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There is increasing evidence for inflammation as a determinant in the pathogenesis of Parkinson’s disease, but its
role in parkinsonian neurodegeneration remains elusive. It is not clear whether inflammatory cascades are causes
or consequences of dopamine neuron death. In the present study, we aim to perform an in-depth statistical investi-
gation of the causal relationship between inflammation and Parkinson’s disease using a two-sample Mendelian ran-
domization design.
Genetic instruments were selected using summary-level data from the largest genome-wide association studies to
date (sample size ranging from 13955 to 204402 individuals) conducted on a European population for the following
inflammation biomarkers: C-reactive protein, interleukin-6, interleukin 1 receptor antagonist and tumour necrosis
factor α. Genetic association data on Parkinson’s disease (56 306 cases and 1417791 controls) and age at onset of
Parkinson’s disease (28 568 cases) were obtained from the International Parkinson’s Disease Genomics
Consortium. On primary analysis, causal associations were estimated on sets of strong (P-value<5×10−8; F-statis-
tic > 10) and independent (linkage disequilibrium r2 < 0.001) genetic instruments using the inverse-variance weighted
method. In sensitivity analysis, we estimated causal effects using robust Mendelian randomization methods and
after removing pleiotropic genetic variants. Reverse causation was also explored.We repeated the analysis on differ-
ent data sources for inflammatory biomarkers to check the consistency of the findings.
In all the three data sources selected for interleukin-6, we found statistical evidence for an earlier age at onset
of Parkinson’s disease associated with increased interleukin-6 concentration [years difference per 1 log-unit
increase=−2.364, 95% confidence interval (CI) =−4.789–0.060; years difference per 1 log-unit increase=−2.011, 95%
CI=−3.706 to −0.317; years difference per 1 log-unit increase=−1.569, 95% CI=−2.891 to −0.247]. We did not observe
any statistical evidence for causal effects of C-reactive protein, interleukin 1 receptor antagonist and tumour necrosis
factor α on both Parkinson’s disease and its age at onset. Results after excluding possible pleiotropic genetic variants
were consistentwith findings fromprimary analyses.When investigating reverse causation, we did not find evidence
for a causal effect of Parkinson’s disease or age at onset on any biomarkers of inflammation.
We found evidence for a causal association between the onset of Parkinson’s disease and interleukin-6. The findings
of this study suggest that the pro-inflammatory activity of the interleukin-6 cytokine could be a determinant of
prodromal Parkinson’s disease.
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Introduction
In recent years, increasing biological evidence supporting a link be-
tween inflammatory processes and thepathogenesis of Parkinson’s
disease has emerged.1–4 Inflammation origin has been hypothe-
sized to be from the CNS throughmicroglia activation, whichmight
play a crucial role in the inflammatory cascades associated with
death of dopaminergic neurons.5 In particular, activation of toxic
microglia leads to the production of pro-inflammatory cytokines,
such as interleukin (IL) 6 and tumour necrosis factor-α (TNF-α),
which will ultimately produce damage to dopamine neurons.6,7

Furthermore, inflammation can also be triggered by mitochondrial
stress through the release of damage-associated molecular pat-
terns.8 Several studies found increased levels of pro-inflammatory
cytokines and TNF-α in the CSF of Parkinson’s disease patients.9–13

Moreover, higher blood concentrations of IL-1β, IL-6, IL-10 and
TNF-αwere observed in Parkinson’s disease patients than controls,
suggesting a possible involvement of the peripheral tissue in the
origin of the inflammatory cascades.14,15 Despite the increasing
number of findings pointing to a relationship between inflamma-
tion and Parkinson’s disease, the role of inflammatory processes re-
mains controversial, as does its direction, possible causality and
effect magnitude. For example, high cytokines levels in blood
have been hypothesized to be the consequence of brain clearance
processes through the glymphatic system.16 Moreover, lower plas-
ma concentration levels of some cytokines have been found in
Parkinson’s disease patients.17 The supporting evidence for the hy-
pothesized link was mainly derived from observational studies,
which are known to be prone to several sources of bias. Indeed, is-
sues such as reverse causation (activation of microglia is the cause
and not the consequence of neurodegeneration) and confounding
(the association between inflammation and Parkinson’s disease is
driven by other factors associated with both exposure and out-
come) are often present in observational studies and can under-
mine reliability of results.

