on estimation error of X(2t + 1)
 (backward update) and X(2t + 2)

(forward update).

Theorem III.1. Suppose we observe Y = X + Z, where X admits a TT decomposition as
(1).

(A deterministic estimation error bound for backward updates) Let U1
(2t) = U1 ∈ ℝp1 × r1

be the left singular space of X 1. For 2 ≤ k ≤ d − 1, define Uk
(2t) ∈ ℝpkrk − 1 × rk as the left

singular subspace of Ipk ⊗ U(2t)
prod, k − 1
(L) ⊤

X k. If for some constant c0 ∈ (0, 1),
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sin Θ Uk
(2t), Uk

(2t) ≤ c0,      ∀1 ≤ k ≤ d − 1, (8)

then there exists a constant Cd > 0 that only depends on d such that the outcome of
Algorithm 1(b) satisfies

X(2t + 1) − X F
2

≤ Cd ∑
k = 1

d − 1
Ak

(2t + 1) + B(2t + 1) , (9)

where

Ak
(2t + 1) = U(2t)

prod, k
(L) ⊤

[Z]k V (2t + 1)
prod, k + 2
(R)

⊗ Ipk + 1 F

2
,

B(2t + 1) = [Z]1 V (2t + 1)
prod, 2
(R)

F

2
.

Here, V (2t + 1)
prod, k + 2
(R)

⊗ Ipk + 1 = Ipd if k = d − 1.

(A deterministic estimation error bound for forward updates) For 2 ≥ k ≤ d − 1, let

V k
(2t + 1) ∈ ℝ pkrk × rk − 1 be the right singular space of X k − 1 V (2t + 1)

prod, k + 1
(R)

⊗ Ipk

and let V d
(2t + 1) = V d ∈ ℝpd × rd − 1 be the right singular space of X d − 1. If for some

constant c0 ∈ (0, 1),

sin Θ V k
(2t + 1), V k

(2t + 1) ≤ c0,      ∀2 ≤ k ≤ d,

then there exists a constant Cd > 0 that only depends on d such that the outcome of
Algorithm 1(c) satisfies

X(2t + 2) − X F
2

≤ Cd ∑
k = 1

d − 1
Ak

(2t + 2) + B(2t + 2) , (10)

where

Ak
(2t + 2) = Ipk ⊗ U(2t + 2)

prod, k − 1
(L) ⊤

[Z]k V (2t + 1)
prod, k + 1
(R)

F

2
,

B(2t + 2) = U(2t + 2)
prod, d − 1
(L) ⊤

[Z]d − 1 F

2
.
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Here, Ipk ⊗ U(2t + 2)
prod, k − 1
(L) ⊤

= Ip1 if k = 1.

The proof of Theorem III.1 is provided in Section A-A. Theorem III.1 shows the estimation

error X(t + 1) − X F
2
 can be bounded by the projected noise Z, i.e., Ak

(t + 1) and B(t+1),

if the estimates in initialization (t = 0) or the previous iteration (t ≥ 1), Uk
(t)

k = 1
d − 1

 or

V k
(t)

k = 2
d

, are within constant distance to the true underlying subspaces. The developed

upper bound can be significantly smaller than C Z F
2, the classic upper bound induced from

the approximation error (e.g., Theorem 2.2 in [1]), especially in the high-dimensional setting

(p ≫ r).

Remark III.1 (Interpretation of error bounds in Theorem III.1). Here, we provide some

explanation for Ak
(2t + 1) and B(2t+1) in the error bound (9). By algebraic calculation, the

TT-core estimation via backward update can be written as

V k + 1
(2t + 1) = SVDR U(2t)

prod, k
(L) ⊤

X k + [Z]k ⋅ V (2t + 1)
prod, k + 2
(R)

⊗ Ipk + 1

for any 1 ≤ k ≤ d − 1 and

V 1
(2t + 1) = X 1 + [Z]1 V (2t + 1)

prod, 2
(R)

.

From the definition of Ak
(2t + 1), we have see Ak

(2t + 1) quantifies the error of the singular

subspace estimate V k + 1
(2t + 1)

 and B(2t+1) quantifies the error of the projected residual V 1
(2t + 1)

.

By symmetry, similar interpretation also applies to Ak
(2t + 2) and B(2t+2) for the error bound

of forward update (10).

Remark III.2 (Proof Sketch of Theorem III.1). While the complete proof of Theorem III.1
is provided in Section A-A, we provide a brief proof sketch here.

Without loss of generality, we focus on (9) for t = 0 while other cases follows similarly. For

convenience, we simply let Ui, V i denote Ui
(0), V i

(1), respectively. First, by Lemma III.1, we

can transform X(1)
1
, the outcome of backward update, to

X(1)
1

= Y 1P V d ⊗ Ip2…pd − 1 ⋯ V 3 ⊗ Ip2 V 2 .  

Then we can further bound the estimation error of X(1)
 as
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X(1) − X F
2

≤ C [Z]1 V d ⊗ Ip2…pd − 1 ⋯ V 3 ⊗ Ip2 V 2 F
2

+ Cd ∑
k = 2

d
[X]1 V d ⊗ Ip2…pd − 1 ⋯ V k + 1 ⊗ Ip2⋯pk ⋅ V k ⊥ ⊗ Ip2⋯pk − 1 F

2 .

Next, based on Lemma III.2 and (8), we can prove

[X]1 V d ⊗ Ip2…pd − 1 ⋯ V k + 1 ⊗ Ip2⋯pk ⋅ V k ⊥ ⊗ Ip2⋯pk − 1 F = [X]k − 1 V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F
≤ Cd Uk − 1

⊤ Ipk − 1 ⊗ Uk − 2
⊤ ⋯ Ip2⋯pk − 1 ⊗ U1

⊤ [X]k − 1 ⋅ V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F
.

Finally, we apply the perturbation projection error bound (Lemma A.3) to prove that

Cd Uk − 1
⊤ Ipk − 1 ⊗ Uk − 2

⊤ ⋯ Ip2⋯pk − 1 ⊗ U1
⊤ [X]k − 1 ⋅ V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F

≤ Cd Uk − 1
⊤ Ipk − 1 ⊗ Uk − 2

⊤ ⋯ Ip2⋯pk − 1 ⊗ U1
⊤ [Z]k − 1 ⋅ V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk F

.

Theorem (IV.1) is proved by combing all inequalities above.

Next, we establish a decomposition formula for the approximation error, i.e., the objective

function in (3) Y − X(t)
F
2
, and show that the approximation error is monotone decreasing

through TTOI iterations.

Theorem III.2 (Approximation error decays through iterations). We implement TTOI on Y.

Let X(t) be the outcome after the tth iteration. For any k ≥ 1, we have

Approximation error decay
Y F

2
− X(t + 1)

F
2

≤ Y F
2

− X(t)
F
2
,

(11)

Approximation error decomposition
Y − X(t + 1)

F
2

= Y F
2

− X(t + 1)
F
2

.
(12)

See Section A–B for the proof of Theorem III.2.

IV. TTOI for Tensor-Train Spiked Tensor Model

In this section, we further focus on a probabilistic setting, spiked tensor model, where the

noise tensor Z has independent, mean zero, and σ-sub-Gaussian entries (see definition in

Section II-A). The spiked tensor model has been widely studied as a benchmark setting

for tensor PCA/SVD and dimension reduction in recent literature in machine learning,

information theory, statistics, and data science [62], [61], [60], [70], [48]. The central goal

therein is to discover the underlying low-rank tensor X. Most of the existing works focused

on tensors with Tucker or CP decomposition.
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Under the spiked tensor model, we can verify that the initialization step of TTOI

gives sufficiently good initial estimations with high probability that matches the required

condition in Theorem III.1.

Theorem IV.1 (Probabilistic bound for initial estimates and projected noise). Suppose
X is TT-decomposable as (1) and Z have independent zero mean and σ-sub-Gaussian
random variables. Denote p = min{p1, ⋯, pd}. If there exists a constant Cgap such that

λk = srk [X]k ≥ Cgap ∑i = 1
d piri − 1ri

1/2 + pk + 1⋯pd
1/2 σ for 1 ≤ k ≤ d − 1, then there exist

some constants C, c > 0 and Cd > 0 that only depends on d, with probability at least 1 − C
exp(−cp),

max
k = 1, …, d − 1

sin Θ Uk
(0),  Uk

(0) ≤ 1
2, (13)

max
k = 1, …, d − 1
t = 2, 4, 6, …

sinΘ Uk
(t), Uk

(t) ≤ 1
2,

max
k = 2, …, d

t = 1, 3, 5, …

sinΘ V k
(t), V k

(t) ≤ 1
2,

(14)

and for all t ≥ 1,

max Ak
(t), B(t) ≤ Cdσ2 ∑

i = 1

d
pirirr − 1 . (15)

Here, Uk
(t), V k

(t), Ak
(t) and B(t) are defined in Theorem III.1.

The proof of Theorem IV.1 is provided in Section A–C. Based on Theorems III.1 and IV.1,

we can further prove:

Corollary IV.1 (Upper bound for estimation error). Suppose X can be decomposed
as (1), Zi1, …, id are independent zero mean and σ-sub-Gaussian random variables,

p = min{p1, ⋯, pd}. Suppose there exists a constant Cgap such that

λk = srk X k ≥ Cgap ∑i = 1
d piri − 1ri

1/2 + pk + 1⋯pd
1/2  σ for 1 ≤ k ≤ d − 1. Then with

probability at least 1 − Ce−cp, for all t ≥ 1,

X(t) − X F
2

≤ Cdσ2 ∑
i = 1

d
piriri − 1 . (16)

The proof of Corollary IV.1 is provided in Section A–D.
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Remark IV.1 (Interpretation of Corollary IV.1). Note that the TT-cores G1, Gi, Gd

respectively have p1r1, piriri−1, pdrd−1 free parameters, the upper bound (16) can be seen
as the noise level σ2 times the degrees of freedom of the low TT rank tensors.

Next, we develop a minimax lower bound for the low TT rank structure estimation. Consider

the following general class of tensors with dimension p = (p1, …, pd) and TT rank r = (r1,

…, rd−1),

Fp, r(λ) = X ∈ ℝp1 × ⋯ × pd, X can be decomposed as (1), srk X k ≥ λk, 1
≤ k ≤ d − 1 ,

(17)

and a class of distributions of σ-sub-Gaussian noise tensors

D = D :  if Z D,
 then Zi1, …, id are indep. zero mean  and σ sub‐Gaussian random variables . (18)

Here, the constraints on the least singular value of X k and the σ-sub-Gaussian assumption

correspond to the conditions required for upper bound in Theorem IV.1.

Theorem IV.2 (Lower bound). Consider the order-d TT spiked tensor model (2) and
distribution class D in (18). Assume p = min{p1, …, pd} ≥ C0 for some large constant
C0, r1 ≤ p1/2, ri ≤ piri−1/2, ri−1 ≤ piri/2 for 2 ≤ i ≤ d − 1, rd−1 ≤ pd, and λi > 0. Also assume
r1r2 ≤ p1 if d = 3. Then there exists a constant cd > 0 that only depends on d such that

inf
X

sup
X ∈ Fp, r(λ), D ∈ D

EZ D X − X
F

2
≥ cdσ2 ∑

i = 1

d
piriri − 1 . (19)

See Section A–E for the proof of Theorem IV.2.

V. TTOI for Dimension Reduction and State Aggregation in High-order

Markov Chain

Since the introduction at the beginning of the 20th century, the Markov process has been

ubiquitous in a variety of disciplines. In the literature, the first order Markov process, i.e.,

the future observation at (t + 1) is conditionally independent of those at times 1, …, (t −
1) given the immediate past observation at time t, has been commonly used and extensively

studied. Moreover, the high-order Markov process often appear in many scenarios, where the

future observation is affected by a longer history. For example, in the taxi travel trajectory,

the future stop of a taxi not only depends on the current location but also the past path

that reveals the direction this taxi is heading to [71]. The high-order Markov processes have

also been applied to inter-personal relationship [72], financial econometrics [73], traffic flow

[74], among many other applications.
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We specifically consider an ergodic, time-invariant, and (d − 1)st order Markov process on a

finite state space {1, …, p}. That is, the future state Xt+d depends on the current state Xt+d−1

and the previous (d − 2) states (Xt+d−2, …, Xt+1) jointly:

ℙ Xt + d ∣ X1, …, Xt + d − 1 = ℙ Xt + d ∣ Xt + 1, …, Xt + d − 1
= P Xt + 1, …, Xt + d . (20)

Our goal is to achieve a reliable estimation of the transition tensor P and to predict the

future state Xt+d based on an observable trajectory. Since the total number of free parameters

in a (d − 1)st order Markov transition tensor P is O(pd) without further assumptions, it

may be prohibitively difficult to infer P in both statistics and computation even if p and d
are only of moderate scale. Instead, a sufficient dimension reduction for high-order Markov

processes is in demand.

To enable the statistical inference and dimension reduction for high-order Markov processes,

a powerful tool, mixed transition distribution model (MTD), was introduced [72]. The MTD

model assumes that the distribution of future state is a linear combination of the distributions

associated with the (d − 1) immediate past states. The readers are also referred to [75] for

a survey on mixed transition distribution model. The linear assumption, however, does not

take into account the potential interactions of past states that commonly appear in practice.

For example in the New York taxi trip data, the interaction among past locations of a taxi

indicates its potential future direction.

