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Abstract

Background: Electronic health records (EHRs) provide researchers with abundant sample sizes, 

detailed clinical data and other advantages for performing high-quality observational health 

research on diverse populations. We review and demonstrate strategies for the design and analysis 

of cohort studies on neighborhood diversity and health, including evaluation of the effects of 

race, ethnicity and neighborhood socioeconomic position (SEP) on disease prevalence and health 

outcomes, using localized EHR data.

Methods: Design strategies include integrating and harmonizing EHR data across multiple 

local health systems and defining the population(s) of interest and cohort extraction procedures 

for a given analysis based on the goal(s) of the study. Analysis strategies address inferential 

goals, including the mechanistic study of social risks, statistical adjustment for differences in 

distributions of social and neighborhood-level characteristics between available EHR data and the 

underlying local population, and inference on individual neighborhoods. We provide analyses of 

local variation in mortality rates within Cuyahoga County, Ohio.

Results: When the goal of the analysis is to adjust EHR samples to be more representative of 

local populations, sampling and weighting are effective. Causal mediation analysis can inform 

effects of racism (through racial residential segregation) on health outcomes. Spatial analysis is 

appealing for large-scale EHR data as a means for studying heterogeneity among neighborhoods 

even at a given level of overall neighborhood disadvantage.

Conclusions: The methods described are a starting point for robust EHR-derived cohort analysis 

of diverse populations. The methods offer opportunities for researchers to pursue detailed analyses 

of current and historical underlying circumstances of social policy and inequality. Investigators can 

employ combinations of these methods to achieve greater robustness of results.
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Socioeconomic conditions broadly and strongly influence health status and health 

outcomes.1–3 In the United States and elsewhere, racism and adverse socioeconomic 

conditions can impose vulnerabilities that result in routinely unmeasured baseline risks of 

disease and variation in care quality. Earlier this year, MDM released a policy statement on 

the use of demographic classification variables that established a requirement for authors to 

“clearly define 1) what they believe the variables are measuring and 2) what hypotheses or 

research questions justify the inclusion of these variables in the analysis or model.”4

Social and economic mechanisms5 such as insufficient access to health insurance and 

health care appointments; structural and/or interpersonal racism; differential access to 

healthful foods and locations for safe physical activity and social connectedness; and 

differential exposure to pollutants lead to disparities in timely disease identification and 

treatment and in subsequent outcomes. Rooted in generations of state and local laws 

enforcing racial segregation, racist lending policies and systematic disinvestment have led 

to residential segregation in many U.S. cities, systematically disadvantaging Black, Hispanic 

and other marginalized racial and ethnic groups and imposing or exacerbating severe 

neighborhood-level health inequities.6 Global health researchers (such as Paul Farmer) have 

long highlighted the challenges in providing care across varied cultural and socioeconomic 

conditions, and the need for tailored local approaches. Thus, to develop effective approaches 

to community-specific health problems we must use data and modeling approaches that 

properly account for local contexts.7

Place-based health inequities, which are embedded within everyday care, can impact long-

term patient health outcomes. In a prior study, Dalton et al. determined that cardiovascular 

risk in Northeast Ohio is more strongly related to characteristics of neighborhoods 

than to traditional clinical risk measures (although both types of risk assessment 

contributed).8 The ability of widely relied upon risk assessment tools (specifically 

the Pooled Cohort Equations9) to accurately depict risk levels varied strongly with 

neighborhood socioeconomic position (SEP). In this context, conjectures about why such 

heterogeneity exists include potential exposures (e.g. air pollution, stress), poverty, and 

subgroup characteristics (such as differences in epigenetic alterations) that are primarily 

present among persons from lower resourced neighborhoods.10,11 Recognizing and pursuing 

the sources of risk and outcome heterogeneity are essential first steps in seeking and 

understanding the mechanisms responsible for differences in health status and health 

outcomes.

Electronic health records (EHRs) are an ample scientific resource for investigating the 

complexity of social and place-based inequities in health status, care and outcomes, 

within and among diverse, socially-defined subpopulations.12 In this paper, we review and 

demonstrate both design and analysis approaches to studying the effects of race, ethnicity 

and neighborhood socioeconomic position (SEP) on disease prevalence and health outcomes 

using localized EHR data. We illustrate these strategies through an analysis of regional EHR 

data from Northeast Ohio and discuss the relative advantages of each approach as well as 

ways in which approaches might be combined in practice.
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Design Considerations

Cohort Identification and Extraction

Health systems serve specific patient populations that are largely determined by geography 

and market dynamics. Contracts with insurers and competition lead to selection of distinct 

patient populations for each system.13 Furthermore, as insurance plans differ in the 

degree and nature of coverage for health services, health systems can systematically 

vary practice patterns, leading to neighborhood and socioeconomic differences in disease 

prevalence; administered treatments and their timing; and outcomes. Likewise, there is 

significant neighborhood-level variability in overall insurance rates, choice (or lack thereof) 

of individual insurance plans, and health care utilization patterns.