The causal role of modifiable exposures on outcomes, such as
diseases, has been increasingly studied using Mendelian random-
ization (MR), a statistical framework that uses genetic variants as
instruments for proxying the effect of exposures on the outcome
of interest.18 Given the random inheritance at conception, genetic
variant allocation is not influenced by environmental or lifestyle
factors and, thus, MR estimates are usually less prone to confound-
ing and reverse causation biases.19 The increasing availability of in-
formation on genetic associations for phenotypes anddisease traits
has greatly aided the use of MR methods for reliable causal infer-
ence. Indeed, genome-wide association studies (GWAS) data from
large-scale consortia have the potential to improve the power of
MR analysis for detecting causal effects.20

Few recent studies have evaluated the causal relationship of in-
flammation with Parkinson’s disease using MR methodology. A
previous study investigated the causal relationship of C-reactive
protein (CRP) with several diseases in the European population
and did not find any statistical evidence of an effect on
Parkinson’s disease.21 Conversely, another study found strong stat-
istical evidence for a causal association of CRPwith Parkinson’s dis-
ease with a phenome-wide MR on the UK Biobank and FinnGenn
population.22 An MR approach was used to examine the role of
long-term TNF-α inhibition on Parkinson’s disease risk and age at
onset (AAO) in the European population, but no statistical evidence
for a causal relationship was observed.23

In the present study, we aimed to further investigate the causal
relationship of inflammation with Parkinson’s disease within a
two-sample MR framework to reduce the risk of biases that are
common in observational studies. In the context of disease preven-
tion and therapy, the MR approach represents a valid alternative to
randomized clinical trials where they cannot be conducted. Hence,
findings can be used to inform and prioritize potential drug targets,
which are more likely to be developed when supported by genetic
evidence.24–27 We considered multiple additional well-known in-
flammatory biomarkers as exposures and we leveraged the infor-
mation from different GWAS data sources to evaluate the
robustness of findings and their replicability by checking the con-
sistency of the MR estimates. Finally, to evaluate the direction of
the causality and to exclude reverse causation, a bi-directional ap-
proach—considering inflammation biomarkers as exposures and
Parkinson’s disease as the outcome and vice versa—was used on
available data. The present study was conducted following the
STROBE-MR guidelines for transparent reporting of MR studies.28

Materials and methods
Study design

A two-sampleMRdesignwas followed, i.e. summary genetic data for
exposures and outcome were retrieved from two independent sam-
ples avoiding bias due to overlapping.29 Multiple genetic variants
were used as instruments when available, and both instrument se-
lection and instrument-exposure estimates came from the same
combined analysis of discovery and replication studies, that is,
from the largest GWAS to date for maximum power. Moreover,
when available, we retrievedmore than one data source for each ex-
posure to investigate the robustness and the replicability of the esti-
mates. For each data source, we estimated the causal effects and
evaluated their directions.We focused on studies conducted on eth-
nically homogeneous participants of European ancestry. A graphical
overview of the general MR design is provided in Fig. 1.
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Data sources

Details on the studies on the exposures are summarized in Table 1.
We selected the following inflammation biomarkers as exposures:
CRP, IL-6, IL-1 receptor antagonist (IL-1ra) and TNF-α. They were
identified on the basis of public availability and sample size (at least
5000 participants) to ensure sufficient power for detecting a causal
effect and tominimize the risk of small sample bias.30 A description
of amore comprehensive list of GWAS conducted on commonmar-
kers of inflammation is available in Supplementary Table 30. More
information on exposure data sources can be found in the
Supplementary material.

We focused on two outcomes: the diagnosis of Parkinson’s dis-
ease and its AAO. In the former case, we retrieved genetic data from
the most recent GWASmeta-analysis among 16 cohorts within the
International Parkinson’s Disease Genomics Consortium (IPDGC)
and 23andMe study, with a total of 37 688 cases, 18 618 proxy-cases
(individuals without a diagnosis of Parkinson’s disease but with a
first degree relative with Parkinson’s disease diagnosis) and 1417
791 controls.31 For AAO, we extracted genetic association estimates
from the largest GWAS conducted on 28568 Parkinson’s disease
cases by the IPDGC and 23andMe.32 More details on outcomes
data sources are available in the Supplementary material.