On the other hand, there is a recent surge of development in dimension reduction and

state aggregation for first order Markov chains. For example, [76] considered the Markov

chain aggregation and the application to biology; [77] considered the rank-reduced Markov

model and mode clustering; [45] considered Markov rank, aggregagability, and lumpability

of Markov processes and proposed the dimension reduction and state aggregation methods

through spectral decomposition with theoretical guarantees; [78] proposed clustering block

model and proposed efficient algorithm to solve it; [79] introduced a convex and non-convex

methods to estimate the rank-reduced low-rank Markov transition matrix.

Inspired by these work, we propose and study the state aggregation model for the discrete-

time high-order Markov processes as follows.

Definition V.1 ((d − 1)st order state aggregatable Markov1 process). Suppose there exist

maps G1: [p] ℝr1, Gk: [p] × ℝrk − 1 ℝrk, Gd: [p] × ℝrd − 1 ℝ such that G2, …, Gd are

linear: Gk(X, λ1u + λ2v) = λ1Gk(X, u) + λ2Gk(X, v) for any vectors u, v, scalars λ1, λ2 ∈ ℝ.

We say a Markov process {X1, X2, …} is (d − 1)st order state aggregatable if for all t ≥ 0,

the transition can be sequentially generated as follows,

P1 Xt + 1 = G1 Xt + 1 ∈ ℝr1,
Pk Xt + 1, …, Xt + k = Gk Xt + k, Pk − 1 Xt + 1, …, Xt + k − 1 ∈ ℝrk,      k = 2, …, d − 1,
ℙ Xt + d ∣ X1, …, Xt + d − 1
= ℙ Xt + d ∣ Xt + 1, …, Xt + d − 1
= Gd Xt + d, Pd − 1 Xt + 1, …, Xt + d − 1 .

Zhou et al. Page 21

IEEE Trans Inf Theory. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In a (d − 1)st order state aggregatable Markov process, the future state Xt+d relies on

a sequential aggregation of the previous d − 1 states Xt+1, …, Xt+d−1 as follows: we

first project Xt+1 to a r1-dimensional vector P1 Xt + 1  via G1, then project P1 Xt + 1
jointly with Xt+2 to a r2-dimensional vector P1 Xt + 1, Xt + 2  via G2. We repeat such

the projection sequentially for Xt+3, …, Xt+d and yield the transition probability

ℙ Xt + d ∣ Xt + 1, …, Xt + d − 1 . Also, see Figure 4 for a pictorial illustration.

Based on the definition of the state aggregatable Markov chain, we can prove the

corresponding probability transition tensor P will have low TT rank.

Proposition V.1. The transition tensor P of the rank reduced high-order Markov model
in Definition V.1 has TT-rank no more than (r1, …, rd−1). In other words, P satisfies
rank P k ≤ rk.

The proof of Proposition V.1 is provided in Section A–F.

Next, we focus on a synchronous or generative setting, which can be seen as a high-order

generalization of the classic observation model for the analysis of Markov (decision/reward)

processes (see [80] for an introduction), for the high-order Markov process. To be specific,

for each sample index k = 1, …, n and previous states (i1, …, id−1) ∈ [p]d−1, suppose we

observe the next state X(i1, …, id−1; k) drawn from the Markov transition tensor P. It is

natural to estimate P via the empirical transition tensor: for i1, …, id ∈ {1, …, p}d,

Pi1, …, id
emp = ∑

k = 1

n
1 X i1, …, id − 1; k = id /n .

Then, Pemp
 is an unbiased estimator of P. However, if the entries of P are approximately

balanced, the mean squared error of Pemp
 satisfies

E Pemp − P F
2

= ∑
i1, …, id

Var Pi1, …, id
emp

= ∑
i1, …, id − 1

∑
id

ℙ id ∣ i1, …, id − 1 1 − ℙ id ∣ i1, …, id − 1
n ≍ pd − 1

n ,
(21)

To obtain a more accurate estimator, we propose to first perform TTOI on Pemp
 to

obtain P(1)
, then project each row of P(1)

d − 1
, or equivalently, each mode-d fiber of

P(1)
, onto the simplex Sp − 1 = x ∈ ℝp: ∑i = 1

p xi = 1, xi ≥ 0 for all 1 ≤ i ≤ p  via probability

simplex projection (see an implementation in [81]) and obtain P.

We establish an upper bound on estimation error for the TTOI estimator P.

Proposition V.2. Consider the synchronous or generative model for a (d − 1)st order state
aggregatable Markov process described above. Suppose the initialization condition (8) in
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Theorem III.1 holds. Then with probability at least 1 − Ce−cp, the output of one-step TTOI
followed by the probability simplex projection satisfies

P − P
F

2
≤ C max

1 ≤ i ≤ d − 1
ri ∑

i = 1

d
piriri − 1/n .

The proof of Proposition V.2 is provided in Section A–G. Compared to the estimation error

rate of Pemp
 in (21), Proposition V.2 shows TTOI achieves significantly reduced estimation

error by exploiting the low TT rank structure of the high-order Markov process.

Remark V.1. If the observations form one transition trajectory {X0, …, XN}, we can work
on the following empirical transition tensor:

Pi1, …, id
emp =

∑t = 0
N − d + 11 Xt = i1, …, Xt + d − 1 = id

∑t = 0
N − d + 11 Xt = i1, …, Xt + d − 2 = id − 1

,

if ∑
t = 1

N − d + 1
1 Xt = i1, …, Xt + d − 2 = id − 1 > 0;

Pi1, …, id
emp = 1/p,

if ∑
t = 1

N − d + 1
1 Xt = i1, …, Xt + d − 2 = id − 1 = 0.

(22)

Then Pemp
 can be a nearly unbiased and strongly consistent estimator for P. When the

Markov process is (d − 1)st order state aggregatable, we can apply TTOI to obtain a better
estimate. As will be explored by numerical studies in Section VI-A, the TTOI estimator
achieves favorable performance on the estimation of P.

VI. Numerical Studies

In this section, we investigate the numerical performance of TTOI.

A. Simulation

In each simulation setting, we present the numerical results in both average estimation error

(denoted by dots) and standard deviation (denoted by bars) based on 100 repetitions. We

assume the true TT-ranks are known in the first three settings. Afterwards, we introduce a

BIC-type data-driven scheme for TT-rank selection and present its numerical performance.

All experiments are conducted by a quad-core 2.3 GHz Intel Core i5 processor.

We first consider the tensor-train spiked tensor model (2) discussed in Section IV.

Specifically, we randomly generate G1, G2, …, Gd − 1, Gd with i.i.d. standard normal entries,

and generate Z with i.i.d. N 0, σ2  or Unif(−b, b) entries. Let p1 = ⋯ = pd = p, r1 = ⋯ =

rd−1 = r, and consider four settings: (1) p = 100, d = 3, r = 1; (2) p = 50, d = 4, r = 1; (3)

p = 20, d = 5, r = 1; (4) p = 20, d = 5, r = 2. For varying values of σ ∈ [1, 19] and b ∈

[3, 30], we evaluate the estimation error X(t) − X F of the TT-SVD and TTOI estimators

Zhou et al. Page 23

IEEE Trans Inf Theory. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with 1 or 2 iterations, i.e., tmax = 0, 1, 2. From the results summarized in Figure 5 (normal

noise) and Figure 6 (uniform noise), we can see TTOI, even with one iteration, performs

significantly better than TT-SVD, and the advantage becomes more significant as the noise

level σ, b grows. This suggests that the proposed TTOI is effective for high-order tensor

SVD compared to the classic TT-SVD, especially when the observations are corrupted by

substantial noise. Table I summarizes the runtime of TT-SVD and TTOI, which suggests that

the additional computational cost incurred by the backward and forward updates in TTOI is

negligible compared to the runtime of the original TT-SVD.

To understand the influence of TT-rank to the performance of the TT-SVD and TTOI

estimators, we conduct numerical experiments under the spiked tensor model (2) with r1 = ⋯
= rd−1 = r for various values of r. In particular, G1, G2, …, Gd − 1, Gd are still generated with

i.i.d. standard normal entries, and Z has i.i.d. N 0, σ2  entries. Letting p1 = ⋯ = pd = p, we

consider two settings: (1) p = 100, d = 3, σ = 20; (2) p = 500, d = 3, σ = 100. For r = 1, …,

10, we evaluate the average estimation error X(t) − X F of TT-SVD, TTOI with 1 iteration,

and TTOI with 2 iterations (i.e., tmax = 0, 1, 2), and present the results in Figure 7. Figure

7 suggests that the estimation errors increase as the rank increases, while TTOI with 1 or

2 iterations both performs better than TT-SVD. The improvement of TTOI over TT-SVD is

more significant under larger p or smaller r. An intuitive explanation for this phenomenon is

as follows: the key idea of TTOI is to utilize the previous updates to reduce the dimension

of the sequential unfolding Y k before performing singular value thresholding; such the

dimension reduction is more significant for large p or small r.

Next, we demonstrate the performance of TTOI on transition tensor estimation for the high-

order state-aggregatable Markov chains studied in Section V. We consider the (d − 1)st order

Markov chain on p states. To generate the transition tensor P, we first draw G1 ∈ ℝp × r,

G2 ∈ ℝr × p × r, …,  Gd ∈ ℝr × p with i.i.d. standard normal entries, then normalize the rows of

G1, G2, …, Gd in absolute values as

G1, [i, j] =
G1, [i, j]

∑j′ ∣ G1, i, j′
,      Gk, i1, i2, j =

Gk, i1, i2, j
∑j′ Gk, i1, i2, j′

,     Gd, [i, j] =
Gd, [i, j]

∑j′ Gd, i, j′
.

By this means, P = 〚 G1, G2, …, Gd − 1, Gd 〛 satisfies Pi1, …, id ≥ 0, ∑id = 1
p Pi1, …, id = 1

for any (i1, …, id−1), so P forms a Markov transition tensor. To generate the trajectory

{X1, …, XN}, we generate the initial d − 1 states X1, …, Xd−1 i.i.d. uniformly from [p],

then generate Xd, …, XN sequentially according to (20). To estimate P, we construct the

empirical probability tensor Pemp
 by (22), then apply TT-SVD and TTOI with input Pemp

as detailed in Section V to obtain P. We consider two numerical settings: (1) p = 100, d

= 3, r = 1; (2) p = 50, d = 4, r = 1. We evaluate the estimation error P(i) − P F for each

setting and summarize the results to Figure 8. Again, TTOI exhibits clear advantage over the

existing methods in all simulation settings.
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Selection of TT-ranks. The proposed TTOI algorithm requires specifying TT-ranks r1, …,

rd−1 as inputs and the appropriate choices of r1, …, rd−1 are crucial in practice. We propose a

data-driven scheme to select the TT-ranks: we choose r1, …, rd−1 ≥ 1 such that the following

Bayesian information criterion (BIC) under the spiked tensor model is minimized:

BIC r1, …, rd − 1

≔ ∏
k = 1

d
pklog Y − X r1, …, rd − 1 F

2 + p1r1 + ∑
k = 2

d − 1
pkrk − 1rk + pdrd − 1

∑
k = 1

d
log pk .

(23)

Here, X r1, …, rd − 1  is the output of TTOI (Algorithm 1) with the input TT-ranksb r1, …,

rd−1. This BIC-type criterion was also adopted in prior works on tensor clustering [82].

Then we conduct numerical experiments under the same setting as the bottom two plots

in Figure 5 on the spiked tensor model with Gaussian noise. Figure 9 summarizes the

estimation errors of TT-SVD and TTOI with 1 and 2 iterations, respectively, with the ranks

selected based on the proposed BIC criterion (23). Comparing Figure 9 to the bottom two

plots in Figure 5, we can see the proposed criterion can select the true ranks accurately and

the performance of both TT-SVD and TTOI with tuned ranks is very similar to the one by

inputting the true ranks.

B. Real Data Experiments

We apply the proposed method to investigate the Manhattan taxi data. This dataset contains

the New York City taxi trip records from 14,144 drivers in 2013. We treat each travel record

as a transition among different locations at New York City, then the overall dataset can be

organized as a collection of fragmented sample trajectories of a Markov chain on New York

City traffic. Some recent analysis on such data can be seen at, e.g., [71], [83], [45].

Due to the high-dimensional spatiotemporal nature of the dataset, a sufficient dimension

reduction or state aggregation is often a crucial first step to study a metropolitan-wide traffic

pattern. To this end, we apply the high-order Markov model as described in Section V.

Specifically, we discretize the Manhattan region into a grid of p = 119 states that forms a

state space. Then, we collect all travel records in Manhattan of each driver from the dataset,

sort them by time, and form into Markovian transition trajectories. In particular, each travel

record is treated as a transition from the pickup to the drop-off location. If the drop-off

location i of the previous trip is different from the pickup location j of the next trip by the

same driver, we also form a transition from states i to j. Based on the trajectories, we can

construct a high-order Markov chain with an order d empirical transition probability tensor

Pemp  ∈ ℝ ⊗k = 1
d p as described in Section V. Assuming the true probability tensor is state

aggregatable (Definitionb V.1), we apply one-step TTOI proposed in Section V and obtain

P. It is noteworthy if d = 2, the described procedure of P is equivalent to the classic matrix

spectral decomposition in the literature. Figure 10 plots the singular values of the sequential

unfolding matrices of Pemp
 for d = 3, which clearly demonstrates the low-TT-rankness of
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the probability transition tensor P. In the following experiments, we focus on the order-2

Markov model and analyze all consecutive two transitions: i → j → k, corresponding to the

d = 3 case.

Inspired by the classic methods of matrix spectral decomposition, we aggregate all location

states in Manhattan into a few clusters via both P and Pemp
. Specifically, we calculate

Gd
⊤, i.e., the last TT-core of P, and Pemp

d − 1, i.e., the matricization of Pemp
 whose

columns correspond to the last mode. Then we perform k-means on all columns of Gd
⊤ and

Pemp
d − 1, record the cluster index, associate the index to each location state, and plot the

results in Figure 11 (Panels (a)(b) are for TTOI and Panels (c)(d) are for empirical estimate).