These concerns must be carefully considered in designing studies of neighborhood diversity 

and health. Investigators must consider the racial, ethnic and socioeconomic distribution 

of the patient populations represented in a given system, which can significantly depart 

from those of local populations. The fundamental design consideration of what defines 

the population(s) of interest for inference is critical in determining the type of analyses to 

be done. In observational clinical research, investigators traditionally hypothesize singular, 

average treatment effects and may or may not secondarily evaluate effect heterogeneity 

(typically, through estimation of subgroup or interaction effects). In diverse populations 

(especially those with varied baseline risk of outcomes), estimates of average treatment 

effects can be biased.14

Here, we introduce our first strategy for more robust inference: Combining EHR data across 

health systems within a region can improve alignment in demographic and socioeconomic 

characteristics between the source data and the regional population. In Northeast Ohio, two 

of the largest health systems are Cleveland Clinic Health System (CCHS) and MetroHealth 

System (MHS). CCHS consists of a large regional network of hospitals and outpatient 

facilities. Its patient population is substantial and consists of a relatively large proportion of 

privately-insured and Medicare patients. MHS is the region’s predominant safety net system, 

comprising a network of hospitals and outpatient facilities. The two care systems often 

share resources and patients, but there are differences in the characteristics of the patient 

populations, notably that MHS cares for a relatively large proportion of patients covered by 

Medicaid and persons from lower-resource communities.

The NEOCARE Learning Health Registry combines up to 22 years of EHR data for 3.1 

million unique individuals residing in Northeast Ohio and being seen at either CCHS or 

MHS (approximately 70% of the local population of adults). We linked and de-duplicated 

data across institutions using an IRB-approved algorithm based on shared individual 

identifiers; that is, records at CCHS and MHS for persons who encountered care at 

both system were harmonized and assigned to a single, anonymized NEOCARE study 

identifier. The NEOCARE registry is maintained in CCHS’s Department of Quantitative 

Health Sciences via a Data Transfer Agreement between MHS and CCHS. Inclusion 

criteria for the registry are broad, such that analytic cohorts for individual studies can be 

effectively extracted: Patients are included in the registry if they have a history of 2 or 

more documented outpatient (either specialty or non-specialty) visits at either CCHS or 
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MHS. Mortality data are obtained from multiple sources, including the EHR itself, the Ohio 

Department of Health Vital Statistics and the Social Security Death Master File (for deaths 

prior to 2011). Further details of the NEOCARE Learning Health Registry are described in 

Taksler et al. (2020).12

Geocoding and Integration with Neighborhood Data Sources

Residential addresses that are stored in EHR data are critical for facilitating analyses of 

place-based health disparities. Examples of public and private neighborhood environmental 

data sources include the American Community Survey, U.S. Department of Agriculture 

Quick Stats, EnviroAtlas (from the U.S. Environmental Protection Agency), U.S. Bureau of 

Labor Statistics Public Data Application Programming Interface, and New York University’s 

City Health Dashboard15. Commonly, these data sources are area-referenced according to 

U.S. Census block groups or tracts.

The process of geocoding patient addresses in the EHR into Census-designated areas has 

been described elsewhere.16 In the NEOCARE registry, residential location history of each 

patient included is geocoded to latitude and longitude, spatially-joined with Census TIGER/

Line shapefiles to associate residential locations with their corresponding Census blocks, 

and linked to these data sources at the highest spatial resolution available (typically, at the 

census block group level).

Demonstration: Analysis of Local Mortality Patterns Among Older Adults in Cuyahoga 
County, Ohio

To assist in our presentation of the methodological approaches being described herein, 

we conducted a variety of analyses of socioeconomic and neighborhood-level variability 

in all-cause mortality risk among older adults. These analyses are demonstrative: a full 

treatment of the topic is outside the scope of this paper.

We extracted from the NEOCARE registry a cohort of patients aged ≥ 60 years whose 

EHR-documented race and ethnicity was Non-Hispanic (NH) Black, NH white, Hispanic 

or Asian. We restricted analyses to these racial and ethnic groups because other groups 

were too sparsely represented among our two health systems for robust inference. For each 

patient, the first observed outpatient visit (primary care, geriatrics, specialty visits, etc.) after 

turning age 60 was used as the index (or baseline) visit. We included patients whose index 

visit occurred between 2005 and 2015; whose geocoded address of residence for this index 

visit was located in Cuyahoga County, Ohio; and who had at least one visit (or died) within 

2 years after the index visit.

Neighborhood socioeconomic position corresponding to patients’ geocoded addresses of 

residence was characterized using the 2015 Ohio Area Deprivation Index (ADI). We used 

the sociome R package17 to estimate 2015 Ohio ADI values, using American Community 

Survey 5-year estimates at the census block group level. The sociome package replicates the 

methodology of Kind et al.18 for user-defined reference regions, such that factor loadings 

and index values are normalized to the region of interest (as opposed to the entire country). 

Details are provided elsewhere.17–20 For most analyses, we analyzed ADI values based on 

quintiles of the distribution among Ohio block groups: ADI quintile 1 corresponded to the 
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lowest level of neighborhood socioeconomic deprivation, while ADI quintile 5 corresponded 

to the highest level of neighborhood socioeconomic deprivation. However, for our spatial 

analysis, we used (continuous) ADI values.