Mendelian randomization analyses

We investigated causal effects of exposures on outcomes using
two-sample MR methods. Before performing MR analyses, we se-
lected genetic variants as instruments such that they were strongly
associated with the exposure (P < 5×10−8 and F-statistic>10)
and independent [linkage disequilibrium (LD) r2 <0.001], andwehar-
monized the datasets as previously described.33 Details on the selec-
tion of instruments and the data harmonization are in the
Supplementarymaterial. Depending on the number of selected gen-
etic instruments, in primary MR analysis, we estimated causal ef-
fects using the Wald ratio estimator and inverse-variance
weighted fixed or random effects methods. In secondary analyses,

we used two-sample MR methods robust to the presence of plei-
otropy (details in the Supplementary material).

To check the robustness of MR findings, we performed further
sensitivity analyses. First, we removed from the initial set of instru-
ments those genetic variants for which we found biological or stat-
istical evidence of pleiotropy. Second, to avoid the risk of observing
results driven by a few potentially pleiotropic variants, we selected
genetic instruments with a more liberal LD clumping approach
based on r2 < 0.1. Last, we performed a reverse causation investiga-
tion to understand whether an increased liability to Parkinson’s
disease and increased AAO are causally associated with the se-
lected biomarkers of inflammation. Details on the sensitivity ana-
lyses are included in the Supplementary material.

When considering AAO (continuous outcome), we summarized
the causal estimates as the expected differences for a unit increase
in exposure (logarithmic or rank-based inverse normal transform-
ation scales, depending on the dataset). For Parkinson’s disease
(binary outcome), we used the odds ratio (OR) to represent the cau-
sal effect. Given the increasing awareness towards the issues with
statistical significance when interpreting findings of a study,34 we
presented the results with point estimates and relative 95% CIs
thus focusing on the magnitude, the direction and the associated
uncertainty of a causal effect.35

Power analysis

An a priori power analysis has been conducted following the
approach proposed by Brion et al.36 Different scenarios are shown
in Supplementary Fig. 1. Assuming a sample size of 200 000 partici-
pants, an α level of 0.05 and a proportion of Parkinson’s disease
cases of about 3%, we estimated a power of 80% to detect an OR
of at least 1.15, when the exposure variability explained by the in-
struments is at least �5%.

Data availability

All the GWAS included in the present study obtained written in-
formed consent from participants and were approved by ethics

Figure 1 Graphical representation of the MR assumptions [(i) relevance; (ii) independence; (iii) exclusion restriction] in a two-sample MR design. The
continuous lines represent the relationships that hold in MR analysis. Dashed lines depict the association that should not be present to satisfy the se-
cond and third assumptions. SNP-exposure associations are derived in Sample 1 (blue circle), and SNP-outcome associations in Sample 2 (orange
circle).
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committees. No further ethical consents were required since our
study is based on publicly available summary-level data.

Concerning exposure data, we extracted the data from the ta-
bles in themainpaper or the supplementarymaterial of the original
publication, and from the repository (https://zenodo.org/record/
2615265#.YS0CBt_OOUk). Regarding the outcomes, the summary-
level data are available on the The International Parkinson
Disease Genomics Consortium (IPDGC) consortium website
(https://pdgenetics.org/resources).

All the analyses were performed using R software for statistical
computing (v.4.1.1).37 Data manipulation and harmonization were
implemented using the tidyverse meta-package (v.1.3.1)38 and MR
analyses were performed using TwoSampleMR (v.0.5.6) and
MendelianRandomization (v.0.5.1) R packages.39,40 The code used to
perform all the steps of the analysis is available in an online Github
repository (https://github.com/EuracBiomedicalResearch/mr.inflpd).