From Figure 11 (a)(b), we can clearly identify four regions: (i) lower Manhattan (orange),

(ii) midtown (dark blue), (iii) upper west side (green), and (iv) upper east side (brown or

black). In contrast, direct clustering on Pemp yields less interpretable results as the majority

points go to one cluster. It is also worth noting even the location information is not provided

to this experiment, the resulting clusters in Figures 11 (a)(b) show good spatial proximity

between locations. This illustrates the effectiveness of TTOI in dimension reduction and

state-aggregation for high-order Markov processes.

Next, we illustrate the high-order nature of the city-wide taxi trip through the following

experiment. For each initial state i ∈ [p], we apply k-means to cluster the column span of

P i, : , : , where P is the outcome of TTOI. We present the results in Figure 12, where the

red triangles denote the given first state i and r = k = 7. If the city-wide taxi trips do not

have significant high-order effects, P should be reducible to a first order Markov process

and P i, : , :  should have similar values for different i. However, as we can see from Figure

12 that the clustering results highly depends on the first state i, the high-order effects exist

in the city-wide taxi trip Markov process. In addition, the states in different directions of i
are often clustered to different regions, which shows that the taxi drivers may tend to move

to the same direction in consecutive trips, which yields the high-order effects in the driving

trajectories.

VII. Discussions and Additional Applications

In this paper, we propose a general framework for high-order SVD. We introduce a novel

procedure, tensor-train orthogonal iteration (TTOI), that efficiently estimates the low tensor

train rank structure from the high-order tensor observation. TTOI has significant advantages

over the classic ones in the literature. We establish a general deterministic error bound

for TTOI with the support of several new representation lemmas for tensor matricizations.

Under the commonly studied spiked tensor model, we establish an upper bound for TTOI

and a matching information-theoretic lower bound. We also illustrate the merits of TTOI

through simulation studies and a real data example in New York City taxi trips.

In addition to the high-order Markov processes, the proposed TTOI can also be applied to

the Markov random field (MRF) estimation. We give a brief description of MRF below.

Consider an undirected graph G = (V, E), where V = {1, …, d} is a set of vertices and E
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⊆ V × V is a collection of edges. Each vertex i ∈ V is associated with a random variable

Xi, taking values in {s1, …, sp}. In an MRF model, the distribution of {X1, …, Xd} can be

factorized as

ℙ X1, …, Xd = 1
Z ∏

C ∈ C
ψC XC ,

where C is a collection of subgraphs of G and XC = (Xv, v ∈ C) denotes the random vector

corresponding to vertices in C. The joint probability function ℙ( ⋅ ) can be written as a tensor

P ∈ ℝ ⊗k = 1
d p, where Pi1, …, id = ℙ X1 = si1, …, Xd = sid . The MRFs have a wide range of

applications, including image analysis [84], [85], genomic study [86], and natural language

processing [87]. The readers are referred to, e.g., [88] for an introduction to MRFs.

A central problem of MRF is how to estimate the population density P based on a limited

number of samples X1
(i), …, Xd

(i)
i = 1
n

. It is straightforward to estimate P via the empirical

probability tensor Pemp
:

Pi1, …, id
emp = ∑

i = 1

n
∏

k = 1

d
1 Xk

(i) = sik /n .

We can show that Pemp
 is unbiased for P. Recently, [17] pointed out that P is often

approximately low tensor-train rank in practice. To further exploit such the structure, we

can conduct TTOI on Pemp
. Under regularity conditions, it can be shown that the entries

of Z are bounded and weakly independent, then Corollary IV.1 suggests the following

estimation error rate of the TTOI estimator: P − P F
2 ≤ C∑i = 1

d riri − 1/ np2d − 1 , which

can be significantly smaller than the estimation error of original empirical estimator Pemp
.

Moreover, the proposed framework can be also applied to high-order Markov decision
process (high-order MDP). MDP has been commonly used as a baseline in control theory

and reinforcement learning [89], [90], [91], [92]. Despite the wide applications of MDPs,

most of the existing work focus on the first-order Markov processes. However, the high-

order effects often appear, i.e., the transition probability at the current time depends not

only on current, but also the past (d − 1) states and actions. See Figure 13 for an example.

Since the number of free parameters in such MDPs can be huge, a sufficient dimension

reduction for the state and action space can be a crucial first step. Similarly to the example

of high-order Markov process in Section V, the TTOI can be applied to achieve better

dimension reduction and state aggregation for the high-order Markov decision processes.
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Appendix A

Proofs

We collect all technical proofs of this paper in this section.
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A. Proof of Theorem III.1

For convenience, let Ui, V i, Ri and Ri denote Ui
(0), V i

(1), Ri
(0) and Ri

(0), respectively. By

Lemma III.1 and

Ip2⋯pd − P V d ⊗ Ip2…pd − 1 ⋯ V 3 ⊗ Ip2 V 2
= P V d ⊗ Ip2…pd − 1 ⋯ V 3 ⊗ Ip2 V 2 ⊥ + P V d ⊗ Ip2…pd − 1 ⋯ V 4 ⊗ Ip2p3 V 3 ⊥ ⊗ Ip2 + ⋯
+ PV d ⊥ ⊗ Ip2⋯pd − 1,

we have

X(1) − X F
2

=
[Y]1 V d ⊗ Ip2…pd − 1 ⋯ V 3 ⊗ Ip2 V 2 ⋅ V 2

⊤ V 3
⊤ ⊗ Ip2 ⋯ V d

⊤ ⊗ Ip2…pd − 1 − [X]1 F
2

= [Z]1P V d ⊗ Ip2…pd − 1 ⋯ V 3 ⊗ Ip2 V 2 + [X]1P V d ⊗ Ip2…pd − 1 ⋯ V 3 ⊗ Ip2 V 2 − [X]1 F
2

≤ C [Z]1P V d ⊗ Ip2…pd − 1 ⋯ V 3 ⊗ Ip2 V 2 F
2

+ [X]1P V d ⊗ Ip2…pd − 1 ⋯ V 3 ⊗ Ip2 V 2 ⊥ F
2

+ [X]1P V d ⊗ Ip2…pd − 1 ⋯ V 4 ⊗ Ip2p3 V 3 ⊥ ⊗ Ip2 F
2 + ⋯ + [X]1PV d ⊥ ⊗ Ip2…pd − 1 F

2

≤ C [Z]1 V d ⊗ Ip2…pd − 1 ⋯ V 3 ⊗ Ip2 V 2 F
2

+ [X]1 V d ⊗ Ip2…pd − 1 ⋯ V 3 ⊗ Ip2 V 2 ⊥ F
2

+ [X]1 V d ⊗ Ip2…pd − 1 ⋯ V 4 ⊗ Ip2p3 V 3 ⊥ ⊗ Ip2 F
2 + ⋯

+ [X]1 V d ⊥ ⊗ Ip2…pd − 1 F
2

.

(24)

To prove (9), we only need to show that for all 2 ≤ k ≤ d,

[X]1 V d ⊗ Ip2…pd − 1 ⋯ V k + 1 ⊗ Ip2⋯pk ⋅ V k ⊥ ⊗ Ip2⋯pk − 1 F
≤ C Uk − 1

⊤ Ipk − 1 ⊗ Uk − 2
⊤ ⋯ Ip2⋯pk − 1 ⊗ U1

⊤ [Z]k − 1 ⋅ V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk F
, (25)

where

X 1 V d ⊗ Ip2…pd − 1 ⋯ V k + 1 ⊗ Ip2⋯pk V k ⊥ ⊗ Ip2⋯pk − 1 = X 1 V d ⊗ Ip2…pd − 1
⋯ V 3 ⊗ Ip2 V 2 ⊥

if k = 2 and

X 1 V d ⊗ Ip2…pd − 1 ⋯ V k + 1 ⊗ Ip2⋯pk V k ⊥ ⊗ Ip2⋯pk − 1 = X 1 V d ⊥ ⊗ Ip2…pd − 1

if k = d.

By Lemma III.2, we have
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[X]1 V d ⊗ Ip2…pd − 1 ⋯ V k + 1 ⊗ Ip2⋯pk ⋅ V k ⊥ ⊗ Ip2⋯pk − 1 F = A p2⋯pk − 1, p1 ⊤ [X]k − 1 ⊗ Ip2⋯pk − 1 V d ⊗ Ip2…pd − 1 ⋯ V k + 1 ⊗ Ip2⋯pk V k ⊥ ⊗ Ip2⋯pk − 1 F

= A p2⋯pk − 1, p1 ⊤ ⋅ [X]k − 1 V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ ⊗ Ip2⋯pk − 1 F
= [X]k − 1 V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F
.

(26)

The third equation holds since the realignment doesn’t change the Frobenious norm.

Moreover, recall that U1 ∈ ℝp1 × r1 is the left singular space of X 1, and Uj ∈ ℝpjrj − 1 × rj is

the left singular space of Ipj ⊗ Uj − 1
⊤ Ipj − 1pj ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj ⊗ U1
⊤ X j for 2 ≤ j ≤ d −

1, by Lemma III.2, for any 2 ≤ k ≤ d − 1,

X k = Ip2⋯pk ⊗ X 1 A p2⋯pk, pk + 1⋯pd

= Ip2⋯pk ⊗ PU1 X 1 A p2⋯pk, pk + 1⋯pd

= Ip2⋯pk ⊗ PU1 Ip2⋯pk ⊗ X 1 A p2⋯pk, pk + 1⋯pd = Ip2⋯pk ⊗ PU1 X k,
(27)

and for any 2 ≤ j < k,

Ipj⋯pk ⊗ Uj − 1
⊤ Ipj − 1⋯pk ⊗ Uj − 2

⊤ ⋯ Ip2⋯pk ⊗ U1
⊤ [X]k

= Ipj⋯pk ⊗ Uj − 1
⊤ Ipj − 1⋯pk ⊗ Uj − 2

⊤ ⋯ Ip2⋯pk ⊗ U1
⊤ ⋅ Ipj + 1⋯pk ⊗ [X]j A pj + 1⋯pk, pk + 1⋯pd

= Ipj + 1⋯pk ⊗ Ipj ⊗ Uj − 1
⊤ Ipj − 1pj ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj ⊗ U1
⊤ [X]j ⋅ A pj + 1⋯pk, pk + 1⋯pd

= Ipj + 1⋯pk ⊗ PUj Ipj ⊗ Uj − 1
⊤ Ipj − 1pj ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj ⊗ U1
⊤ [X]j ⋅ A pj + 1⋯pk, pk + 1⋯pd

= Ipj + 1⋯pk ⊗ PUj Ipj⋯pk ⊗ Uj − 1
⊤ Ipj − 1⋯pk ⊗ Uj − 2

⊤

⋯ Ip2⋯pk ⊗ U1
⊤ Ipj + 1⋯pk ⊗ [X]j A pj + 1⋯pk, pk + 1⋯pd

= Ipj + 1⋯pk ⊗ PUj Ipj⋯pk ⊗ Uj − 1
⊤ Ipj − 1⋯pk ⊗ Uj − 2

⊤

⋯ Ip2⋯pk ⊗ U1
⊤

[X]k,

(28)

where A(i,j) is defined in (5) for any i, j > 0. Therefore, by (27),

[X]k − 1 V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F
= Ip2⋯pk − 1 ⊗ PU1 [X]k − 1 V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F
= Ip2⋯pk − 1 ⊗ U1

⊤ [X]k − 1 V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F
≤ Ip2⋯pk − 1 ⊗ U1

⊤ Ip2⋯pk − 1 ⊗ U1 Ip2⋯pk − 1 ⊗ U1
⊤ ⋅ [X]k − 1 V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F

⋅ smin
−1 Ip2⋯pk − 1 ⊗ U1

⊤ Ip2⋯pk − 1 ⊗ U1

= Ip2⋯pk − 1 ⊗ U1
⊤ [X]k − 1 V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F

⋅ smin
−1 U1

⊤U1 .

(29)

The inequality holds since B F ≤ AB F ⋅ smin
−1 (A) for any invertible

matrix A ∈ ℝm1 × m1 and B ∈ ℝm1 × m2; in the last step, we

used Ip2⋯pk − 1 ⊗ U1 Ip2⋯pk − 1 ⊗ U1
⊤ [X]k − 1 = Ip2⋯pk − 1 ⊗ PU1 [X]k − 1 = [X]k − 1.

Similarly to (29), by (28), for 1 ≤ j ≤ k − 2,
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Ipj + 1⋯pk − 1 ⊗ Uj
⊤ ⋯ Ip2⋯pk − 1 ⊗ U1

⊤ [X]k − 1 · V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F
= Ipj + 2⋯pk − 1 ⊗ PUj + 1 Ipj + 1⋯pk − 1 ⊗ Uj

⊤ ⋯ Ip2⋯pk − 1 ⊗ U1
⊤ [X]k − 1 V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F

= Ipj + 2⋯pk − 1 ⊗ Uj + 1
⊤ Ipj + 1⋯pk − 1 ⊗ Uj

⊤ ⋯ Ip2⋯pk − 1 ⊗ U1
⊤ ⋅ [X]k − 1 V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F

≤ Ipj + 2⋯pk − 1 ⊗ Uj + 1
⊤ Ipj + 1⋯pk − 1 ⊗ Uj

⊤ ⋯ Ip2⋯pk − 1 ⊗ U1
⊤ [X]k − 1 V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F

· smin
−1 Uj + 1

⊤ Uj + 1 .