Our analytic cohort included 38,042 patients whose index encounter occurred at MHS 

and 177,255 patients whose index encounter occurred at CCHS, for a total of 215,297 

patients. Figure 1 describes the distributions of race and ethnicity and ADI quintiles for 

adults over age 60 in each health system as well as in the combined NEOCARE cohort. 

Compared to the county population of adults over age 60, MHS patients tended to be 

disproportionately from lower-resourced (higher ADI) neighborhoods and disproportionately 

non-Hispanic Black, Hispanic and Asian. The racial and ethnic distribution for CCHS 

patients was generally similar to that of the county population, while the socioeconomic 

distribution skewed toward higher socioeconomic position (lower-ADI quintiles). The 

combined NEOCARE cohort including data from both health systems more closely matched 

that of the county population.

Analysis Considerations

Unweighted Analysis of the Entire Cohort

When data integration leads to samples in balance with underlying socially-defined 

populations, analyses of the unweighted cohort may be considered. To demonstrate this, 

we modeled mortality rates as a function of age, sex, race, ethnicity and ADI quintile using 

a Poisson rate model (number of deaths per 100 person years). Of interest were i) ratios 

of mortality rates among racial and ethnic groups, ii) rate ratios among ADI quintiles, and 

iii) the mediating effect of ADI quintile on the relationship between race and ethnicity and 

mortality (race and ethnicity → ADI quintile → mortality). An informal way to evaluate 

this mediating effect is by fitting two models, with the first including age, sex and racial and 

ethnic group as predictors and the second adding ADI quintile; comparisons of rate ratios 

associated with racial and ethnic groups between these two models can inform the degree of 

the association accounted for by ADI quintile. More formally, we quantified the percentage 

of racial and ethnic disparities (log rate ratios) accounted for by ADI via causal mediation 

analysis methods. For this purpose, we used the mediate R package.21

Table 1 contains age- and sex-adjusted incidence rate ratios (IRRs) and 95% confidence 

intervals (CIs) comparing non-Hispanic Black, Hispanic and Asian patients to non-Hispanic 

white patients, both before and after adjustment for ADI quintile. Prior to adjustment, 

non-Hispanic Black patients had a significantly higher mortality rate (IRR [95% CI]: 1.31 

[1.28 – 1.34]); the relationship was not significant after adjustment for ADI quintile (IRR 

[95% CI]: 1.02 [0.99 – 1.05]). Compared to non-Hispanic white patients, the reductions in 

mortality rates for Hispanic and Asian patients were more pronounced after adjusting for 

ADI. Causal mediation analysis indicated that ADI (as a continuous variable) accounted for 

113% of the elevated mortality risk (average proportion mediated [95% CI]: 1.13 [1.02 – 

1.26]) for non-Hispanic Black patients compared to non-Hispanic White patients.1
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Sampling and Weighting

EHR data are massive, and, for many questions, might be described as substantially 

“overpowered”. When the goal of the analysis is to make single-population inferences 

and socio-demographic characteristics are not of primary interest, sampling or weighting 

approaches can be considered as a strategy to make more robust and representative 

inferences on the (single) underlying local population. Here, we will focus on robust 

estimation of age-specific mortality rates in Cuyahoga County, Ohio and adjust our 

estimates for differences in distributions of race, ethnicity and ADI quintile between 

NEOCARE data and the population of Cuyahoga County adults aged ≥ 60 years.

Consider the comparison of race and ethnicity across ADI quintile distributions between 

those included in the NEOCARE registry compared to the general Cuyahoga County 

population. Let nij and pij represent, respectively, the number and proportion of observations 

in the available EHR cohort (in our case, the combined NEOCARE sample) for racial/ethnic 

group i and ADI quintile j. Let qij represent comparable proportions of race and ethnicity 

and ADI quintile groups in the population of adults aged ≥ 60 years residing in Cuyahoga 

County, and define a sampling ratio, i.e., a measure of the extent to which each group is 

over- or under-represented in the data, as Rij = pij/qij. Here, we will reduce sample sizes in 

all but the most under-represented group so that the distributions of race and ethnicity and 

ADI quintile in the resulting sample match the distributions in the referent population. Let 

this minimum value be R * = min (Rij), the number of sampled patients in this group be n * 

and the proportion of the target population who are members of this group be q *.

Table 2 includes these quantities for our demonstration study. The most under-represented 

group in NEOCARE was Asian patients from neighborhoods in the 1st ADI quintile (n * = 

1,337; 0.0062 of NEOCARE patients vs. 0.0093 of the Cuyahoga County population aged 

≥ 60 years; R * = 0.667). Prior to sampling, the total NEOCARE sample size was 215,297. 

As our sampled data must include a proportion of 0.0093 for this most under-represented 

group, we can calculate the size of the sampled data as the number of available patients in 

this group divided by this proportion, i.e., n′ = n * /q * = 1,337/0.0093 = 143,763. This 

leads to group-specific sample sizes of nij′ = n′ qij  and group-specific sampling weights of 

ϕij = nij′ /nij. For Asian patients from neighborhoods in the 1st ADI quintile, the process 

yielded nij′ = 1337 and ϕij = 1.0 (since it was the most under-represented group).

