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Abstract

Objective.—Continuous renal replacement therapy (CRRT) is widely utilized to support 

critically ill patients with AKI. Artificial intelligence (AI) has the potential to enhance CRRT 

delivery, but evidence is limited. We reviewed existing literature on the utilization of AI in CRRT 

with the objective of identifying current gaps in evidence and research considerations.

Methods.—We conducted a scoping review searching PubMed, OVID Embase, Web of 

Science, Cochrane, Scopus, and ProQuest for original papers published or translated in English 

(2012-2022). We included studies focusing on the development or use of AI-based tools in patients 

receiving CRRT.

Results.—Ten papers were identified, 6/10 (60%) published in 2021, and 6/10 (60%) focused 

on machine learning models to augment CRRT delivery. All innovations were in the design/

early validation phase of development. Primary research interests focused on early indicators 

of CRRT need, clinical prognostication of mortality and kidney recovery, and identifying risk 

factors for mortality. Secondary research priorities included dynamic CRRT monitoring, predicting 

CRRT-related complications, and automated data pooling for point-of-care analysis. Identified 

literature gaps included prospective validation and implementation barriers, biases ascertainment, 

and quantifying social or AI-generated healthcare disparities.

Conclusion.—Research on AI applications to enhance CRRT delivery has grown exponentially 

in the last few years, but the field remains premature. There is a need to evaluate how these 

applications could enhance bedside decision-making capacity and assist structure and processes of 

CRRT delivery.
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1. INTRODUCTION

More than half of critically ill patients admitted to intensive care units (ICU) suffer from 

acute kidney injury (AKI), and about 10% of these patients require renal replacement 

therapy (RRT). Up to 75% of RRT in the ICU is delivered as continuous RRT (CRRT).1 

CRRT is preferred for patients with hemodynamic instability and hypercatabolic states to 

better achieve fluid management goals and solute control.1,2 Despite advances in RRT 

technologies, the overall mortality rate for ICU patients on RRT is over 50%.1 Moreover, 

delivery of CRRT is costly, requires specific protocols, equipment, monitoring, and training, 

as well as multi-specialty collaborations.2,3 Importantly, demand for CRRT is increasing due 

to expansion of ICU capacity, in part exacerbated by the COVID-19 pandemic, but also due 

to the aging US population2 and the increased recognition of its utility in patients receiving 

other type of extracorporeal organ support.4 While expert consensus has identified candidate 

CRRT quality indicators,5–7 prospective validation of these performance indicators to assess 

structure, processes and outcomes of CRRT delivery is needed.8

Digital health is a broad term for the adoption of various digital technologies in healthcare, 

including wearable devices, telemedicine, and mobile health platforms.9 On the other hand, 

Artificial intelligence (AI) is a subset of data science, which refers to the replacement of 

the human intellect through a set of coding algorithms that enable computers to perceive, 

reason, and respond to a given dataset or stimuli.10–12 The term is often interchanged with 

a similar concept, augmented intelligence, which focuses on ‘augmenting’ human intellect 

rather than replacing it.10 Both digital health and AI/augmented intelligence have propelled 

virtually all aspects of medical practice, including medical diagnostics, risk-stratification, 

identification of therapeutic or procedural candidates, monitoring and anticipating treatment 

complications, dynamic data acquisition and point-of-care analytics for clinical decision 

support, remote delivery of health services, quality improvement, and healthcare resource 

optimization such as machine allocation and patient scheduling, and more.11,13,14

Whereas these advances are well documented in other fields such as radiology,15 molecular 

biology,11 and even nephrology,16 the state of AI and digital health in the CRRT space 

remains unknown and understudied.13 In this review, we summarize the available literature 

on the current state of AI and digital health research in the CRRT domain, provide insights 

on research trends, identify developmental gaps based on the available literature, and 

establish future research priorities for accelerated enhancement of the field.
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2. POTENTIAL AREAS OF CRRT DELIVERY THAT CAN BE IMPROVED 

WITH AI

Figure 1 summarizes potential applications of AI to improve CRRT delivery and quality 

assurance.