(30)

By (29) and (30),

[X]k − 1 V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F
≤ Ip2⋯pk − 1 ⊗ U1

⊤ [X]k − 1 V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F
⋅ smin

−1 U1
⊤U1

≤ Ip3⋯pk − 1 ⊗ U2
⊤ Ip2⋯pk − 1 ⊗ U1

⊤ [X]k − 1 ⋅ V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F
⋅ smin

−1 U1
⊤U1 ⋅ smin

−1 U2
⊤U2

≤ …
≤ Uk − 1

⊤ Ipk − 1 ⊗ Uk − 2
⊤ ⋯ Ip2⋯pk − 1 ⊗ U1

⊤ [X]k − 1 ⋅ V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F
⋅ smin

−1 U1
⊤U1 smin

−1 U2
⊤U2 ⋯smin

−1 Uk − 1
⊤ Uk − 1

≤ Uk − 1
⊤ Ipk − 1 ⊗ Uk − 2

⊤ ⋯ Ip2⋯pk − 1 ⊗ U1
⊤ [X]k − 1 ⋅ V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F

⋅ 1
1 − c0

2

k − 1

≤ C Uk − 1
⊤ Ipk − 1 ⊗ Uk − 2

⊤ ⋯ Ip2⋯pk − 1 ⊗ U1
⊤ [X]k − 1 ⋅ V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F

.

(31)

By the definition of V k ∈ ℝ pkrk × rk − 1 and Lemma III.3, we know that V k is the right

singular space of

Uk − 1
⊤ Ipk − 1 ⊗ Uk − 2

⊤ ⋯ Ip2⋯pk − 1 ⊗ U1
⊤ [Y]k − 1 ⋅ V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk

= Uk − 1
⊤ Ipk − 1 ⊗ Uk − 2

⊤ ⋯ Ip2⋯pk − 1 ⊗ U1
⊤ [X]k − 1 ⋅ V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk

+ Uk − 1
⊤ Ipk − 1 ⊗ Uk − 2

⊤ ⋯ Ip2⋯pk − 1 ⊗ U1
⊤ [Z]k − 1 ⋅ V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk ,

Lemma A.3 shows that

Uk − 1
⊤ Ipk − 1 ⊗ Uk − 2

⊤ ⋯ Ip2⋯pk − 1 ⊗ U1
⊤ [X]k − 1 ⋅ V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk V k ⊥ F

≤ 2 Uk − 1
⊤ Ipk − 1 ⊗ Uk − 2

⊤ ⋯ Ip2⋯pk − 1 ⊗ U1
⊤ [Z]k − 1 · V d ⊗ Ipk…pd − 1 ⋯ V k + 1 ⊗ Ipk F

.
(32)

Combine (26), (31) and (32) together, we know that (25) holds for all 2 ≤ k ≤ d, which has

finished the proof of Theorem III.1.

B. Proof of Theorem III.2

For i ≥ 1, by the definition of X(2i) and Lemma III.1, we have
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Y − X(2i)
F
2

= Ip1⋯pd − 1 − P Ip2⋯pd − 1 ⊗ U1
(2i) ⋯ Ipd − 1 ⊗ Ud − 2

(2i) Ud − 1
(2i) · [Y]d − 1

F

2

= [Y]d − 1 F
2 − P Ip2⋯pd − 1 ⊗ U1

(2i) ⋯ Ipd − 1 ⊗ Ud − 2
(2i) Ud − 1

(2i) [Y]d − 1
F
2

= Y
F

2
− X(2i)

F
2

.

Similarly, we have

Y − X(2i − 1)
F
2

= Y F
2

− X(2i − 1)
F
2

.

In addition, we have

Y − X 2i
F
2

= [Y]d − 1 F
2 − P Ip2⋯pd − 1 ⊗ U1

(2i) ⋯ Ipd − 1 ⊗ Ud − 2
(2i) Ud − 1

(2i) [Y]d − 1
F
2

= [Y]d − 1 F
2 − Ud − 1

(2i) ⊤ Ipd − 1 ⊗ Ud − 2
(2i) ⊤ ⋯ Ip2⋯pd − 1 ⊗ U1

(2i) ⊤ ⋅ [Y]d − 1 F
2

=

[Y]1 F
2 − Ud − 1

(2i) ⊤ Ipd − 1 ⊗ Ud − 2
(2i) ⊤ ⋯ Ip2⋯pd − 1 ⊗ U1

(2i) ⊤ ⋅ [Y]d − 1V d
(2i − 1)

F
2

− Ud − 1
(2i) ⊤ Ipd − 1 ⊗ Ud − 2

(2i) ⊤ ⋯ Ip2⋯pd − 1 ⊗ U1
(2i) ⊤ · [Y]d − 1V d ⊥

(2i − 1)
F
2

≤ [Y]1 F
2 − Ud − 1

(2i) ⊤ Ipd − 1 ⊗ Ud − 2
(2i) ⊤ ⋯ Ip2⋯pd − 1 ⊗ U1

(2i) ⊤ ⋅ [Y]d − 1V d
(2i − 1)

F
2

= [Y]1 F
2

− Ipd − 1 ⊗ Ud − 2
(2i) ⊤ Ipd − 2pd − 1 ⊗ Ud − 3

(2i) ⊤ ⋯ Ip2⋯pd − 1 ⊗ U1
(2i) ⊤ ⋅ [Y]d − 1V d

(2i − 1)
F
2

.

The last equation holds since Ud − 1
(2i)

 is the left singular space of

Ipd − 1 ⊗ Ud − 2
(2i) ⊤ Ipd − 2pd − 1 ⊗ Ud − 3

(2i) ⊤ ⋯ Ip2⋯pd − 1 ⊗ U1
(2i)⊤ [Y]d − 1V d

(2i − 1)
 For any

B ∈ ℝn × r and 1 ≤ l ≤ r, we can check that the l-th columns of A(m,n)B and (Im ⊗ B ⊗
Im)A(m,r) are equal:

A(m, n)B [: , l] = ∑
j = 1

n
Bj, l ∑

k = 1

m
e(k − 1)mn + (j − 1)m + k

m2n

= Im ⊗ B ⊗ Im A(m, r)
[: , l]

where e(k − 1)mn + (j − 1)m + k
m2n

 is the ((k−1)mn+(j−1)m+k)-th canonical basis of ℝm2n and A(i,j)

is defined in (5). Therefore,

A(m, n)B = Im ⊗ B ⊗ Im A(m, r) .

By the last equation and Lemma III.2, we have
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Ipd − 1 ⊗ Ud − 2
(2i) ⊤ Ipd − 2pd − 1 ⊗ Ud − 3

(2i) ⊤ ⋯ Ip2⋯pd − 1 ⊗ U1
(2i) ⊤ [Y]d − 1V d

(2i − 1)

= Ipd − 1 ⊗ Ud − 2
(2i) ⊤ Ipd − 2pd − 1 ⊗ Ud − 3

(2i) ⊤ ⋯ Ip2⋯pd − 1 ⊗ U1
(2i) ⊤ Ipd − 1 ⊗ [Y]d − 2 A pd − 1, pd V d

(2i − 1)

= Ipd − 1 ⊗ Ud − 2
(2i) ⊤ Ipd − 2 ⊗ Ud − 3

(2i) ⊤ ⋯ Ip2⋯pd − 2 ⊗ U1
(2i) ⊤ [Y]d − 2

⋅ Ipd − 1 ⊗ V d
(2i − 1) ⊗ Ipd − 1 A pd − 1, rd − 1

= Ipd − 1 ⊗ Ud − 2
(2i) ⊤ Ipd − 2 ⊗ Ud − 3

(2i) ⊤ ⋯ Ip2⋯pd − 2 ⊗ U1
(2i) ⊤ [Y]d − 2 V d

(2i − 1) ⊗ Ipd − 1 ⋅ A pd − 1, rd − 1

= Reshape Ud − 2
(2i) ⊤ Ipd − 2 ⊗ Ud − 3

(2i) ⊤ ⋯ Ip2⋯pd − 2 ⊗ U1
(2i) ⊤ ⋅ [Y]d − 2 V d

(2i − 1) ⊗ Ipd − 1 ,

rd − 2pd − 1, rd − 1

.

Since the realignment does not change the Frobenius norm, we have

Y − X(2i)
F
2

≤ [Y]1 F
2

− Ud − 2
(2i) ⊤ Ipd − 2 ⊗ Ud − 3

(2i) ⊤ ⋯ Ip2⋯pd − 2 ⊗ U1
(2i) ⊤ [Y]d − 2 ⋅ V d

(2i − 1) ⊗ Ipd − 1 F
2

.

(33)

By similar proof of (33), we have

Y − X(2i)
F
2

≤ [Y]1 F
2      − Ud − 2

(2i) ⊤ Ipd − 2 ⊗ Ud − 3
(2i) ⊤ ⋯ Ip2⋯pd − 2 ⊗ U1

(2i) ⊤ ⋅ [Y]d − 2 V d
(2i − 1) ⊗ Ipd − 1 F

2

= [Y]1 F
2

− Ud − 2
(2i) ⊤ Ipd − 2 ⊗ Ud − 3

(2i) ⊤ ⋯ Ip2⋯pd − 2 ⊗ U1
(2i) ⊤ ⋅ [Y]d − 2 V d

(2i − 1) ⊗ Ipd − 1 V d − 1
(2i − 1)

F
2

− Ud − 2
(2i) ⊤ Ipd − 2 ⊗ Ud − 3

(2i) ⊤ ⋯ Ip2⋯pd − 2 ⊗ U1
(2i) ⊤ ⋅ [Y]d − 2 V d

(2i − 1) ⊗ Ipd − 1 V d − 1 ⊥
(2i − 1)

F
2

≤ [Y]1 F
2 − Ud − 2

(2i) ⊤ Ipd − 2 ⊗ Ud − 3
(2i) ⊤ ⋯ Ip2⋯pd − 2 ⊗ U1

(2i) ⊤ ⋅ [Y]d − 2 V d
(2i − 1) ⊗ Ipd − 1 V d − 1

(2i − 1)
F
2

= [Y]1 F
2 − Ipd − 2 ⊗ Ud − 3

(2i) ⊤ ⋯ Ip2⋯pd − 2 ⊗ U1
(2i) ⊤ ⋅ [Y]d − 2 V d

(2i − 1) ⊗ Ipd − 1 V d − 1
(2i − 1)

F
2

≤ ⋯

≤ [Y]1 F
2 − [Y]1 V d

(2i − 1) ⊗ Ip2…pd − 1 ⋯ V 3
(2i − 1) ⊗ Ip2 V 2

(2i − 1)
F
2

= [Y]1 Ip2⋯pd − P V d
(2i − 1) ⊗ Ip2…pd − 1 ⋯ V 3

(2i − 1) ⊗ Ip2 V 2
(2i − 1)

F

2

= Y − X(2i − 1)
F
2

.

Similarly, we can prove (11) holds for k = 2i, i ≥ 0.

C. Proof of Theorem IV.1

Without loss of generality, we assume σ2 = 1. We still let Ui, V , Ri and Ri denote Ui
(0), V i

(1),

Ri
(0) and Ri

(0), respectively.

Lemma A.2 Part 4 immediately shows that (15) holds with probability at least 1 − Ce−cp.

Next, we show that with probability at least 1 − Ce−cp,

sinΘ Uk, Uk

≤ C
∑i = 1

k − 1 piri − 1ri + pkrk − 1 + pk + 1⋯pd
λk

≤ 1
2,      ∀1 ≤ k ≤ d − 1.

(34)
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Recall that

U1 = SVDr1
L [Y]1 ,      [Y]1 = [X]1 + [Z]1,

where X 1 ∈ ℝp1 × p−1 satisfying rank X 1 = r1, Z 1 ∈ ℝp1 × p−1, by Lemmas A.3 and

A.2, with probability 1−Ce−cp, we have

U1 ⊥
⊤ [X]1 ≤ 2 [Z]1 ≤ C p1

1/2 + p2⋯pd
1/2 .

Therefore, with probability at least 1 − Ce−cp,

sinΘ U1, U1 ≤
U1 ⊥

⊤ U1U1
⊤[X]1

sr1 U1
⊤[X]1

=
U1 ⊥

⊤ [X]1
sr1 [X]1

≤ C
p1 + p2⋯pd

λ1
.

For 2 ≤ i ≤ j ≤ d − 1, by the definition of Ui and Lemma III.2, we have

[X]j
= Ip2⋯pj ⊗ [X]1 A p2⋯pj, pj + 1⋯pd

= Ip2⋯pj ⊗ PU1[X]1 A p2⋯pj, pj + 1⋯pd

= Ip2⋯pj ⊗ PU1 Ip2⋯pj ⊗ [X]1 A p2⋯pj, pj + 1⋯pd

= Ip2⋯pj ⊗ U1 Ip2⋯pj ⊗ U1
⊤ [X]j

(35)

and

Ipi⋯pj ⊗ Ui − 1
⊤ ⋯ Ip2⋯pj ⊗ U1

⊤ [X]j

= Ipt + 1⋯pj ⊗ Ipt ⊗ Ui − 1
⊤ ⋯ Ipt + 1⋯pj ⊗ Ip2⋯pt ⊗ U1

⊤

⋅ Ipi + 1⋯pj ⊗ [X]i A pt + 1⋯pj, pj + 1⋯pd

= Ipi + 1⋯pj ⊗ Ipi ⊗ Ui − 1
⊤ ⋯ Ip2⋯pi ⊗ U1

⊤ [X]i ⋅ A pi + 1⋯pj, pj + 1⋯pd

= Ipi + 1⋯pj ⊗ PUi Ipi ⊗ Ui − 1
⊤ ⋯ Ip2⋯pi ⊗ U1

⊤ [X]i ⋅ A pi + 1⋯pj, pj + 1⋯pd

= Ipi + 1⋯pj ⊗ PUi ⋅ Ipi + 1⋯pj ⊗ Ipi ⊗ Ui − 1
⊤ ⋯ Ip2⋯pi ⊗ U1

⊤ [X]i ⋅ A pi + 1⋯pj, pj + 1⋯pd

= Ipi + 1⋯pj ⊗ Ui Ipi + 1⋯pj ⊗ Ui
⊤ Ipi⋯pj ⊗ Ui − 1

⊤

⋯ Ip2⋯pj ⊗ U1
⊤

[X]j,

(36)

where Ipi + 1⋯pj = 1 if i = j. Let

Lk = sinΘ Uk, Uk ,      2 ≤ k ≤ d − 1.