Results
Table 2 shows details on the selected instruments for MR analyses.
Overall, one to five instruments were selected in most of the data

sources, except for CRP where 31 instruments were identified in

one meta-analysis. All genetic variants were strongly associated

with the exposures, with the F-statistic values >25, and exposure

variances explained by genetic instruments ranging from0.2 to 5.3%.
Results from primary MR analysis are shown in Table 3, Fig. 2

(for Parkinson’s disease) and Fig. 3 (for AAO). Regarding CRP, we

did not find any statistical evidence for an association with the

risk of Parkinson’s disease, both either Ligthart et al.41 [OR=1.014;

95% confidence interval (CI) = 0.958–1.073] or CRP coronary heart

disease genetics collaboration (CCGC) data42 (OR=1.001; 95% CI =

0.824–1.215). Similarly, we did not observe any evidence of an effect

on AAO in Ligthart et al.41 (0.509 years difference; 95% CI =−0.195 to

Table 1 Description of the data sources of the study

Trait References Sample size (discovery+
replication) (number of

studies)

Measurement Statistical analysis

Exposure
CRP Ligthart et al.41 204 402 (88 studies) Immune assay techniques as mg/l Linear model on log-transformed CRP adjusting

for sex, age and population structure
CCGC42 194 418 (47 studies) High-sensitivity assay

standardized on International
Reference standards for CRP
immunoassay

Linear model on log-transformed CRP adjusting
for sex and ethnicity

IL-6 Ahluwalia et al.43 67 428 (38 studies) Immunoassay techniques as pg/ml Linear model on log-transformed IL-6 adjusting
for age, sex, population structure and study
site

IL6R
consortium45

125 222 (46 studies) Immunoassay techniques Linear model on log-transformed IL-6 adjusting
for age and sex

Folkersen et al.44

(SCALLOP)
30 931 (14 studies) Olink Proximity Extension Assay

CVD-I panel
Linear model on rank-based inverse normal

transformed IL-6 adjusting for population
structure and study-specific features

IL-1ra Herder et al.46 13 955 (11 studies) Immunoassay techniques Linear model on log-transformed IL-1ra
adjusting for age, sex, body mass index,
waist-to-hip ratio and smoking

Folkersen et al.44

(SCALLOP)
30 931 (14 studies) Olink Proximity Extension Assay

CVD-I panel
Linear model on rank-based inverse normal

transformed IL-6 adjusting for population
structure and study-specific features

TNF-α Prins21 30 912 (25 studies) Immunoassay techniques as pg/ml Linear model on log-transformed TNF-α
adjusting for a quadratic effect of age, sex,
body mass index, study-specific covariates
and relatedness

Outcome
PD diagnosis Nalls et al.31 37 688 cases, 18618

proxy-cases, and 1417
791 controls (17
studies)

Self-reporting or clinical
ascertainment

Most studies used logistic regression on
Parkinson’s disease status adjusting for AAO
for cases and age at the most recent
examination for controls, sex and the first six
principal components of population
structure. For each study, uniform summary
statistics were generated and then pooled
through fixed-effects meta-analysis

AAO Blauwendraat
et al.32

28 568 Parkinson’s
disease case (18
studies)

Self-reporting of first Parkinson’s
disease motor signs or age at
diagnosis

Linear model on AAO adjusting for sex and the
first five principal components of population
structure. For each study, uniform summary
statistics were generated and then pooled
through fixed-effects meta-analysis

Information on the traits, the sources, the sample size and the number of studies when results weremeta-analysed, measurement and assessment of the traits, and statistical

analysis are provided. CCGC = CRPC-reactive protein coronary heart disease genetics collaboration; CVD = cardiovascular disease; PD = Parkinson’s disease; SCALLOP =
systematic and combined analysis of Olink proteins.
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1.213) and CCGC42 (0.446 years difference; 95% CI =−0.875 to 1.767)
datasets. In secondary analyses (Supplementary Tables 33 and
34), no effect was observed on Parkinson’s disease risk by any ro-
bustMRmethod, whereaswe observed statistical evidence for later
AAO associated with an increase of 1-unit of CRP on the log scale
using MR-Egger (1.486 years difference; 95% CI =0.470–2.501) and
weighted mode (0.893 years difference; 95% CI =0.052–1.734) meth-
ods. The exclusion of pleiotropic variants (Supplementary Table 45)
and the selection of instruments with r2 < 0.1 (Supplementary
Tables 35–42) led to results consistent with those previously ob-
tained. Moreover, no evidence of reverse causation was observed
(Supplementary Tables 43 and 44).