Sampling approaches inherently discard data, which may be undesirable. Weighting methods 

avert the need to discard observations altogether by correcting any existing imbalances 

between a sample and the population. Continuing our example above, weighting each group 

according to the ratio of the proportion in the population to the proportion in the sample (i.e., 

wij = Rij
−1 = qij/pij) results in a weighted sample with group sizes proportional to those in 

the population (i.e., wijnij ∝ qij). See Table 2. For Asian patients from neighborhoods in the 

1st ADI quintile, we had wij = 1.5 and wijnij = 2005.5.

1The proportion mediated was >100% in this case because, before adjustment for ADI (as a continuous variable), NH Black patients 
had greater age- and sex-adjusted mortality rates than NH White patients, while after adjustment for ADI, NH Black patients had 
slightly lower adjusted mortality rates than NH White patients.
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Sampling and weighting methods are flexible and can be extended or generalized to any 

chosen set of variables the investigator desires to use to balance their sample against 

any chosen reference population. Our examples were performed at the group level; 

these methods can be straightforwardly applied at the observation level, allowing greater 

flexibility in defining observation-specific sampling probabilities and weights. For example, 

the group-specific sampling weights ϕij and the case weights wij can be directly applied at 

the individual level after matching the weights to each case based on group membership. 

Alternatively, weights that are a function of both continuous and discrete variables can 

be defined from individual-level data via logistic regression models; interested readers are 

referred to the literature on inverse probability weighting.22,23

These approaches could similarly be used to reflect the broader U.S. population. For 

instance, in Cuyahoga County we have fewer Hispanic and Asian individuals than the 

rest of the United States. Instead of using reference proportions (qij) based on the local 

population of Cuyahoga County residents, one might consider sampling or weighting the 

data using reference proportions from the entire country (or other regions). However, these 

techniques have an important limitation to consider in that they are based on an assumption 

(which rarely if ever holds in the real-world) that local health outcomes are generalizable 

to other or broader populations that age, grow and develop under different health systems 

and environmental conditions. As such, one may consider using the unweighted estimates 

in the sample as a representation of minority/disadvantaged populations at particular local 

institutions as opposed to weighted estimates in an attempt to possibly fail to generalize to 

broader geographical regions.

Figure 2 displays sex-specific estimates of death rates (per 100 person-years) as a function 

of age for i) health system-specific populations and ii) the Cuyahoga County population 

(via sampling and weighting, respectively). Sampling and weighting approaches resulted in 

similar point estimates for both males and females. No notable differences in the relationship 

were observed for females when estimating the model using the various approaches; 

however, for males, single-system estimation of the relationship produced a curve that was 

as much as 20% different from those estimated for the Cuyahoga County population via 

sampling or weighting.

Stratification

Sampling and weighting are intended to produce more representative population-level 

estimates that account for imbalances between sampled data and population characteristics. 

In particular, these approaches evaluate sex, race, ethnicity and neighborhood deprivation 

marginally. This is inconsistent with frameworks of intersectionality where overlapping 

social, political and economic identities of subpopulations generate numerously unique 

experiences of disadvantage and oppression.24 Results may be distinct among, for example, 

Non-Hispanic Black males in a specific neighborhood (intersectionally-defined group) in 

relation to i) Non-Hispanic Black persons, ii) males or iii) residents of that neighborhood 

(marginally-defined groups). Stratification is frequently necessary – at the very least as a 

sensitivity analysis – to understand heterogeneous effects in diverse, intersectional patient 

populations. In EHR studies with very large sample sizes (often reaching into the thousands, 
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even for proportionally smaller subgroups), stratification is a more viable strategy than 

in many other data contexts. Stratified estimates may be obtained either by incorporating 

interaction effects or by directly subsetting the dataset according to pre-defined groups. 

Even when conducting a stratified analysis, sampling and weighting approaches should be 

considered, especially in situations where only a subset of social characteristics are being 

used to define strata.

Stratification can be readily achieved with modern data science toolkits. For example, the 

nest_by and mutate functions in the dplyr R package25 can be used to stratify a dataset 

by a selected set of grouping factors and estimate separate regression models for each 

strata in two lines of code. A comparable technique for considering heterogeneous effects 

among subgroups is to incorporate interaction terms in a model involving the whole dataset; 

however, it is to be noted that the nature of covariate adjustment is different when employing 

the interaction approach. That is, estimates are adjusted to fixed and arbitrary values over the 

entire population of interest as opposed to values among a specific subpopulation.

Stratification also encourages analysts to consider whether the populations of interest are 

all adequately represented in terms of available sample sizes for analysis. For example, our 

analytic cohort included 5,658 Hispanic patients and 3,114 Asian patients. Here and in other 

studies, the ability to make inferences by stratification, particularly for those representing 

smaller percentages of the underlying population, is dependent on outcome rates and the 

distribution of other stratifying concepts (here, the regional distribution of patients across 

neighborhood socioeconomic categories).