For k = 2, by (35) and Lemma A.1, with probability at least 1 − Ce−cp,
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sr2 Ip2 ⊗ U1
⊤ [X]2

≥ smin Ip2 ⊗ U1
⊤ Ip2 ⊗ U1 sr2 [X]2

= smin U1
⊤U1 λ2

= 1 − sinΘ U1, U1
2λ2

≥ 3
4λ2 .

Since U2 = SVDr2
L Ip2 ⊗ U1

⊤ [Y]2 , and Ip2 ⊗ U1
⊤ Y 2 = Ip2 ⊗ U1

⊤ X 2 + Ip2 ⊗ U1
⊤ Z 2,

by Lemma A.3 and Lemma A.1, we know that with probability at least 1 − Ce−cpr,

U2 ⊥
⊤ Ip2 ⊗ U1

⊤ [X]2
≤ 2 Ip2 ⊗ U1

⊤ [Z]2
≤ C p2r1 + p3⋯pd

1/2 + p1r1 .

Combine the two previous inequalities together and recall that U2 is the left singular space of

Ip2 ⊗ U1
⊤ X 2, we have

sinΘ U2, U2 ≤
U2 ⊥

⊤ U2U2
⊤ Ip2 ⊗ U1

⊤ [X]2

sr2 U2
⊤ Ip2 ⊗ U1

⊤ [X]2
=

U2 ⊥
⊤ Ip2 ⊗ U1

⊤ [X]2

sr2 Ip2 ⊗ U1
⊤ [X]2

≤ C
p1r1 + p2r1 + p3⋯pd

1/2

λ2

with probability at least 1 − Ce−cp.

Assume that (34) holds for k ≤ j − 1 with probability 1 − Ce−cp. For k = j, by Lemma A.1

and (36), with probability at 1 − Ce−cp, we have

srj Ipj ⊗ Uj − 1
⊤ Ipj − 1pj ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj − 1pj ⊗ U1
⊤ ⋅ [X]j

≥ smin Ipj ⊗ Uj − 1
⊤ Ipj ⊗ Uj − 1 ⋅ srj Ipj − 1pj ⊗ Uj − 2

⊤

⋯ Ip2⋯pj − 1pj ⊗ U1
⊤ [X]j

= smin Uj − 1
⊤ Uj − 1 ⋅ srj Ipj − 1pj ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj − 1pj ⊗ U1
⊤ [X]j

≥ smin Uj − 1
⊤ Uj − 1 ⋅ smin Ipj − 1pj ⊗ Uj − 2

⊤ Ipj − 1pj ⊗ Uj − 2

⋅ srj Ipj − 2pj − 1pj ⊗ Uj − 3
⊤ ⋯ Ip2⋯pj − 1pj ⊗ U1

⊤ [X]j
≥ ⋯
≥ smin Uj − 1

⊤ Uj − 1 ⋯smin U1
⊤U1 srj [X]j

= 1 − Lj − 1
2 ⋯ 1 − L1

2λj
≥ ( 3/4)j − 1λj ≥ cλj .

(37)
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In the last inequality, we used the fact that d is a fixed number and

3/4 j − 1 ≥ 3/4 d − 1 ≥ c.

By the definition of Uj and Lemma III.3, we have

Uj = SVDrj
L Ipj ⊗ Uj − 1

⊤ Ipj − 1pj ⊗ Uj − 2
⊤ ⋯ Ip2⋯pj − 1pj ⊗ U1

⊤ [Y]j .

Note that

Ipj ⊗ Uj − 1
⊤ Ipj − 1pj ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj ⊗ U1
⊤ [Y]j

= Ipj ⊗ Uj − 1
⊤ Ipj − 1pj ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj ⊗ U1
⊤ [X]j + Ipj ⊗ Uj − 1

⊤ Ipj − 1pj ⊗ Uj − 2
⊤

⋯ Ip2⋯pj ⊗ U1
⊤ [Z]j,

by Lemma A.3, with probability at least 1 − e−cpr2
,

Uj ⊥
⊤ Ipj ⊗ Uj − 1

⊤ Ipj − 1pj ⊗ Uj − 2
⊤ ⋯ Ip2⋯pj − 1pj ⊗ U1

⊤ [X]j

≤ 2 Ipj ⊗ Uj − 1
⊤ Ipj − 1pj ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj − 1pj ⊗ U1
⊤ [Z]j

≤ C ∑
i = 1

j − 1
piri − 1ri

1/2
+ pjrj − 1

1/2 + pj + 1⋯pd
1/2 .

Therefore, with probability at least 1 − Ce−cp,

sinΘ Uj, Uj

≤
Uj ⊥

⊤ UjUj
⊤ Ipj ⊗ Uj − 1

⊤ ⋯ Ip2⋯pj ⊗ U1
⊤ [X]j

srj Uj
⊤ Ipj ⊗ Uj − 1

⊤ ⋯ Ip2⋯pj ⊗ U1
⊤ [X]j

=
Uj ⊥

⊤ Ipj ⊗ Uj − 1
⊤ ⋯ Ip2⋯pj ⊗ U1

⊤ [X]j

srj Ipj ⊗ Uj − 1
⊤ ⋯ Ip2⋯pj ⊗ U1

⊤ [X]j

≤ C
∑i = 1

j − 1 piri − 1ri
1/2

+ pjrj − 1
1/2 + pj + 1⋯pd

1/2

λj
.

Therefore, (13) holds with probability 1 − Ce−cp.

Finally, we consider (14). Let E0 = (13) and (15) hold . Without loss of generality, we only

show that under E0,

sinΘ V k, V k ≤ C
∑i = 1

d piri − 1ri
λk − 1

≤ 1
2,      ∀2 ≤ k ≤ d . (38)
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In fact, (38) can be proved by induction. Let V d ∈ ℝpd × rd − 1 be the right singular space of

X d − 1. Then there exists an orthogonal matrix Qd − 1 ∈ Ord − 1 such that

V dQd − 1 = SVDR Ud − 1
⊤ Ipd − 1 ⊗ Ud − 2

⊤ ⋯ Ipd − 1…p2 ⊗ U1
⊤ [X]d − 1 .

Similarly to (37), under E0,

srd − 1 Ud − 1
⊤ Ipd − 1 ⊗ Ud − 2

⊤ ⋯ Ipd − 1…p2 ⊗ U1
⊤ [X]d − 1

≥ ( 3/4)d − 1λd − 1 ≥ cλd − 1 .

Therefore, by Lemma A.3, under E0,

sinΘ V d, V d
= sinΘ V d, V dQd − 1

≤
Ud − 1

⊤ Ipd − 1 ⊗ Ud − 2
⊤ ⋯ Ipd − 1…p2 ⊗ U1

⊤ [X]d − 1V d ⊥
⊤

srd − 1 Ud − 1
⊤ Ipd − 1 ⊗ Ud − 2

⊤ ⋯ Ipd − 1…p2 ⊗ U1
⊤ [X]d − 1

≤
2 Ud − 1

⊤ Ipd − 1 ⊗ Ud − 2
⊤ ⋯ Ipd − 1…p2 ⊗ U1

⊤ [Z]d − 1

srd − 1 Ud − 1
⊤ Ipd − 1 ⊗ Ud − 2

⊤ ⋯ Ipd − 1…p2 ⊗ U1
⊤ [X]d − 1

≤ C
∑i = 1

d piri − 1ri
λd − 1

.

Suppose (38) holds for j + 1 ≤ k ≤ d. For k = j, since V j is the right singular space of

X j − 1 V d ⊗ Ipj…pd − 1 ⋯ V j + 1 ⊗ Ipj , there exists Qj − 1 ∈ Orj − 1 such that

V jQj − 1 = SV DR Uj − 1
⊤ Ipj − 1 ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj − 1 ⊗ U1
⊤ ⋅ [X]j − 1 V d ⊗ Ipj⋯pd − 1

⋯ V j + 1 ⊗ Ipj .

By Lemma A.1, (35), (36) and (37), under E0
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srj − 1 Uj − 1
⊤ Ipj − 1 ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj − 1 ⊗ U1
⊤ ⋅ [X]j − 1 V d ⊗ Ipj…pd − 1 ⋯ V j + 1 ⊗ Ipj

≥ srj − 1 Uj − 1
⊤ Ipj − 1 ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj − 1 ⊗ U1
⊤ [X]j − 1 ⋅ V d ⊗ Ipj…pd − 1

⋯ V j + 2 ⊗ Ipjpj + 1 ⋅ V j + 1 ⊗ Ipj ⋅ smin V j + 1
⊤ ⊗ Ipj V j + 1 ⊗ Ipj

= srj − 1 Uj − 1
⊤ Ipj − 1 ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj − 1 ⊗ U1
⊤ [X]j − 1 ⋅ V d ⊗ Ipj…pd − 1 ⋯ V j + 2 ⊗ Ipjpj + 1

⋅ smin V j + 1
⊤ V j + 1

≥ ⋯
≥ srj − 1 Uj − 1

⊤ Ipj − 1 ⊗ Uj − 2
⊤ ⋯ Ip2⋯pj − 1 ⊗ U1

⊤ [X]j − 1 ⋅ smin V d
⊤V d ⋯smin V j + 1

⊤ V j + 1
≥ smin Uj − 1

⊤ Uj − 1 ⋅ srj − 1 Ipj − 1 ⊗ Uj − 2
⊤ ⋯ Ip2⋯pj − 1 ⊗ U1

⊤ [X]j − 1 ⋅ smin V d
⊤V d

⋯smin V j + 1
⊤ V j + 1

≥ 3
4

j − 1
λj − 1 ⋅ 3

4
d − j

≥ cλj − 1 .

Note that V j ∈ Opjrj, rj − 1 is the right singular space of

Uj − 1
⊤ Ipj − 1 ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj − 1 ⊗ U1
⊤ [Y]j − 1 V d ⊗ Ipj…pd − 1 ⋯ V j + 1 ⊗ Ipj  and

Uj − 1
⊤ Ipj − 1 ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj − 1 ⊗ U1
⊤ [Y]j − 1 ⋅ V d ⊗ Ipj⋯pd − 1 ⋯ V j + 1 ⊗ Ipj

= Uj − 1
⊤ Ipj − 1 ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj − 1 ⊗ U1
⊤ [X]j − 1 ⋅ V d ⊗ Ipj⋯pd − 1 ⋯ V j + 1 ⊗ Ipj

+ Uj − 1
⊤ Ipj − 1 ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj − 1 ⊗ U1
⊤ [Z]j − 1 ⋅ V d ⊗ Ipj⋯pd − 1 ⋯ V j + 1 ⊗ Ipj ,

By Lemma A.3, under E0,

sinΘ V j, V j = sinΘ V j, V jQj − 1

≤ Uj − 1
⊤ Ipj − 1 ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj − 1 ⊗ U1
⊤ [X]j − 1 ⋅ V d ⊗ Ipj…pd − 1 ⋯ V j + 1 ⊗ Ipj V j ⊥

/srj − 1 Uj − 1
⊤ Ipj − 1 ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj − 1 ⊗ U1
⊤ [X]j − 1 ⋅ V d ⊗ Ipj…pd − 1 ⋯ V j + 1 ⊗ Ipj

≤ 2 Uj − 1
⊤ Ipj − 1 ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj − 1 ⊗ U1
⊤ [Z]j − 1 ⋅ V d ⊗ Ipj…pd − 1 ⋯ V j + 1 ⊗ Ipj

/srj − 1 Uj − 1
⊤ Ipj − 1 ⊗ Uj − 2

⊤ ⋯ Ip2⋯pj − 1 ⊗ U1
⊤ [X]j − 1 ⋅ V d ⊗ Ipj…pd − 1 ⋯ V j + 1 ⊗ Ipj

≤ C
∑i = 1

d piriri − 1
1/2

λj − 1
.

Therefore, under E0, (38) holds.

Thus, we have finished the proof of Theorem IV.1.

D. Proof of Corollary IV.1

Let and Q = {(15), (34) hold}, then ℙ Qc ≤ C exp( − cp) and
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X(t) − X F
2

≤ C ∑
i = 1

d
piriri − 1      under Q .

Under Qc, due to the property of projection matrices, we know that

X(t)
F ≤ Y F ≤ X F + Z F .

Moreover,

E X(t) − X F
4

≤ C E X(t)
F
4

+ X F
4

≤ C X
F

4
+ CE Z

F

4

≤ C exp 4c0p + CE χp1⋯pd
2 2

≤ C exp 4c0p + C p1⋯pd
2 

≤ C exp 4c0p + C exp 2c0p
≤  C exp 4c0p .

Therefore, we have the following upper bound for the Frobenius norm risk of X:

E X(t) − X F
2

= E X(t) − X F
2

1Q + E X(t) − X F
2

1Qc

≤ C ∑
i = 1

d
piriri − 1 + E X(t) − X F

4
⋅ ℙ Qc

≤ C ∑
i = 1

d
piriri − 1 + C exp 4c0 − c p/2 .