Access.

Access-related complications remain a common issue in establishing effective and sustained 

CRRT delivery. Short-term dialysis catheters (STDC’s) are the main catheters used for 

CRRT unless patients are expected to require CRRT for 3 weeks or more.17 Suboptimal 

positioning, bending and thrombosis not only result in catheter dysfunction and STDC 

failure necessitating replacement of the catheter,17 but is also the major cause of premature 

CRRT circuit failure.18 Moreover, the use of Tunneled Dialysis Catheters (TDCs) for CRRT 

has not been validated in clinical trials yet are postulated to have fewer complications 

than STDCs.17,19 Ruiz et al. reported 43% fewer access alarms with prioritization of 

right internal jugular vein for access placement, and 5-hour longer average filter life when 

they standardized protocols for CRRT delivery-including catheter access site-and enabled a 

quality assurance program.20 In this context, it is foreseeable that AI can assist with dynamic 

catheter pressure (i.e. access and return) and alarm monitoring.

Circuit clotting.

There is no standardization on CRRT anticoagulation. While use of pre-dilution Regional 

Citrate Anticoagulation (RCA) prolongs filter lifespan21–23 it requires a specialized protocol 

and could also increase risk of bleeding or other complications.23 Non-anticoagulation 

methods (i.e. saline flushes, minimization of filtration fraction, etc.) are proposed to reduce 

bleeding risk while maintaining filter patency with the use of new membrane biomaterials, 

although there are no solid data to prove this is indeed effective.24 Further, there is still 

debate on whether adjuvant systemic heparinization may add benefit in hypercoagulable 

states such as COVID-19. New generation CRRT machines are equipped with RCA dosing 

programs that allow for dynamic citrate and calcium dose adjustments. However, dose 

adjustments require continuous monitoring of the blood flow, effluent volume, and patient’s 

calcium levels and clinical status, thereby increasing nurse workload. AI-enabled remote 

monitoring and automated adjustment of RCA/calcium doses would reduce both nurse and 

clinician workload. Also, predicting the need for RCA dose adjustments could reduce the 

occurrence of citrate-related complications such as toxicity or bleeding.

Solute control.

Electrolyte disturbances such as hypokalemia and hypophosphatemia are common 

complications during CRRT.25,26 Further, customized rate of correction of dysnatremias 

could help preventing risk of overcorrection and neurological disturbances.27,28 AI-

enhanced solute clearance monitoring and electrolyte replacement may positively impact 

CRRT delivery.
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Quality assurance.

A multitude of reports highlight the importance of quality assurance in attaining efficient 

CRRT delivery.6,8,13,20,29–32 Lack of oversight and standardized protocols have been shown 

to cause treatment interruptions, poor solute clearance, and off-target fluid management 

or effluent dose delivery.33,34 Some of these outcomes were ameliorated by establishing 

multidisciplinary quality assurance programs20, although some may argue that the lack 

of field-wide standardization of quality metrics may be the leading cause of delayed 

improvement in CRRT delivery.31 Nonetheless, consensus has been reached around 

selection of CRRT quality metrics and interventional studies to establish the system-wide 

performance of these quality metrics in improving CRRT delivery are underway.8,35,36 For 

example, standardizing continuous monitoring of fluid management during CRRT could 

lead to timely adjustments and adherence to treatment goals. In this context, AI can 

assist with monitoring, incorporating and interpreting data from non-invasive hemodynamic 

devices to facilitate the workflow of clinicians evaluating fluid status and prescribing/

monitoring fluid goals with CRRT.34,37

3. CURRENT LITERATURE ON THE USE OF AI APPLIED TO CRRT 

DELIVERY

We did a scoping review of current literature for studies on CRRT and digital health in 

patients with AKI using PubMed, OVID Embase, Web of Science, Cochrane, Scopus, and 