These limitations are borne out in the analysis presented in Figure 3. We separately 

estimated mortality rates and 95% confidence intervals for groups defined on the basis 

of sex, race, ethnicity and ADI quintile (Quintiles 1–2 and 3–4 were grouped together for 

this analysis). Estimates for Asians were unreliable due to small sample sizes. Confidence 

intervals for Hispanic groups were wider than those for Non-Hispanic Blacks and Non-

Hispanic Whites. Likewise, confidence intervals for adults over age 80 who resided in 

low-resource (Quintile 5) neighborhoods were wide since that age range is in many cases 

well beyond the life expectancy observed in such neighborhoods.

Mapping and Spatial Analysis

The above approaches are aspatial. In large-scale studies where neighborhood-level diversity 

is of interest, mapping and spatial analysis methods should be used. In particular, the 

manifestations of neighborhood socioeconomic deprivation are themselves diverse, and, 

by extension socio-ecological mechanisms underlying health disparities may differentially 

impact some low-SEP neighborhoods more than other low-SEP neighborhoods. This leads 

to hypotheses of local patterns of health disparity.

Spatial analysis methods can identify areas where health outcomes are worse (e.g., 

“hotspots”); understand the relationships between neighborhood-level characteristics and 

health outcomes; and decompose neighborhood-level variation in health outcomes. Note 

that ADI provides a composite measure of neighborhood status and neighborhoods with 

different characteristics may have the same ADI value; this is true of many area-based 
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indicators. Thus, spatial analysis provides a key strategy to evaluate health outcomes among 

socio-economically disadvantaged and racially diverse neighborhoods when coupled with 

EHR data.

The EHR is an abundant source of medical data but neighborhood-level socioeconomic 

and environmental factors are not routinely captured. Geocoding EHR data allows for 

mapping patients to neighborhood exposures (e.g. education, employment, housing quality 

and poverty), using data from the U.S. Census, the American Community Survey Data, the 

U.S. Environmental Protection Agency and other public spatial data sources. Approaches 

taking advantage of geocoding are exceptionally valuable, but it must be noted that they are 

bounded by the interpretive value of residential locations. People live out their lives, work 

and play in activity spaces that extend beyond their residence. Nevertheless, with spatial 

analysis we can evaluate the extent that these neighborhood factors from the neighborhood 

of residence are associated with individual health outcomes.

Adequately addressing spatial and spatiotemporal analytic methods is far beyond the scope 

of this review. Instead, we briefly mention some commonly-applied techniques in health 

services and medical decision making research and the research objectives they are intended 

to inform.

Spatial analyses often commence with descriptive analyses, such as univariable mapping 

(e.g., maps of disease prevalence among local neighborhoods). Hot spot analysis, also 

called local cluster detection, can be used on spatially-defined data to investigate the 

local clustering of disease. For example, a recent study examined the association between 

historically redlined neighborhoods and age-adjusted rates of emergency department visits 

due to asthma in eight major California cities, finding that historically redlined census tracts 

have significantly higher rates of emergency department visits due to asthma.26 Similar 

analyses have been conducted for many areas of the United States.27

Spatial autocorrelation analysis provides estimates of the degree of spatial (e.g., 

neighborhood-level) similarity observed among neighboring values of an outcome. A key 

component to such autocorrelation methods is the capture of spatial association in outcomes 

among neighborhoods that are closer in space as compared to neighborhoods that are more 

distant from one another. While the degree of autocorrelation among neighborhoods in an 

outcome may itself be of direct interest, oftentimes these estimates are incorporated into 

more complex spatial models.

Spatial and spatiotemporal (or ecological) regression techniques have been developed for 

both areal (polygon) data, grid data, and point-referenced (or geostatistical) data and for 

many types of outcomes. Conditional autoregressive (CAR) models, for example, are useful 

for modeling EHR data that have been mapped to U.S. Census areas (such as counties, 

census tracts and census block groups). In this section, we first implement a mapping 

analysis of overall mortality rates per 1000 person years within Cuyahoga County census 

tracts and then develop a CAR model for this outcome that adjusts incidence estimates to 

account for systematic variation (spatial autocorrelation) among neighboring census tracts. 

As we have illustrated in prior work8 – and will demonstrate below with our NEOCARE 
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data on all-cause mortality – the approach can be used to deconstruct neighborhood-level 

variation in an outcome of interest.

First, we aggregated our data to the census tract level, calculating total number of deaths and 

total person-years of follow-up for each tract. (Note: when multilevel effects are of interest, 

these models can be applied to individual-level data.) Here we use US census-tracts, but 

other meaningful levels of geography are possible. The left panels of Figure 4 illustrate the 

spatial correspondence between death rates (per 1000 person-years) and ADI. The tract with 

the lowest observed mortality rate of 13.8 per 1000 person-years was located in the City of 

Solon in the southeast quadrant of the map. Based on 2015 5-year American Community 

Survey estimates, this tract had a median household income of $118,274 USD; a median 

home value of $297,000 USD with 96.3% owner-occupied housing; and an unemployment 

rate of 3.6% with 62.0% working in white-collar jobs. Conversely, the tract with the 

highest mortality rate of 74.8 per 1000 person-years was located in the Central/Fairfax 

neighborhood on the east side of the City of Cleveland (near map center). This tract had 

a median household income of $14,548 USD; a median home value of $26,300 USD with 

10.0% owner-occupied housing; and an unemployment rate of 30.9% with 9.8% working in 

white-collar jobs.