For IL-6,we did not observe any strong statistical evidence for an
association with Parkinson’s disease risk using either Ahluwalia
et al.43 (OR 0.997; 95% CI =0.697–1.424), IL6R Genetics Consortium
(OR 1.152; 95% CI =0.900–1.475), or Folkersen et al.44 (OR 1.031; 95%
CI= 0.862–1.232) datasets. However, we found evidence for younger
AAO associated with increase IL-6 levels in IL6R Genetics
Consortium45 (−2.011 years difference; 95% CI =−3.076 to −0.317)
and Folkersen et al.44 (−1.387 years difference; 95% CI =−2.615 to
−0.160) data, whereas less evidence was observed in Ahluwalia
et al.43 (−2.364 years difference; 95% CI =−4.789 to 0.060) dataset.
In sensitivity analyses on Ahluwalia et al.,43 one single-nucleotide
polymorphism (SNP) (rs660895 in the HLA-DRB1 locus) associated
with rheumatoid arthritis (Supplementary Table 47) was ex-
cluded. After SNP exclusion for possible pleiotropy, no strong evi-
dence for increased risk of Parkinson’s disease associated with
increased IL-6 levels was observed, whereas we found that higher
IL-6 concentrations decreased the AAO (−2.785 years difference;
95% CI =−5.305 to −0.265) (Supplementary Tables 35 and 36). On

the Folkersen et al.44 data, we excluded the SNP rs4959106 in
HLA-DRB1 locus associated with rheumatoid arthritis and choles-
terol (Supplementary Table 47) in sensitivity analyses.
Consistently with primary MR analysis, we did not find evidence
for an association between IL-6 and Parkinson’s disease risk (OR
1.117; 95% CI = 0.921–1.355), whereas we observed evidence for
younger AAO associated with increased IL-6 levels (−1.569 years
difference; 95% CI =−2.891 to −0.247). When genetic instruments
were selected using r2 < 0.1, findings were consistent with
previous analyses (Supplementary Tables 39–42). We did not
find any evidence of reverse causation (Supplementary Tables
43 and 44).

Regarding IL-1ra, no associationwith the risk of Parkinson’s dis-
ease was observed in either Herder et al.46 (OR=1.109; 95% CI =
0.700–1.757) or Folkersen et al.44 (OR=0.970; 95% CI =0.924–1.102)
data. Lack of statistical evidence was also observed for AAO using
both datasets (Herder et al.: −1.700 years difference; 95% CI =
−4.793 to 1.393. Folkersen et al.44: −0.370 years difference; 95% CI=
−2.159 to 1.420). In secondary analyses, no MR methods identified
a causal effect of IL-1ra on both Parkinson’s disease risk and AAO
(Supplementary Tables 33 and 34). No SNP was excluded for plei-
otropy based on both statistical and biological criteria. Finally, no
evidence of reverse causation was observed (Supplementary
Tables 43 and 44) and results with a more liberal LD clumping
threshold (r2<0.1) were in agreement with those from primary
and secondary analyses (Supplementary Tables 39–42).

For TNF-α, there was no statistical evidence that higher con-
centration levels affected either the risk of Parkinson’s disease
(OR= 1.410; 95% CI = 0.709–2.807) or AAO (−3.030 years differ-
ence; 95% CI =−7.692–1.633). Excluding pleiotropic SNPs

Table 2 Description of the genetic variants used as instrumental variables in the MR analysis for each dataset

Exposure Data source Number of IVs F-statistica Overall R2

CRP Ligthart et al.41 31 49 (25; 2070.3) 5.3%
CCGC42 1 311.2 0.7%

IL-6 Ahluwalia et al.43 2 37.8; 397.7 0.4%
IL6R consortium45 1 63.1 0.4%
Folkersen et al.44 (SCALLOP) 2 35.6; 198.5 1.7%