ProQuest dissertation databases. We selected studies in English, from database inception 

to present, except when the search returned over 5000 articles, for which we narrowed 

the timeline from 2012 to 2022. Literature reviews were scoured for additional studies not 

included in the original search. Full search strategy and list of included terms are reported 

in supplement 1. Collectively, there were 3460 studies included in the search results. After 

removal of duplicate studies, 3065 remained. Most studies were then excluded as they 

were not focused on CRRT, interventions were not based on AI-derived tools, or English 

translations for foreign studies were not found. After initial screening, we selected ten 

studies for reporting in this manuscript (7 full-length studies; 3 conference abstracts; see 

Table 1). We organized included studies by year and analyzed the innovations proposed, 

developmental stage of the proposed innovations (research development and/or validation; 

implementation and/or clinical utility), and the potential AI-based enhancement in CRRT 

delivery. After comprehensive review, the following insights emerged on the current state of 

AI research in CRRT, stratified in three critical domains of CRRT delivery such as structure, 

processes, and outcomes (Figure 2).

Structure:

Only two papers explored the implementation of AI in the structure of CRRT delivery.38,39 

With the advancement of cloud-based systems and electronic task automation, Keith et al. 

programmed Python to download data from patient charts as well as the CRRT machine 

into a Structured Query Language (SQL) database, and to display the combined data for 

manipulation and analysis on novel digital platforms. More recently, Lee et al. examined the 

use of AI in the operational decision-making surrounding CRRT allocation for COVID-19 
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patients with AKI.39 A Python 3.6 code connected multidisciplinary teams on a shared 

server, pooling patient clinical data and prioritizing CRRT machine allocation according to 

specific patient needs and locations. The model successfully generated a list of patients for 

each machine within minutes of server updates.

Processes:

Guru et al. designed an automated algorithm to continuously scan patient charts for CRRT 

candidacy.40 The search algorithm achieved 100% agreement with standard manual chart 

reviews, with 90% of CRRT candidates identified at the same time and 10% within 15 

minutes of manual reviews. Roy et al compared various ML algorithms for prognostication 

of CRRT initiation.41 For CRRT monitoring, efforts aimed at automating periodic data 

downloads from CRRT machines to be viewed in conjunction with clinical data. The 

earliest of those attempts was Zhang et al., who automated the recording and download 

of operational data from CRRT machines into a card reader at 1-minute intervals. The 

reader was then manually inserted into a computer card slot to view the files and identify 

various pressure patterns.42 Today, card readers and manual transfers have been replaced 

with cloud-based uploads and storage, online data downloads, and automated computer 

scripts deploying custom-based algorithms with countless functions.

Outcomes:

Predicting CRRT-related complications and patient prognosis are top research priorities, 

particularly with the advent of clinical decision support systems and point-of-care analytics. 

In 2021, Chen et al. compared 4 ML models to predict citrate overdose during CRRT.43,44 

Neural networks scored the highest accuracy (F-1 score 90.8%) and performance (AUROC 

0.86) in predicting early citrate overdose, allowing for timely adjustment of RCA. In the 

same year, Kang et al. validated 4 more ML models against disease-severity scores to predict 

hypotension during CRRT.45 All ML models outperformed standard clinical scores, with 

Extreme gradient boosting showing the highest AUROC scores (0.82) compared to other ML 

models. ML algorithms were also studied for applications in mortality risk-classification46,47 

and dialysis-free prognostication.48 Most ML models reported in these studies significantly 

outperformed the predictive ability of standard clinical parameters, mortality scores and 

regression analyses. Nonetheless, large-scale ML studies are needed to rank ML models in 

terms of comparability and external validation, and clinical trials for comparing the impact 

of ML-enhanced vs. standard CRRT delivery on patient-relevant outcomes.