By selecting c0 < c/4, we have

E X(t) − X F
2

≤ C ∑
i = 1

d
piriri − 1

Therefore, we have finished the proof of Corollary IV.1.

E. Proof of Theorem IV.2

Since the i.i.d. Gaussian distribution, Z N 0, σ2 , is a special case of D and

inf
X

sup
X ∈ Fp, r(λ), D ∈ D

EZ D X − X

F

2

≥ inf
X

sup
X ∈ Fp, r(λ), Zi.i.d.N 0, σ2

EZ D X − X

F

2,
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we only need to focus on the setting that Z N 0, σ2  while developing the lower bound

result.

Without loss of generality, assume σ2 = 1. Since d is a fixed number, we only need to show

that for any 1 ≤ i ≤ d,

inf
X

sup
X ∈ Fp, r(λ)

E X − X
F

2 ≥ cpiriri − 1 . (39)

Suppose X can be written as (1), Uj ∈ ℝ pjrj − 1 × rj and V j ∈ ℝ pjrj × rj − 1 are reshaped

from Gj ∈ ℝrj − 1 × pj × rj, G1 = U1, Gd = Vd. For any 1 ≤ i ≤ d − 1, by Lemma III.1, we have

[X]i = Ip2⋯pi ⊗ U1 ⋯ Ipi ⊗ Ui − 1 UiV i + 1
⊤ ⋅ V i + 2

⊤ ⊗ Ipi + 1
⋯ V d

⊤ ⊗ Ipi + 1⋯pd − 1 .
(40)

For all j ≠ i, 1 ≤ j ≤ d−1, let Uj
i.i.d.N(0, 1), V d

i.i.d.N(0, 1) and U1, …, Ui−1, Ui+1, …, Ud−1, Vd

are all independent. By Lemma A.1, for any 1 ≤ j ≤ d − 1, we have

srj Ip2⋯pj ⊗ U1 ⋯ Ipj ⊗ Uj − 1 Uj
≥ smin Ip2⋯pj ⊗ U1 ⋯smin Uj = sr1 U1 ⋯srj Uj .

Similarly,

srj V j + 1
⊤ V j + 2

⊤ ⊗ Ipj + 1 ⋯ V d
⊤ ⊗ Ipj + 1⋯pd − 1

≥ srj V j + 1 ⋯srd − 1 V d .

Moreover, Lemma A.1 Part 1 tells us

srj Ip2⋯pj ⊗ U1 ⋯ Ipj ⊗ Uj − 1 UjV j + 1
⊤ ⋅ V j + 2

⊤ ⊗ Ipj + 1
⋯ V d

⊤ ⊗ Ipj + 1⋯pd − 1
≥ srj Ip2⋯pj ⊗ U1 ⋯ Ipj ⊗ Uj − 1 Uj ⋅ srj
V j + 1

⊤ V j + 2
⊤ ⊗ Ipj + 1 ⋯ V d

⊤ ⊗ Ipj + 1⋯pd − 1
≥ sr1 U1 ⋯srj Uj srj V j + 1 ⋯srd − 1 V d .

(41)

Recall that Vj is reshaped from Uj for all 1 ≤ j ≤ d − 1, by [93][Corollary 5.35], we know

that with probability at least 1 − Ce−cp, for all 1 ≤ j ≤ d − 1, j ≠ i,
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pjrj − 1
4 ≤ pjrj − 1 − rj − pjrj − 1

25
≤ srj Uj ≤ s1 Uj

≤ pjrj − 1 + rj + pjrj − 1
25 ≤ 2 pjrj − 1,

pjrj
4 ≤ srj − 1 V j ≤ s1 V j ≤ 2 pjrj,

 and       pd
4 ≤ srd − 1 V d ≤ sr1 V d ≤ 2 pd .

(42)

For a fixed U0 ∈ Opiri − 1, ri, define the following ball with radius ε > 0,

B U0, ε = U′ ∈ Opiri − 1, ri: sinΘ U′, U0 F ≤ ε .

By Lemma 1 in [94], for 0 < α < 1 and 0 < ε ≤ 1, there exist Ui
(1)′, …, Ui

(m)′ ⊆ B U0, ε  such

that

m ≥
c0
α

ri piri − 1 − ri
,

min
1 ≤ j ≠ k ≤ m

sinΘ Ui
(j)′, Ui

(k)′
F

≥ αε .

By Lemma 1 in [37], one can find a rotation matrix Ok ∈ Ori such that

U0 − Ui
(k)′Ok F ≤ 2 sinΘ U0, Ui

(k)′
F

≤ 2ε .

Let Ui
(k) = Ui

(k)′Ok, we have

Ui
(k) − U0 F ≤ 2ε,

sinΘ Ui
(j), Ui

(k)
F

≥ αε,      1 ≤ j < k ≤ m .

Let Ui
(k) = S + Ui

(k), where Si.i.d.N 0, τ2 . Set τ ≥ 8/ pi, [93][Corollary 5.35] shows that with

probability at least 1 − Ce−cp,
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τ piri − 1
8

≤ τ piri − 1 − ri − piri − 1
25 − 1

≤ sri(S) − s1 Ui
(k)

≤ sri Ui
(k) ≤ s1 Ui

(k) ≤ s1(S) + s1 Ui
(k)

≤ τ piri − 1 + ri + piri − 1
25 + 1

≤ 2τ piri − 1 .

(43)

If 2 ≤ i ≤ d − 1, since V i
(k) is reshaped from Ui

(k), we know that V i
(k) = T + V i

(k), where

T i.i.d.N 0, τ2 , and V i
(k) is realigned from Ui

(k). Notice that

s1 V i
(k) = V i

(k) ≤ V i
(k)

F = Ui
(k)

F = ri,

Since τ ≥ 8/ pi, by [93][Corollary 5.35], with probability at least 1 − Ce−cpiri,

τ piri
8 ≤ τ piri − ri − 1 − piri

25 − ri

≤ sri(T ) − s1 V i
(k) ≤ sri V i

(k)

≤ s1 V i
(k) ≤ s1(T ) + s1 V i

(k)

≤ τ piri + ri − 1 + piri
25 + ri

≤ 2τ piri .

(44)

Choose fixed U1, …, Ui−1, Vi+1, ⋯, Vd, S such that (42), (43) and (44) hold. Let

X(k)
i = Ip2⋯pi ⊗ U1 ⋯ Ipi ⊗ Ui − 1 Ui

(k)V i + 1
⊤ ⋅ V i + 2

⊤ ⊗ Ipi + 1
⋯ V d

⊤ ⊗ Ipi + 1⋯pd − 1
(45)

and X(k) ∈ ℝp1 × ⋯ × pd is the corresponding tensor. (41), (42), (43) and (44) together show

that

σrj X(k)
j ≥ τ ∏

k = 1

j pkrk − 1
8 ∏

k = j + 1

d pkrk
8

= τ p1⋯pdr1⋯rd − 1
C rj

(46)

By setting τ =
C max1 ≤ i ≤ d − 1λimax1 ≤ j ≤ d − 1 rj

p1⋯pdr1⋯rd − 1
  ∨  8 max1 ≤ i ≤ d − 1 1/pi, we have
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σrj X(k)
j ≥ λj,      ∀1 ≤ j ≤ d − 1

For 1 ≤ k < j ≤ m,

X(k) − X(j) F
2

= ∥ Ip2⋯pi ⊗ U1 ⋯ Ipi ⊗ Ui − 1 Ui
(k) − Ui

(j) ⋅ V i + 1
⊤ V i + 2

⊤ ⊗ Ipi + 1 ⋯ V d
⊤ ⊗ Ipi + 1⋯pd − 1 ∥F

2

≥ smin
2 Ip2⋯pi ⊗ U1 ⋯ Ipi ⊗ Ui − 1 · ∥ Ui

(k) − Ui
(j) V i + 1

⊤ V i + 2
⊤ ⊗ Ipi + 1 ⋯ V d

⊤ ⊗ Ipi + 1⋯pd − 1 ∥F
2

= sri − 1
2 Ip2⋯pi − 1 ⊗ U1 ⋯Ui − 1 ⋅ sri

2 V i + 1
⊤ V i + 2

⊤ ⊗ Ipi + 1 ⋯ V d
⊤ ⊗ Ipi + 1⋯pd − 1 · Ui

(k) − Ui
(j)

F
2

= sri − 1
2 Ip2⋯pi − 1 ⊗ U1 ⋯Ui − 1 ⋅ sri

2 V i + 1
⊤ V i + 2

⊤ ⊗ Ipi + 1 ⋯ V d
⊤ ⊗ Ipi + 1⋯pd − 1 · Ui

(k) − Ui
(j)

F
2

≥ sr1
2 U1 ⋯sri − 1

2 Ui − 1 sri
2 V i + 1 ⋯srd − 1

2 V d ⋅ min
O ∈ Ori

Ui
(k) − Ui

(j)O F
2

≥ ∏
ℎ = 1

i − 1 pℎrℎ − 1
16 ∏

l = i + 1

d plrl
16 min

O ∈ Ori
Ui

(k) − Ui
(j)O F

2

≥ ∏
ℎ = 1

i − 1 pℎrℎ − 1
16 ∏

l = i + 1

d plrl
16 sin Θ Ui

(k), Ui
(j)

F
2

≥ c ∏
ℎ = 1

i − 1
pℎTℎ − 1 ∏

l = i + 1

d
plrl α2ε2

.

In addition, let Y(k) = X(k) + Z(k) and Z(k)i.i.d.N(0, 1). The KL-divergence between

distributions Y(k) and Y(j) is

DKL Y(k) Y(j) = 1
2 X(k) − X(j) F

2

= 1
2 Ip2⋯pt ⊗ U1 ⋯ Ipi ⊗ Ui − 1 Ui

(k) − Ui
(j) ⋅ V i + 1

⊤ V i + 2
⊤ ⊗ Ipi + 1 ⋯ V d

⊤ ⊗ Ipi + 1⋯pd − 1
F

2

≤ 1
2 Ip2⋯pt ⊗ U1 ⋯ Ipt ⊗ Ui − 1

2 ⋅ V i + 1
⊤ V i + 2

⊤ ⊗ Ipi + 1 ⋯ V d
⊤ ⊗ Ipi + 1⋯pd − 1

2 ⋅ Ui
(k) − Ui

(j)
F
2

≤ 1
2s1

2 U1 ⋯s1
2 Ui − 1 s1

2 V i + 1 ⋯s1
2 V d Ui

(k) − Ui
(j)

F
2

≤ 1
2 ∏
ℎ = 1

i − 1
4pℎrℎ − 1 ∏

l = i + 1

d
4plrl ⋅ Ui

(k) − U0 F + Ui
(k) − U0 F

2

≤ C ∏
ℎ = 1

i − 1
pℎrℎ − 1 ∏

l = i + 1

d
plrl ε2

.

By generalized Fano’s Lemma,

inf
X

sup
X ∈ X(k)

k = 1
m

E X − X

F

≥ c ∏
ℎ = 1

i − 1
pℎrℎ − 1 ∏

l = i + 1

d
plrlαε ⋅ 1 −

C ∏ℎ = 1
i − 1 pℎrℎ − 1 ∏l = i + 1

d plrl ε2 + log2
ri piri − 1 − ri log c0/α .
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By setting ε = c′
ri piri − 1 − ri

C∏ℎ = 1
i − 1 pℎrℎ − 1 ∏l = i + 1

d plrl
≤ 1

2 , α = (c0 ^ 1)/8, we know that for any 1

≤ i ≤ d − 1,

inf
X

sup
X ∈ Fp, r(λ)

E X − X

F

2

≥

inf
X

sup
X ∈ X(k)

k = 1
m

E X − X

F

2

≥ c1ripiri − 1 .

For i = d, similarly to the case i = 1, we have

inf
X

sup
X ∈ Fp, r(λ)

E X − X
F

2 ≥ c1pdrd − 1 .

Therefore, we have proved Theorem IV.2.

F. Proof of Proposition V.1

Define G1 ∈ ℝp × r1, Gk ∈ ℝrk − 1 × p × rk, Gd ∈ ℝp × rd − 1 such that

G1, [i, l] = G1(i) l,      ∀i ∈ [p], l ∈ r1 ,

Gk, [j, i, l] = Gk i, ej
rk − 1

l
,      ∀i ∈ [p], j ∈ rk − 1 , l ∈ rk , 2 ≤ k ≤ d − 1,

Gd, [i, l] = Gd i, el
rd − 1 , ∀i ∈ [p], l ∈ rd − 1

where ei
(k) is the i-th canonical basis of ℝk. Then

P1 Xt + 1 = G1, Xt + 1, :
⊤ ∈ ℝr1, P2 Xt + 1, Xt + 2 = G2 Xt + 2, P1 Xt + 1 =linear map ∑

j = 1

r1
G2

Xt + 2, ej
r1 P1 Xt + 1 j

= G1, Xt + 1, :  G2, : , Xt + 2, :
⊤ .

By induction, for any 2 ≤ k ≤ d − 1,

Pk Xt + 1, …, Xt + k

= Gk Xt + k, Pk − 1 Xt + 1, …, Xt + k − 1   =
linear map

∑
j = 1

rk − 1
Gk Xt + k, ej

rk − 1 Pk − 1 Xt + 1, …, Xt + k − 1 j

= Gk, : , Xt + k, :
⊤ Pk − 1 Xt + 1, …, Xt + k − 1

= G1, Xt + 1, :  G2, : , Xt + 2, : ⋯Gk, : , Xt + k, :
⊤
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and

ℙ Xt + d ∣ Xt + 1, …, Xt + d − 1
= Gd Xt + d, Pd − 1 Xt + 1, …, Xt + d − 1
= Pd − 1

⊤ Xt + 1, …, Xt + d − 1 Gd, Xt + d, :
⊤

= G1, Xt + 1, :  G2, : , Xt + 2, : ⋯Gd − 1, : , Xt + d − 1, : Gd, Xt + d, :
⊤ .