IL-1ra Herder et al.46 1 169 0.2%
Folkersen et al.44 (SCALLOP) 5 170.2 (30.0; 384.8) 4.9%

TNF-α Prins21 3 30.9 (28.4; 39.5) 0.2%

Information on the exposure, the dataset source, the number of instrumental variables (IVs), the strength of the SNP-exposure association (using F-statistic) and the overall

proportion of exposure variance explained by the IVs (R2). CCGC = CRPC-reactive protein coronary heart disease genetics collaboration; SCALLOP = systematic and combined
analysis of Olink proteins.
aWhen only one IV was available, a single value is reported. For two instruments, both F-statistic values are shown. For >2 instruments, median (range) are reported.

Table 3 Results for primary MR analysis

Exposure Data source PD OR (95% CI) Estimated years difference (95% CI)

CRP Ligthart et al.41 1.014 (0.958; 1.073) 0.509 (−0.195; 1.213)
CCGC42 1.001 (0.824; 1.215) 0.446 (−0.875; 1.767)

IL-6 Ahluwalia et al.43 0.997 (0.697; 1.424) −2.364 (−4.789; 0.060)
IL6R consortium45 1.152 (0.900; 1.475) −2.011 (−3.706; −0.317)
Folkersen et al.44 (SCALLOP) 1.031 (0.862; 1.232) −1.387 (−2.615; −0.160)

IL-1ra Herder et al.46 1.109 (0.700; 1.757) −1.700 (−4.793; 1.393)
Folkersen et al.44 (SCALLOP) 0.970 (0.924; 1.102) −0.370 (−2.159; 1.420)

TNF-α Prins21 1.410 (0.709; 2.807) −3.030 (−7.692; 1.633)

For Parkinson’s disease, results are reported as OR alongwith 95% CI for a unit increase in the exposure level. For AAO, results are reported as expected years’ difference of AAO

along with 95% CI for a unit increase in the exposure level. SCALLOP = systematic and combined analysis of Olink proteins.
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(Supplementary Tables 35 and 36) and using r2< 0.1 for LD
clumping (Supplementary Table 39–42) findings were con-
firmed. No data were available for TNF-α to investigate reverse
causation.

Discussion
Previous observational studies pointed to a potential link between
inflammation and neurodegeneration in Parkinson’s disease.9,14,47

Figure 2 MR estimates for Parkinson’s disease.On the x-axis, the data sources are depicted. On the y-axis, the ORs are shown. Points represent the OR
estimate of the effect of the exposure on Parkinson’s disease, whereas the lines represent the 95% CIs of the point estimate. Each colour identifies an
inflammatory biomarker. The dashed line represents the situation of absence of association between exposures and Parkinson’s disease, i.e. OR=1.

Figure 3 MR estimates for Parkinson’s disease-AAO. On the x-axis, the data sources are depicted. On the y-axis, the estimated Parkinson’s
disease-AAO differences are shown. Points represent the estimated Parkinson’s disease-AAO differences of the effect of the exposure on
Parkinson’s disease-AAO,whereas the lines represent the 95%CIs of the point estimate. Each colour identifies an inflammatory biomarker. The dashed
line represents the situation of absence of association between exposures and Parkinson’s disease-AAO, i.e. estimated Parkinson’s disease-AAO dif-
ference=0.
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However, observational studies can be prone to many sources of
bias, such as confounding and reverse causation, that can under-
mine findings’ reliability. In the present study, we explored a pos-
sible causal relationship between inflammatory processes and
Parkinson’s disease using anMR design, which is a statistical frame-
work that provides valid causal inference on the effect of exposures
on outcomes by leveraging genetic information. Connections be-
tween inflammation and Parkinson’s disease through that design
have been explored by previous studies. We extended this evalu-
ation by considering multiple well-established markers of inflam-
mation. Moreover, we studied the causal effect of the exposures on
datasets from different data sources to assess the consistency of
the results. Based on the present findings, we did not observe any
strong evidence for causality between inflammatory biomarkers
and Parkinson’s disease except for IL-6 and AAO.