We estimated two log-linear (Poisson) CAR models, using the CARBayes R package28, 

to characterize tract-level variability in death rates while accounting for correlation in 

outcomes among adjacent tracts. Both models were of the general form log (deaths) = 

log (personYears) + X′β + zi. (Using an offset of the total number of person-years of 

observation allowed for directly modeling tract-specific death rates as opposed to the counts 

themselves.) The fixed effects coefficients β captured systematic variation in death rates 

associated with specific variables entered into the model. The random effects zi = ui + 

vi captured tract-level residuals according to the Besag-York-Mollié (BYM) correlation 

structure: the BYM model combines spatial/structured (ui) and unstructured (vi) components 

to model residuals. The first (null) model was an intercept-only model; this model was used 

to describe tract-level rate ratios (as compared to the overall average across all tracts in the 

county). The second model incorporated (quadratic) fixed effects to model the systematic 

relationship between ADI and death rate.

Rate ratios (calculated for each tract as ezi) from these two models are given in the right 

two panels of Figure 4. The Figure indicates that, after adjustment for ADI, the intensity of 

variation among tract-level rate ratios was reduced. This can be quantified by calculating the 

ratio of the sum of squared residuals between the two models, i.e., ∑i = 1
n zi2

2 ÷ ∑i = 1
n zi1

2 , 

where zi1 and zi2 are residuals for the ith tract from models 1 and 2 (respectively). This ratio 

was 0.418, meaning that 58.2% of the tract-level variation in death rates was accounted for 

by ADI.

Discussion

In this paper we have outlined approaches for designing and implementing analyses of EHR 

data for researchers interested in studying the health outcomes of individuals from diverse 

neighborhood environments and racial and ethnic backgrounds. Ongoing improvements in 
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the quality, scale, and accessibility of EHR data and corresponding methodological advances 

provide an unprecedented opportunity for high-resolution insights into the mechanisms of 

social and neighborhood-level health disparities. These studies are resource-intensive to 

implement due to the nature of EHR data systems, which are large and complex: Special 

considerations are needed in the design and analysis of any study that utilizes EHR data, 

especially in EHR studies of health disparities.

Typically, an individual health system’s EHR data is not adequately representative of the 

larger community where it is located. Health systems each serve distinct populations, and 

populations across health systems within the same community may be heterogeneous. 

Therefore, efforts to understand regional health outcomes using EHR data must account 

for variances in demographic and socioeconomic characteristics collected within the 

EHR relative to those of the population(s) of interest. There are inherent limitations 

of EHR systems to accurately capture both biological and social characteristics. For 

example: i) it usually cannot be determined whether documented race and ethnicity 

information is self-reported or assigned by a clinician, and whether race and ethnicity 

is self- or clinician-assigned may systematically vary across racial and ethnic groups; 

ii) availability of individualized socioeconomic information (e.g., “social determinants of 

health” questionnaires, insurance status, or income) is limited and iii) data on adverse 

childhood experiences and other social risks (e.g., incarcerations, victimhood of intimate 

partner and other forms of interpersonal violence) are not commonly available. EHR systems 

nonetheless can provide larger and more representative samples of real-world patients and 

enable the investigation of heterogeneity in disease prevalence and treatment effects across 

socially-defined groups and neighborhoods.

The analytic approaches discussed in this paper vary in terms of the questions they 

are appropriate for studying and their complexity. We would advocate for starting with 

stratification and mapping approaches to identify the extent of heterogeneity in risk factors 

and outcomes and their respective relationships across the population. Critically, we suggest 

that heterogeneity should be expected rather than assumed away since there is always 

diversity in real-world populations. This is especially the case with EHR studies, inasmuch 

as they incorporate very large sample sizes and represent very diverse populations. If 

stratification and mapping do not demonstrate substantial variation, then it may be possible 

to evaluate homogeneous effects across groups.

There are additional ways to maximize the approaches outlined in this paper to improve 

the composition of a dataset built using EHR data. For example, sampling and weighting 

techniques aligned our analytic dataset with the local population by race, ethnicity and ADI 

quintile. Furthermore, it is possible and often appropriate to combine approaches, such as 

using weights in spatial models. Predictions from aspatial models (i.e., models defined on 

the basis of social factors but exclusive of specific neighborhood effects) can conceivably 

be studied at the neighborhood level via combination or weighting of individualized 

predictions, although there is a risk of bias in doing so: the researcher must be willing 

to assume that differences in social factors alone (and not individual neighborhood effects) 

adequately account for spatial variability. In implementing stratified and spatial analyses, 
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researchers must take into account potential privacy concerns resulting from small cell sizes 

(e.g., the possibility that some census block groups may be represented by <10 patients).

Ours is not the first paper to outline approaches for creating better datasets when using 

EHR data. A paper by Bowler and colleagues identified techniques for using EHR data 

when conducting cardiovascular disease surveillance. Their suggestions are focused on 

data collection (e.g., measures should be recorded and obtained in a standardized way, 

merged correctly, and representative of the population of interest)29. Rassen et al. discussed 

estimation of prevalence and incidence based on different lookback times for diagnoses in 

the EHR.30 We previously published a paper in Medical Decision Making on difficulties in 

adapting EHRs for health services research.12 Our approach extends these suggestions by 

identifying design and analysis approaches that enable researchers to better align EHRs with 

local populations and study heterogeneity in outcomes across neighborhoods and socially-

defined populations.