Overall, interest in AI-enhanced optimization of CRRT delivery has risen considerably. 

In 2021 alone, six original studies were published (60% of those reported in Table 

1). Moreover, there is an uptrend in exploring the role of AI in all aspects of critical 

care nephrology, including patient risk-classification, optimization of CRRT prescriptions, 

prediction of CRRT-related complications, and prioritization of operational workflow. This 

rising trend reflects an increased awareness on the need for digital enhancement of CRRT 

delivery, and the potential implications of AI in the decision-making process surrounding 

its use, prescription, monitoring, and quality assurance. However, despite a comprehensive 

search strategy, only 10 original studies were available, all in adult patients without pediatric 

representation. Absence of detailed methods, lack of external validation to larger and 
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diverse cohorts, and inherent database and/or algorithmic bias remain an issue and warrant 

further confirmatory studies before we can translate these innovations to the clinical setting. 

Therefore, the development of AI in the CRRT space remains premature overall, with 

persistent demand for more research to optimize CRRT structures, processes, and outcomes.

4- IMPORTANT CONSIDERATIONS OF AI/ML APPLICATIONS FOR CRRT 

DELIVERY

There is implicit bias in ML algorithms, namely selection, lead-time, and algorithmic 

bias. In 2020, Wenlong et al. described the vicious cycle of feeding machines with 

biased information from unchecked and incomplete patient datasets, the biased predictions 

selecting a subset of the information to represent, the biased decision-making process based 

on these predictions, and the biased feedback that is fed back into the machine, etc.49 

Researchers must be careful when using electronic data, as billing-derived diagnoses may 

not necessarily reflect the actual clinical context. Moreover, patients with normal or missing 

data may be counted in the control group, augmenting the selection and sampling biases 

of the study.50 Further, ascertainment bias can result from poor follow up and reporting.51 

Therefore, it is essential to produce reliable metrics for detection and measurement of 

bias in ML algorithms52, and to understand their capacity as a decision aid and not a 

decision-making tool.53 In the context of CRRT, practice variations and resource access 

and allocation should be considered for implementation of AI-based tools. Development 

of multicenter datasets of patients undergoing CRRT such as CRRTnet could assist 

with contemporary assessment of epidemiology and variations in patient characteristics, 

prescription and delivery of therapy.54

Deployment of AI-based tools could highlight healthcare inequities.

AI could be a two-edge sword: if algorithms are developed and validated based on inherently 

inequitable databases, AI may bias the clinical decision-making, deepening current racial 

and economic health disparities. Alternatively, if compensatory algorithms were built into 

these databases and models, AI may help reduce inequity.55 The medical imaging field is 

an example on this struggle: Currie et al. reported persistent economic, geographic, and 

cultural inequities in the delivery of medical imaging services across the United States; 53 

Waite et al. confirmed the relative scarcity and longer delivery time windows of advanced 

imaging services such as Computed Tomography and Magnetic Resonance Imaging in non-

Caucasian predominant hospitals. 54 For AKI, health disparities are also of consideration: 

AKI occurs 28% more frequently in African American than Caucasian patients,56 and six 

times more frequently in low to middle-income countries than high-income countries.57 

Used correctly, AI can help mitigate these issues with its ability to categorize and discern 

heterogenous subgroups of patients based on race, gender, socioeconomic status and more. 

Johnson et al. identified social determinants of health, including structural racism, as 

inherent causes of health service disparities among heart failure patients.58 The authors 

proposed that AI could help close the gap by diversifying data sources and investigators, 

increasing awareness on the inherent biases in AI and its impact on clinical decision-making, 

addressing heterogeneity in clinical studies with minority populations, and intentionally 

examining current and future research for structural racial or economic inequity. This applies 
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to CRRT as this extracorporeal multiorgan support therapy is typically available in high and 

middle-income countries but not in low-income ones.