Therefore,

P = 〚 G1, G2, …, Gd − 1, Gd 〛

and has TT-rank (r1, …, rd−1).

G. Proof of Proposition V.2

Let Z = Pemp − P, then EZ = 0. Let

Ti1, …, id
(k) = 1 X i1, …, id − 1; k = id ,      ∀1 ≤ k ≤ n;

1 ≤ i1, …, id ≤ p

and

Zi1, …, id
(k) = Ti1, …, id

(k) − ℙ id ∣ i1, …, id − 1 ,
∀1 ≤ k ≤ n; 1 ≤ i1, …, id ≤ p .

Then EZ(k) = 0. Moreover, by definition, for any 1 ≤ j ≤ d − 1, the

rows of Z(k)
j ∈ ℝpj × pd − j

 are independent, and there exists a partition

Ω1
(j), …, Ωpd − j − 1

(j)
 of {1, …, pd−j} satisfying Ω1

(j) = ⋯ = Ωpd − j − 1
(j) p

= p, such that

Z(k)
j : , Ω1

(j) , …, Z(k)
j : , Ωpd − j − 1

(j)  are independent and

∑
l ∈ Ωi

(j)
T(k)

j m, l = 1,      ∀1 ≤ m ≤ pj, 1 ≤ k ≤ n .

Therefore,

∑
l ∈ Ωi

(j)
Z(k)

j m, l

≤ ∑
l ∈ Ωi

(j)
T(k)

j m, l + E ∑
l ∈ Ωi

(j)
T(k)

j m, l

= 2,      ∀1 ≤ m ≤ pj, 1 ≤ k ≤ n .
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For any fixed x1 ∈ ℝpj
 and x2 ∈ ℝpd − j

 satisfying ∥x1∥2 = 1 and ∥x∥2 = 1, we have

∑
l ∈ Ωi

(j)
Z(k)

j m, l x2 l

≤ max
l ∈ Ωi

(j)
x2 l ∑

l ∈ Ωi
(j)

Z(k)
j m, l

≤ 2 max
l ∈ Ωi

(j)
x2 l ≤ 2 x2 Ωi

(j)
2 .

By [95, Exercise 2.4], ∑l ∈ Ωi
(j) Z(k)

j m, l x2 l is 2 x2 Ωi
(j)

2-sub-Gaussian. Therefore,

x1
⊤ Z(k)

jx2

= ∑
m = 1

pj
x1 m ∑

i = 1

pd − j − 1
∑

l ∈ Ωi
(j)

Z(k)
j m, l x2 l

is ∑m = 1
pj

x1 m
2 ∑i = 1

pd − j − 1
4 x2 Ωi

(j)
2
2 1/2

= 2 x1 2 x2 2 = 2‐subGaussian. Notice that

Z = 1
n ∑k = 1

n Z(k), the Hoeffding bound [95, Proposition 2.5] shows that

ℙ x1
⊤[Z]jx2 ≥ t ≤ 2 exp − nt2

8 ,      ∀t ≥ 0.

Therefore, for any fixed U ∈ Opj, rj, V ∈ Opd − j, prj + 1, x ∈ ℝrj, y ∈ ℝprj + 1 with ∥x∥2 = 1

and ∥y∥2 = 1,

ℙ x⊤U⊤[Z]jV ⊤y ≥ t ≤ 2 exp − nt2
8 ,      ∀t ≥ 0.

Similarly to the proof of (49), with probability at least 1 − Ce−cp, for all 1 ≤ k ≤ d − 1,

Uk
(0) ⊤ Ip ⊗ Uk − 1

(0) ⊤ ⋯ Ipk − 1 ⊗ U1
(0) ⊤ [Z]k ⋅ V d

(1) ⊗ Ipd − k − 1 ⋯ V k + 2
(1) ⊗ Ip

≤ C
∑i = 1

d piriri − 1
n .

Similarly, with probability at least 1 − Ce−cp,

[Z]1 V d
(1) ⊗ Ipd − 2 ⋯ V 3

(1) ⊗ Ip V 2
(1)

≤ C
∑i = 1

d piriri − 1
n .
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Notice that X F ≤ r X  if rank(X) = r, by the previous two inequalities and Theorem III.1,

we know that with probability at least 1 − Ce−cp,

P(1) − P F
2

≤ C max
1 ≤ i ≤ d − 1

ri
∑i = 1

d piriri − 1
n .

Finally, by the definition of P, we have

P − P F ≤ P(1) − P F + P(1) − P F
≤ 2 P(1) − P F,

which has finished the proof of Theorem V.2.

H. Proof of Lemma III.3

By symmetry, we only need to prove (6). By definition, (6) holds for k = 1. Suppose

it holds for k = j. For k = j + 1, since Sj + 1 ∈ ℝ rjpj + 1 × pj + 2⋯pd  is realigned

from Sj = Mj
⊤Sj ∈ ℝrj × pj + 1⋯pd , Lemma III.2 that Sj + 1 = Ipj + 1 ⊗ Sj A pj + 1, pj + 2⋯pd

where the realignment matrix A(i,j) is defined in (5). Therefore,

Sj + 1 = Ipj + 1 ⊗  Sj A pj + 1, pj + 2⋯pd

= Ipj + 1 ⊗ Mj⊤Sj A pj + 1, pj + 2⋯pd

= Ipj + 1 ⊗ Mj⊤ Ipj + 1 ⊗ Sj A pj + 1, pj + 2⋯pd

= Ipj + 1 ⊗ Mj⊤ ⋅ Ipj + 1 ⊗ Ipj ⊗ Mj − 1
⊤ ⋯ Ip2⋯pj ⊗ M1

⊤ [T]j ⋅ A pj + 1, pj + 2⋯pd

= Ipj + 1 ⊗ Mj⊤ Ipj + 1 ⊗ Ipj ⊗ Mj − 1
⊤ ⋯ Ipj + 1 ⊗ Ip2⋯pj ⊗ M1

⊤ Ipj + 1 ⊗ [T]j ⋅ A pj + 1, pj + 2⋯pd

= Ipj + 1 ⊗ Mj⊤ Ipjpj + 1 ⊗ Mj − 1
⊤ ⋯ Ip2⋯pj + 1 ⊗ M1

⊤ [T]j + 1
.

The third equation and the fifth equation hold since (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD); the

last equation holds since Y j + 1 = Ipj + 1 ⊗ Y j A pj + 1, pj + 2⋯pd  and A ⊗ (B ⊗ C) = (A ⊗

B) ⊗ C.

Also notice that Sk = Mk
⊤Sk, we have finished the proof of (6).

I. Technical Lemmas

We collect the additional technical lemmas in this section.

Lemma A.1.

1. Suppose A ∈ ℝm1 × m2, B ∈ ℝm2 × m3, where m1 ≥ m2. Then

smin m2, m3 (AB) ≥ sm2(A)smin m2, m3 (B) .
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2. Suppose A ∈ ℝm × p1, B ∈ ℝn × p2, X ∈ ℝp1 × p2, rank(X) = r, p1 ≥ m, p2 ≥ n. If

X = U1MV 1
⊤, where U1 ∈ Op1, m, and V 1 ∈ Op2, n, then

σr(AXB) ≥ smin AU1 σr(X)smin V 1
⊤B .

Proof of Lemma A.1. (1) Consider the SVD decomposition A = UAΣAV A
⊤,

B = UBΣBV B
⊤, where UA ∈ Om1, m2, V A ∈ Om2, UB ∈ Om2, min m2, m3 , V B ∈ Omin m2, m3 , m3,

ΣA = diag σ1(A), …, sm2(A)  and ΣB = diag s1(B), …, smin m2, m3 (B)  are diagonal matrices

with nonnegative diagonal entries. Then

smin m2, m3 (AB) = smin m2, m3 UAΣAV A
⊤UBΣBV B

⊤

= smin m2, m3 ΣAV A
⊤UBΣB .

For any x ∈ ℝmin m2, m3  satisfying ∥x∥2 = 1, we have

ΣAV A
⊤UBΣBx 2 ≥ sm2(A) V A

⊤UBΣBx 2
= sm2(A) ΣBx 2
≥ sm2(A)smin m2, m3 (B) .

Therefore

smin m2, m3 (AB) = smin m2, m3 ΣAV A
⊤UBΣB

≥ sm2(A)smin m2, m3 (B) .

(2) Consider the SVD decomposition X = UΣV⊤, where U ∈ Op1, r, V ∈ Op2, r and Σ is

a diagonal matrix. Then we know that there exist two matrices L ∈ ℝm × r and R ∈ ℝn × r

satisfying U = U1L and V = V1R. Moreover,

L⊤L = L⊤U1
⊤U1L = U⊤U = Ir,

R⊤R = R⊤V 1
⊤V 1R = V ⊤V = Ir .

Therefore,

σr(AXB) = σr AU1LΣR⊤V 1
⊤B

≥ smin AU1 σr LΣR⊤ smin V 1
⊤B

= smin AU1 σr(X)smin V 1
⊤B .

□
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Lemma A.2. Suppose Z is a matrix with independent zero-mean σ-sub-Gaussian entries, d
is a fixed number, r0 = rd = 1.

1. Suppose Z ∈ ℝp × q, A ∈ ℝm × p, B ∈ ℝq × n satisfy ∥A∥, ∥B∥ ≤ 1, m ≤ p, n ≤ q.

Then

ℙ( AZB ≥ 2σ m + t) ≤ 2 ⋅ 5nexp −c min t2

m, t . (47)

ℙ AZB F ≥ σ mn + t ≤ 2 exp −c min t2

mn, t . (48)

2. Suppose Z ∈ ℝ p1⋯pk × m, 2 ≤ k ≤ d − 1. Then

max
Ui ∈ ℝ piri − 1 × ri

Ui ≤ 1

Ipk ⊗ Uk − 1
⊤ ⋯ Ip2⋯pk ⊗ U1

⊤ Z

≤ Cσ ∑
i = 1

k − 1
piri − 1ri + pkrk − 1 + m .

(49)

with probability at least 1 − C exp −c ∑i = 1
k − 1 piri − 1ri + pkrk − 1 + m .

3. Suppose Z ∈ ℝ p1⋯pk × pk + 1⋯pd , 2 ≤ k ≤ d − 2. Then

max U1, …, V d ∈ A Uk
⊤ Ipk ⊗ Uk − 1

⊤ ⋯ Ip2⋯pk ⊗ U1
⊤ Z ⋅ V d ⊗ Ipk + 1…pd − 1

⋯ V k + 2 ⊗ Ipk + 1

≤ Cσ ∑
i = 1

d
piri − 1ri

(50)

with probability at least 1 − C exp −c∑i = 1
d piri − 1ri . Here,

A = U1, …, Uk, V k + 2, …, V d :Ui ∈ ℝ piri − 1 × ri, Ui ≤ 1, V j

∈ ℝ piri × ri − 1, V j ≤ 1 .
(51)

4. Suppose Z ∈ ℝ p1⋯pd − 1 × pd. Then with probability at least

1 − C exp −c∑i = 1
d piri − 1ri ,

max
Ui ∈ ℝ piri − 1 × ri, Ui ≤ 1

Ud − 1
⊤ Ipd − 1 ⊗ Ud − 2

⊤ ⋯ Ip2⋯pd − 1 ⊗ U1
⊤ Z F

≤ Cσ ∑
i = 1

d
piri − 1ri .

(52)
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5. Suppose Z ∈ ℝ p1⋯pk × pk + 1⋯pd , 2 ≤ k ≤ d − 2. Then

max
U1, …, V d ∈ A

Uk
⊤ Ipk ⊗ Uk − 1

⊤ ⋯ Ip2⋯pk ⊗ U1
⊤ Z · V d ⊗ Ipk + 1…pd − 1 ⋯ V k + 2 ⊗ Ipk + 1 F

≤ Cσ ∑
i = 1

d
piri − 1ri

(53)

with probability at least 1 − C exp −c∑i = 1
d piri − 1ri . Here, A is defined in (51).

Proof of Lemma A.2. W.O.L.G., assume σ = 1.

1. For fixed x ∈ ℝn satisfying ∥x∥2 = 1, we have AZBx = (x⊤B⊤ ⊗ A)vec(Z). Since

Zij is 1-sub-Gaussian, we know that Var(Zij) ≤ 1. In addition,

E x⊤B⊤ ⊗ A vec(Z) 2
2

= E tr vec(Z)⊤ x⊤B⊤ ⊗ A ⊤ x⊤B⊤ ⊗ A vec(Z)

= tr E x⊤B⊤ ⊗ A ⊤ x⊤B⊤ ⊗ A vec(Z)vec(Z)⊤

= tr x⊤B⊤ ⊗ A ⊤ x⊤B⊤ ⊗ A E vec(Z)vec(Z)⊤

≤ tr x⊤B⊤ ⊗ A ⊤ x⊤B⊤ ⊗ A

= x⊤B⊤ ⊗ A F
2 = Bx

2
2

A
F
2

≤ x
2
2

A
F
2

≤ m .

(54)

The first inequality holds since E vec(Z)vec(Z)⊤  is a diagonal matrix with

diagonal entries Var(Zij) ≤ 1; the last inequality is due to ∥A∥F ≤ min{m, p}∥A∥2

≤m. By Hanson-Wright inequality, we have

ℙ AZBx 2
2 − m ≥ t

≤ 2 exp −c min t2

Bxx⊤B⊤ ⊗ A⊤A F
2 , t

Bxx⊤B⊤ ⊗ A⊤A
.