Our analyses highlight the importance of including race and ethnicity and measures of 

socioeconomic status (e.g., ADI, education, employment, housing quality) when creating 

datasets to study differences in health outcomes. The health services and medical decision 

making research communities have recently emphasized the importance of including race 

and ethnicity and of naming racism and health inequity as having social origins requiring 

social solutions.31,32 Numerous events and historical circumstances have led to extreme 

neighborhood-level disparities in wealth and socioeconomic status in the United States 

that have disproportionately impacted racial and ethnic minority populations.27 These 

resource-related disparities are stubbornly persistent structures that continue to create 

disparate patterns of health-related risks and outcomes. Examples of phenomena that 

produce disparate resource level availability among neighborhoods include discrimination 

in housing and loan financing policies, offshoring of manufacturing jobs that previously 

supported small towns, gentrification of attractive neighborhoods in urbanized areas, and 

declining funding for public schools.27 Correspondingly, access and utilization of healthcare 

services among low-income and minority populations have been impacted by escalating 

costs, consolidation in the healthcare sector, changes in insurance policies, uneven quality of 

health services delivery, mistrust of health institutions, and widening economic inequalities. 

Policies that produce unequal representation of individuals in datasets are not just historical 

footnotes. For example, researchers have found that Hispanic individuals have lower use 

of health services traceable to locally intensified Immigration Enforcement activity.33–35 

While this article addresses unequal representation in those who are included in EHR 

systems, it does not address differences in follow-up (or “observable person-time”30,36) 

among members of diverse populations.

Social inequalities (and measures of community and individual social indicators) are 

interwoven and fundamental influencers of health, such that the intersection of multiple 

factors is rarely as simple as an additive relationship. Other challenges in understanding 

complex social-ecological mechanisms of health disparities include the fact that, in many 

cases, neighborhood-level measures are derived as an aggregation of individual responses to 

questions (as in the American Community Survey) while such individual characteristics 

are endogenous to a multiplicity of neighborhood conditions under which a person is 
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responding to a question. For example, racial segregation is associated with an array 

of individual and neighborhood conditions including under- or unemployment, violent 

crime, and housing deterioration37, all of which are associated with health declines. Yet, 

neighborhood level estimates of health represent an aggregation of all individuals living 

there and disentangling the health outcomes of subpopulations using these estimates is 

difficult. Therefore, careful and nuanced interpretation of identified associations is needed; 

researchers should (i) meticulously report how area-based measures are operationalized and 

(ii) acknowledge that modifying a single neighborhood environmental characteristic may 

not result in a reduction in health disparity even when that characteristic is associated 

with outcomes. Social-ecological mechanisms are complex and often inter-dependent.38 

Building on frameworks in computing and engineering disciplines, future work focused 

on data aggregation, privacy preservation and merging of multisector data resources to 

create simulated, Digital Twin versions of neighborhoods could provide enhanced ability to 

conduct robust population health analyses using EHR data resources.

Researchers seeking to understand and improve population health for all must pay attention 

to current and historical underlying circumstances of social policy and inequality, and how 

these contexts are operating to influence health care, health outcomes, and health data. 

In summary, regional EHR data can facilitate deeper understandings of the mechanisms 

underlying social health disparities which illuminate pathways to closing gaps. The methods 

described in this paper are intended as a starting point for better alignment of EHR-based 

observational research methods with the heterogeneous populations that they reflect. In 

many cases, it is appropriate to employ more than one of these methods. The methods 

offer opportunities for researchers to identify subgroups that have disparate types of risk 

(heterogeneous risk structures) for the same illness(es), create models to capture the 

variation in the effectiveness of therapies within and across subgroups and summarize 

disparate outcomes of interest across identified subgroups.
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Highlights:

• EHR data are an abundant resource for studying neighborhood diversity and 

health.

• When using EHR data for these studies, careful consideration of the goals 

of the study should be considered in determining cohort specifications and 

analytic approaches.

• Causal mediation analysis, stratification and spatial analysis are effective 

methods for characterizing social mechanisms and heterogeneity across 

localized populations.
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Figure 1/. 
Mosaic plots of the joint distribution of race and ethnicity and Ohio Area Deprivation Index 

quintile for MHS patients aged ≥ 60 years who resided in Cuyahoga County, Ohio and who 

were seen between 2005 and 2015; for CCHS patients meeting the same criteria; for the 

combined NEOCARE cohort; and for the population of adults aged ≥ 60 years residing 

in Cuyahoga County, Ohio in 2015. Bar widths reflect the proportion of a residents from 

communities in a given ADI quintile within a sample (or within the county population). ADI 

quintiles 1 and 5 represent the least and most socioeconomically disadvantaged quintiles, 

respectively.
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Figure 2/. 
Estimates of death rates per 100 person-years for health system-specific populations as well 

as those of the population of Cuyahoga County residents aged ≥ 60 years (via sampling 

or weighting of the NEOCARE registry to align socio-demographic characteristics of the 

data with those of the underlying population). Health system identities are redacted for this 

illustrative analysis.
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Figure 3/. 
Stratified estimates of death rates (per 100 person-years) by sex, race, ethnicity and 