Regarding CRP, findings fromprevious studies are controversial.
Borsche et al.48 compared inflammatory biomarker levels in serum
betweenpatientswithmonogenic or idiopathic Parkinson’s disease
and controls, and did not find any statistical evidence for a differ-
ence of CRP levels between the two groups. Similar results were
also observed in Prins et al.,21 suggesting no association between
CRP and Parkinson’s disease, aswe observed fromour primary ana-
lysis results. Conversely, both the Qin et al.14 and Si et al.22 studies
found evidence for a relationship between CRP and the disease. In
the first study, after meta-analysing results from six studies, the
authors observed that increased CRP levels were associated with
increased Parkinson’s disease risk. Despite the strong evidence of-
ten supported by meta-analysis findings, results were pooled from
observational studies, which might be affected by issues such as
confounding. Opposite results were found in the second study,
where the authors usedMR designs to evaluate the relationship be-
tween CRP and several diseases using data from UK Biobank and
FinnGenn cohorts. Strong evidence that elevated CRP levels de-
creased the risk of Parkinson’s disease was observed using UK
Biobank data but the results were not replicated in the FinnGen co-
hort. These findings suggested that the relationship between CRP
levels and Parkinson’s disease might be heterogeneous in different
populations. Moreover, despite the large sample size that can en-
hance statistical power, the UK Biobank cohort may be affected
by selection bias issues and not be representative of the general
European population.49 In our study, findings from secondary ana-
lyses using MR-Egger and weighted mode methods indicated that
higher CRP levels might delay the onset of the disease. However,
the resultswere not robust after the exclusion of pleiotropic genetic
instruments. The link between CRP and Parkinson’s disease re-
mains elusive. Indeed, CRP is a general marker of inflammation
and elevated levels signal a very broad range of inflammatory pro-
cesses, some of which might not be involved in the parkinsonian
neurodegeneration.

In our primary MR analysis, we did not observe any strong stat-
istical evidence for a link between IL-6 and the risk of Parkinson’s
disease. However, the results from IL6R Genetics Consortium and
Folkersen et al. data suggested that increased IL-6 levels might
play a role, even though there was no statistical evidence at a 95%
level. Using Ahluwalia et al. data for instruments selection, there
was no evidence for an association in primary MR analysis. In sen-
sitivity analysis,we removed the SNP rs660895,whichmight induce
pleiotropy issues given its association with rheumatoid arthritis, a
risk factor for Parkinson’s disease,50 and we observed results simi-
lar to those obtained using the other datasets. Statistical evidence
for increased IL-6 levels associated with earlier AAO was observed
in IL6R Genetics Consortium and Folkersen et al.44 datasets. Using

Ahluwalia et al.,43 strong evidence emerged only in sensitivity ana-
lysis after removal of the pleiotropic instrument in the HLA-DBR1
locus. Moreover, when performing LD clumping with amore liberal
criterion (r2 < 0.1), we observed estimates in agreement with those
from the previous analyses on both data sources, suggesting ro-
bustness of the results to different analysis specifications. The pre-
sent findings are consistent with previous studies that pointed to a
link between IL-6 and Parkinson’s disease.11,12,48,51 Indeed,
pro-inflammatory cytokines production through microglia activa-
tion might be considered as a more relevant marker of the inflam-
matory cascades involved in neurodegeneration than CRP. More
specifically, our findings suggested that higher IL-6 production
might anticipate the onset of the disease. The lack of statistical evi-
dence for the risk of Parkinson’s disease might be partially ex-
plained by the insufficient power of the present study to identify
the effect of interest.

IL-1ra is involved in anti-inflammatory processes and acts as a
natural inhibitor of the pro-inflammatory activities of IL-1α and
IL-1β cytokines, whose levels in CSF and serum were found to be
higher in Parkinson’s disease subjects than controls.13,15,52 In the
present study, we did not find any evidence of an effect of IL-1ra
on the risk and the onset of the disease, which we proposed to be
decreased and postponed, respectively, for higher production of
the anti-inflammatory cytokines.