Deployment of tools to augment clinical decisions such as electronic alerts could also 
cause harm.

Several studies have identified alert fatigue as an implementation barrier for the use of 

electronic alert systems.59–61 A recent multicenter randomized clinical trial on the use of 

e-alerts for AKI patients found a 49% increase in adverse outcomes at the two smaller 

non-teaching hospitals, despite increased AKI care practices in the e-alert group.62 Overall, 

e-alerts did not reduce the risk of death, AKI progression, or RRT. Instead, the trial 

highlighted the role of alert fatigue on attention burnout and overtreatment. Another study 

by Baird et al. concluded e-alerts did not improve AKI severity or mortality, possibly due to 

alert fatigue.63 There is a need to examine implementation barriers to the use of AI-based 

tools, including clinician response and burnout, how and if those barriers can be mitigated, 

and the differential role of hospital logistics in tool utility. Therefore, AI-based tools to 

enhance CRRT delivery need to be adapted to the specific context of its deployment, taking 

into consideration the human and infrastructural planning component that is essential for 

CRRT delivery.

Monitoring of utility, implementation, and sustainability of AI-based tools is not 
standardized.

A new body of research will be needed to identify quality metrics and quality assurance 

processes that can assist, evaluate, and monitor AI-based tools for utility, implementation, 

and sustainability in CRRT applications. These metrics will need to be validated so 

healthcare professionals, patients/care partners, and stakeholders can trust and understand 

the integration of AI-based processes into current practice of CRRT delivery. Feng et al. 

suggested that hospitals should create specialized AI-based Quality Improvement units 

to continuously monitor and update AI algorithms, including statistical markers that 

track changes in model input/output variables, model behavior changes over time, and 

performance metrics.14 Importantly, standardization of policies to update AI models is also 

needed.

In Table 2, we summarize the advantages and challenges of using AI to enhance CRRT 

delivery.

5- CONCLUSIONS

AI-based tools have the potential to enhance and facilitate CRRT delivery. Current research 

has mostly focused on the development of ML-based models for early identification of 

patients requiring CRRT, and their risk-classification of mortality or kidney recovery. 

However, there is need to evaluate how the use of AI-based tools could improve bedside 

decision-making capacity, and –importantly– assist structure and processes of CRRT 

delivery. One should also note that major challenges in AI research are identifying 

implementation and deployments goals and barriers, measuring biases inherent to the use 

of big data and AI-based applications, and eliminating social and “machine-generated” 
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disparities in health service utilization. Future studies examining the utility of AI in CRRT 

need to evaluate these implementation barriers, diverse and underrepresented populations 

including children, and effective methods and policy to mitigate AI-inherent biases to 

promote equity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CLINICAL SUMMARY

• CRRT is a common organ support therapy for critically ill patients with AKI 

in the ICU

• AI-based tools have the potential to enhance CRRT delivery

• Current research has mostly focused on the development of ML-based 

models of clinical prognostication (i.e., mortality, kidney recovery), with little 

evaluation of enhancements in structure or processes of CRRT delivery

• The evaluation of how AI-based tools could be successfully validated 

and implemented to enhance bedside decision-making capacity and assist 

structure and processes of CRRT delivery is needed

• Future studies examining the utility of AI in CRRT need to evaluate 

implementation barriers and how to mitigate AI-inherent biases and promote 

equity
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Figure 1. 
Potential applications of AI to improve CRRT delivery and quality assurance.

CRRT = Continuous Renal Replacement Therapy; TDC = Tunneled Dialysis Catheter; 

STDC = Short-Term Dialysis Catheter; QI = Quality Indicator; QA = Quality Assurance.
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Figure 2. 
State of current evidence on the use of AI-based tools in CRRT delivery stratified by CRRT 

domains. Most of literature has been centered on clinical outcomes with little representation 

of structure and process of CRRT care.

CRRT = Continuous Renal Replacement Therapy
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