ADI quintile obtained the NEOCARE registry. Each panel in the figure represents a 

subpopulation defined by these characteristics (race and ethnicity define the columns and 

ADI quintile groupings define the rows). Sample sizes for Asians were insufficient for 

reliable estimation. ADI quintiles 1 and 5 represent the least and most socioeconomically 

disadvantaged quintiles, respectively.
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Figure 4/. 
Ecological analysis of the correspondence between neighborhood socioeconomic position 

(Ohio Area Deprivation Index, ADI; higher values reflect greater socioeconomic 

disadvantage) and mortality rates in Cuyahoga County, OH. The two areas shown without 

data are Cleveland Hopkins International Airport to the west and industrial zoning on the 

banks of the Cuyahoga River in the center of the county. We used a Poisson rate model 

incorporating spatial autocorrelation terms to identify the rate ratios for death in the two 

right panels.
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Table 1

Age- and sex-adjusted incidence rate ratios for mortality comparing Non-Hispanic (NH) Black, Hispanic and 

Asian patients to NH White patients, without and with adjustment for Area Deprivation Index (ADI) quintile 

(1 = least socioeconomic disadvantage; 5 = highest socioeconomic disadvantage).

Model 1 Age, Sex, Race and Ethnicity Model 2 Age, Sex, Race, Ethnicity, and ADI Quintile

IRR
1

95% CI
1 p-value IRR

1
95% CI

1 p-value

Race and Ethnicity

 NH White — — — —

 NH Black 1.31 1.28, 1.34 <0.001 1.02 0.99, 1.05 0.2

 Hispanic 0.84 0.77, 0.90 <0.001 0.67 0.61, 0.72 <0.001

 Asian 0.48 0.42, 0.55 <0.001 0.46 0.40, 0.52 <0.001

ADI Quintile

 Quintile 1 — —

 Quintile 2 1.31 1.27, 1.35 <0.001

 Quintile 3 1.46 1.41, 1.50 <0.001

 Quintile 4 1.58 1.53, 1.63 <0.001

 Quintile 5 1.78 1.72, 1.84 <0.001

1
IRR = Incidence Rate Ratio, CI = Confidence Interval
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Table 2

Quantities derived via sampling and weighting from the combined NEOCARE cohort and Cuyahoga County 

population. Groups were defined on the basis of race, ethnicity and Area Deprivation Index (ADI) quintile. 

For the sampling approach, the observed group-specific samples (of original size nij and proportion pij) are 

randomly sampled with frequencies φij to result in the sampled group sizes nij′  that are proportional to the 

population frequencies (qij) and of size that is determined by the extent of under-representation in the sample 

(minimum sampleto-population ratio Rij, in bold and italic). For weighting, all observations are used but case 

weights of wij are applied such that each group’s weighted sample size wijnij is similarly proportional to qij. 

ADI quintiles 1 and 5 represent the least and most socioeconomically disadvantaged quintiles, respectively.

Race and Ethnicity ADI Quintile nij pij qij Rij φij nij′ wij wijnij

NH White Quintile 1 67319 0.313 0.295 1.060 0.630 42410 0.943 63508.5

Quintile 2 33086 0.154 0.171 0.901 0.741 24526 1.110 36724.0

Quintile 3 24139 0.112 0.121 0.925 0.722 17424 1.081 26098.5

Quintile 4 18120 0.084 0.087 0.973 0.686 12436 1.027 18615.0

Quintile 5 13109 0.061 0.061 1.002 0.667 8741 0.998 13087.5

NH Black Quintile 1 3421 0.016 0.017 0.952 0.702 2401 1.050 3593.1

Quintile 2 3724 0.017 0.018 0.972 0.687 2559 1.029 3831.6

Quintile 3 3957 0.018 0.019 0.995 0.672 2660 1.005 3978.5

Quintile 4 11708 0.054 0.050 1.090 0.613 7174 0.917 10739.5

Quintile 5 27942 0.130 0.127 1.020 0.654 18287 0.980 27382.3

Hispanic Quintile 1 563 0.003 0.003 0.929 0.716 403 1.077 606.3

Quintile 2 434 0.002 0.002 0.952 0.696 302 1.050 455.7

Quintile 3 565 0.003 0.002 1.300 0.510 288 0.769 434.6

Quintile 4 1044 0.005 0.003 1.655 0.399 417 0.604 630.8

Quintile 5 3052 0.014 0.009 1.632 0.410 1251 0.613 1869.9

Asian Quintile 1 1337 0.006 0.009 0.667 1.000 1337 1.500 2005.5

Quintile 2 468 0.002 0.003 0.786 0.861 403 1.273 595.6

Quintile 3 370 0.002 0.001 1.308 0.505 187 0.765 282.9

Quintile 4 354 0.002 0.002 0.889 0.732 259 1.125 398.2

Quintile 5 585 0.003 0.002 1.286 0.516 302 0.778 455.0
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