Since ∥x∥2 = 1 and ∥A∥, ∥B∥ ≤ 1,

Bxx⊤B⊤ ⊗ A⊤A F
2

= Bxx⊤B⊤ F
2 A⊤A F

2 = x⊤B⊤Bx 2 A⊤A F
2

≤ x⊤x 2 A⊤A F
2 = ∑

i = 1

min m, p
σi4(A) ≤ m,  

Bxx⊤B⊤ ⊗ A⊤A ≤ Bxx⊤B⊤ A⊤A
≤ xx⊤ A⊤A ≤ 1. 

Thus, for fixed x satisfying ∥x∥2 = 1, we have

Zhou et al. Page 50

IEEE Trans Inf Theory. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ℙ AZBx 2
2 ≥ m + t ≤ 2 exp −c min t2

m, t . (55)

By [93][Lemma 5.2], there exists N1/2, a 1/2-net of x ∈ ℝn: ∥ x ∥2 = 1 , such

that N1/2 ≤ 5n. The union bound, [93][Lemma 5.2] and (55) together imply that

ℙ AZB ≥ 2 m + t ≤

ℙ max
x ∈ N1/2

AZBx
2

≥ m + t

≤ 2 ⋅ 5nexp −c min t2
m , t .

For ∥AZB∥F, note that AZB = (B⊤⊗A)vec(Z), Similarly to (54), we have

E B⊤ ⊗ A vec(Z) 2
2

= E vec(Z)⊤ B⊤ ⊗ A ⊤ B⊤ ⊗ A vec(Z)

= E tr vec(Z)⊤ B⊤ ⊗ A ⊤ B⊤ ⊗ A vec(Z)

= tr E B⊤ ⊗ A ⊤ B⊤ ⊗ A vec(Z)vec(Z)⊤

= tr B⊤ ⊗ A ⊤ B⊤ ⊗ A E vec(Z)vec(Z)⊤

≤ tr B⊤ ⊗ A ⊤ B⊤ ⊗ A

= B⊤ ⊗ A F
2 = B

F
2

A
F
2

≤ mn .

By Hanson-Wright inequality, we have

ℙ AZB F
2 − mn ≥ t ≤ 2 exp −c min t2

BB⊤ ⊗ A⊤A F
2 , t

BB⊤ ⊗ A⊤A ⊤ .

Since ∥A∥, ∥B∥ ≤ 1, we have

BB⊤ ⊗ A⊤A F = A⊤A F
2 BB⊤ F

2

= ∑
i = 1

min m, p
σi4(A) ∑

i = 1

min q, n
σi4(B) ≤ mn,

BB⊤ ⊗ A⊤A ≤ 1.

Therefore,

ℙ AZB F
2 ≥ mn + t ≤ 2 exp −c min t2

mn, t .
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2. For fixed x ∈ ℝm and A ∈ ℝ pkrk − 1 × p1⋯pk  satisfying ∥x∥2 = 1 and ∥A∥ ≤ 1, by

(47) with B = Im, we have

ℙ AZ ≥ 2 pkrk − 1 + t

≤ 2 ⋅ 5mexp −c min t2

pkrk − 1
, t . (56)

By [48][Lemma 7], for 1 ≤ i ≤ k − 1, that exist ε-nets:

Ui
(1), …, Ui

Ni ∈ ℝ piri − 1 × ri (here r0 = 1), Ni ≤ 2 + ε /ε piri − 1 × ri, such that

∀U ∈ ℝ piri − 1 × ri satisfying  U ≤ 1,
∃1 ≤ j ≤ Ni s.t.  Ui

(j) − U ≤ ε .

Therefore,

ℙ max
i1, …, ik − 1

Ipk ⊗ Uk − 1
ik − 1 ⊤ ⋯ Ip2⋯pk ⊗ U1

i1 ⊤ Z ≥ 2 pkrk − 1 + t

≤ 2((2 + ε)/ε)∑i = 1
k − 1 piri − 1ri5mexp −c min t2

pkrk − 1
, t .

(57)

Let

U1*, …, Uk − 1*

∈   arg max
Ui ∈ ℝ piri − 1 × ri,

Ui ≤ 1,      1 ≤ i ≤ k − 1

Ipk ⊗ Uk − 1
⊤ ⋯ Ip2⋯pk ⊗ U1

⊤ Z ,

M = max
Ui ∈ ℝ piri − 1 × ri, Ui ≤ 1,     1 ≤ i ≤ k − 1

Ipk ⊗ Uk − 1
⊤ ⋯ Ip2⋯pk ⊗ U1

⊤ Z .

Then for any 1 ≤ i ≤ k − 1, there exists 1 ≤ ji ≤ Ni, such that Ui
ji − Ui* ≤ ε.

Then

M = Ipk ⊗ Uk − 1
* ⊤ ⋯ Ip2⋯pk ⊗ U1

* ⊤ Z
≤ Ipk ⊗ Uk − 1

jk − 1 ⊤ ⋯ Ip2⋯pk ⊗ U1
j1 ⊤ Z +

Ipk ⊗ Uk − 1* − Uk − 1
jk − 1 ⊤

Ipk − 1pk ⊗ Uk − 2
jk − 2 ⊤ ⋯ Ip2⋯pk ⊗ U1

j1 ⊤ Z

+ ⋯ + Ipk ⊗ Uk − 1
* ⊤ ⋯ Ip3⋯pk ⊗ U2

* ⊤ ⋅ Ip2⋯pk ⊗ U1* − U1
j1 ⊤

Z

≤ Ipk ⊗ Uk − 1
jk − 1 ⊤ ⋯ Ip2⋯pk ⊗ U1

j1 ⊤ Z + ε(k − 1)M .

(58)

Combine (57) and the previous inequality together, we have
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ℙ M ≥ 2 pkrk − 1 + t
1 − (k − 1)ε

≤ 2((2 + ε)/ε)∑i = 1
k − 1 piri − 1ri5mexp −c min t2

pkrk − 1
, t .

(59)

By setting ε = 1
2(k − 1)  and t = C ∑i = 1

k − 1 piri − 1ri + pkrk − 1 + m, we have proved

(49).

3. For fixed A ∈ ℝrk × p1⋯pk , B ∈ ℝ pk + 1⋯pd × pk + 1rk + 1  satisfying ∥A∥ ≤ 1,

∥B∥ ≤ 1, by (47), we have

ℙ AZB ≥ 2 rk + t

≤ 2 ⋅ 5pk + 1rk + 1exp −c min t2
rk

, t .

Let

M = max
U1, …, V d ∈ A

Uk
⊤ Ipk ⊗ Uk − 1

⊤ ⋯ Ip2⋯pk ⊗ U1
⊤ Z ⋅ V d ⊗ Ipk + 1…pd − 1

⋯ V k + 2 ⊗ Ipk + 1 ,

By similar arguments as (59), one has

ℙ M ≥
2 rk + t

1 − (d − 1)ε

≤ 2((2 + ε)/ε)∑1 ≤ i ≤ d, i ≠ k + 1 piri − 1ri5pk + 1rk + 1 ⋅ exp −c min t2
rk

, t

for any 0 < ϵ < 1
d . By setting ε = 1

2(d − 1)  and t = C∑i = 1
d piri − 1ri, we have proved

the third part of Lemma A.2.

4. For fixed U1, …, Ud−1 satisfying ∥Ui∥ ≤ 1, let

A = Ud − 1
⊤ Ipd − 1 ⊗ Ud − 2

⊤ ⋯ Ip2⋯pd − 1 ⊗ U1
⊤ ∈ ℝrd − 1 × p1⋯pd − 1 , then ∥A∥ ≤

1. By (48) with B = Ipd, we have

ℙ AZ F
2 ≥ pdrd − 1 + t ≤ 2 exp −c min t2

pdrd − 1
, t .

Let

M = max
Ui ∈ ℝ piri − 1 × ri, Ui ≤ 1

Ud − 1
⊤ Ipd − 1 ⊗ Ud − 2

⊤ ⋯ Ip2⋯pd − 1 ⊗ U1
⊤ Z F .
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The similar proof of (59) leads us to

ℙ M2 ≥ rd − 1pd + t
(1 − ε(d − 1))2

≤ 2((2 + ε)/ε)∑k = 1
d − 1 pkrk − 1rkexp −c min t2

pdrd − 1
, t .

(60)

for 0 < ε < 1
d − 1 . By setting ε = 1

2(d − 1)  and t = C∑k = 1
d pkrk − 1rk, we have

arrived at (52).

5. For fixed A ∈ ℝrk × p1⋯pk , B ∈ ℝ pk + 1⋯pd × pk + 1rk + 1 , ∥A∥ ≤ 1, ∥B∥ ≤ 1, by

(48), we have

ℙ AZB F
2 ≥ pk + 1rk + 1rk + t

≤ 2 exp −c min t2
pk + 1rk + 1rk

, t .

Let

M
= max

U1, …, V d ∈ A
Uk

⊤ Ipk ⊗ Uk − 1
⊤ ⋯ Ip2⋯pk ⊗ U1

⊤ Z ⋅ V d ⊗ Ipk + 1…pd − 1 ⋯ V k + 2 ⊗ Ipk + 1 F
.

Similarly to (59), for any 0 < ε < 1
d − 1 , we have

ℙ M ≥ pk + 1rk + 1rk + t
1 − (d − 1)ε

≤ 2((2 + ε)/ε)∑1 ≤ i ≤ d, i ≠ k + 1 piri − 1ri ⋅ exp −c min t2

pk + 1rk + 1rk
, t .

(61)

By setting ε = 1
2(d − 1)  and t = C∑i = 1

d piri − 1ri, we have proved (53). □

Lemma A.3. Suppose X, Z ∈ ℝp1 × p2, rank(X) = r. Let Y = X + Z, U = SV Dr
L(Y ),

V = SV Dr
R(Y ). Then we have

max U⊥
⊤X , XV ⊥   ≤ 2 Z ,  

max U⊥
⊤X F, XV ⊥ F ≤ 2min Z F, r Z .

Proof of Lemma A.3. See [48, Lemma 6] and [96, Theorem 1]. □
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Fig. 1.
Average estimation error (dots) and standard deviation (bars) of sinΘ U1, U1  and

X − X F by TT-SVD and one-step TTOI. Both algorithms are performed based on the

observation Y generated from (2), where Zi.i.d.N 0, σ2 , X is a randomly generated order-5

tensor based on (1) with p = 20, r = 1, G1, G2, …, Gd − 1, Gd
i.i.d.N(0, 1).
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Fig. 2.
A Pictorial Illustration of Initialization (Algorithm 1(a), d = 3)

Zhou et al. Page 61

IEEE Trans Inf Theory. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3.
A pictorial illustration of TT-Backward update (Algorithm 1(b), d = 3)
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Fig. 4.
A pictorial illustration of a (d − 1)st order state aggregatable Markov chain
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Fig. 5.
Estimation error of TT-SVD and TTOI for high-order spiked tensor model. Here,

Zi.i.d.N 0, σ2 .
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Fig. 6.
Estimation error of TT-SVD and TTOI for high-order spiked tensor i.i.d. model. Here,

Zi.i.d.Unif( − b, b).
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Fig. 7.
Estimation error of TT-SVD and TTOI for high-order spiked tensor model with varying

TT-ranks
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Fig. 8.
Estimation error of the transition tensor versus length of the observable trajectory in high

order state-aggregatable Markov chain estimation.
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Fig. 9.
Average estimation error of TT-SVD and TTOI for high-order spiked tensor model with

BIC-tuned ranks.
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Fig. 10.

Singular values of sequential unfolding matrices P emp
1 (left panel) and P emp

2 (right

panel)
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Fig. 11.
State aggregation based on TTOI and empirical estimate
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Fig. 12.
Based on second order Markov model, state aggregation results are different with different

initial state (the red triangle denotes the initial state i in each subfigure)
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Fig. 13.
Illustration of a high-order state aggregatable Markov decision process
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TABLE I

Runtime (in seconds) of TT-SVD, TTOI with 1 iteration, and TTOI with 2 iterations under the high-order

spiked tensor model with ZI.I.D.N(0, 400). The mean runtime of 50 independent replicates are presented and

the standard deviations are listed in parentheses.

(p, d, r) TT-SVD TTOI (tmax = 1) TTOI (tmax = 2)

(100, 3, 1) 0.332 (0.071) 0.334 (0.071) 0.340 (0.074)

(50, 4, 1) 1.165 (0.173) 1.169 (0.172) 1.201 (0.171)

(20, 5, 1) 0.725 (0.093) 0.730 (0.092) 0.751 (0.095)

(20, 5, 2) 0.672 (0.100) 0.676 (0.101) 0.708 (0.103)

IEEE Trans Inf Theory. Author manuscript; available in PMC 2023 June 01.


	Abstract
	Introduction
	Problem Formulation
	Our Contributions
	Related Literature
	Organization

	Procedure of Tensor-Train Orthogonal Iteration
	Notation and Preliminaries
	Procedure of Tensor-Train Orthogonal Iteration

	Theoretical Analysis
	Representation Lemmas for high-order tensors
	Deterministic Upper Bounds for Estimation Error of TTOI

	TTOI for Tensor-Train Spiked Tensor Model
	TTOI for Dimension Reduction and State Aggregation in High-order Markov Chain
	Numerical Studies
	Simulation
	Real Data Experiments

	Discussions and Additional Applications
	Appendix A
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Fig. 11.
	Fig. 12.
	Fig. 13.
	TABLE I