Regarding TNF-α, our findings are consistent with the results
from Kang et al.,23 who did not observe any effect on both risk
and onset of Parkinson’s disease using data from Ligthart et al. on
genetic variants in or near TNF receptor 1. Lack of association of
TNF-α with Parkinson’s disease from MR analyses suggests that
previous findings from observational studies might be affected by
some degree of bias.11,13,14

In the present study, the absence of statistical evidence for an
opposite relationship between inflammation and Parkinson’s dis-
ease, i.e. the disease affects the inflammatory processes, suggests
that, probably, neurodegeneration is not a driver of the inflamma-
tory cascades in Parkinson’s disease patients.

The use of MR design tominimize the risk of confounding and re-
verse causation is themain strength of the present study.We focused
onmultiple well-known biomarkers of inflammation and not just on
a single exposure. Moreover, to improve the reliability and consist-
ency of the results, we carefully selected genetic instruments with
conservative strategies, applied robust MR methods and sensitivity
analyses for reducing pleiotropic issues, and evaluated the causal ef-
fects using data from large-scale GWAS. Additionally, we restricted
the investigation using data from studies conducted on European in-
dividuals to minimize the risk of population stratification bias.53

Our study has some limitations. First, MR analyses estimate the
‘lifetime’ effect of the exposure on the disease.54 Under this consid-
eration, causal inference will be valid only if the exposure does not
change over time, i.e. the levels of the inflammatory markers are
constant across time. Second, we did not evaluate the presence of
survival bias, which is an issue in MR studies, since conditioning
on participants who survived long enough to be included in the
study might distort the final estimates.55 A future direction for
this research area could be to perform separate MR analyses across
different groups of age and check the consistency of the results.
Third, we selected data from studies thatmeasured biomarker con-
centrations only in blood samples, even if evidence for increased
inflammatory biomarkers levels in Parkinson’s disease patients
were also identified in CSF samples.11–13,48 Indeed, such an evalu-
ation would provide more insights into the role played by both
neural and peripheral inflammation in the neurodegeneration of
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Parkinson’s disease. Fourth, we used the same exposure datasets,
i.e. summary genetic data from meta-analyses of discovery and
replication cohorts, to perform both the selection of instruments
and retrieval of SNP-exposure association estimates, a procedure
thatmight introduce the ‘winner’s curse’ bias.53,56We used this ap-
proach for consistency on the type of exposure datasets, and for
maximizing the statistical power. Fifth, despite the careful selec-
tion of genetic instruments to overcome issues related to weak in-
struments and LD, MR estimates were obtained using a few genetic
variants in most of the situations, which might have lowered the
power. Recently, more sophisticated MR methods that can handle
hundreds of weak and correlations genetic variants have been pro-
posed, even though their use in MR studies is still scarce.57–59 In fu-
ture, results using these MR methods should be complemented
with those obtained from the most popular strategies for a better
bias-variance trade-off. Sixth, even though considering multiple
markers of inflammation, we did not evaluate their adjusted causal
effects using multivariable MR. However, given the absence of over-
lap among the genetic instruments selected for each biomarker, we
hypothesized that standard univariable MR should be sufficient to
identify an independent effect of inflammatory biomarkers without
further adjustments.60 Furthermore, power is typically an issue in
MR studies, since the genetic variants used as instruments often
capture only a small fraction of the exposure variance, leading to
power for rejecting the null hypothesis of no association below the
conventional 80% level.61 In light of this, we performed an a priori
analysis to understand the expected power for detecting a causal
effect and we found that even using the largest available GWAS so
far, the power was <80% for most of the present MR analyses.
Finally, despite the definition of cases in Parkinson’s disease
GWAS was assessed differently and AAO of Parkinson’s disease is
a phenotype often difficult to measure rigorously and comprehen-
sively, summary genetic data were generated uniformly by each
study for the outcomes. Hence, it does not represent an issue in
our MR study.

In summary, the present study suggests that increased IL-6 le-
vels could anticipate the onset of Parkinson’s disease. Based on
these findings, IL-6 concentration, together with clinical examina-
tions, family information and genetic data, can help in raising
awareness towards a clinical profile that could be prodromal of
Parkinson’s disease. Despite IL-6 being a drug target, suggesting
consideration of therapeutic strategies that inhibit the pro-
inflammatory IL-6 activity, it is a pleiotropic cytokine that exerts
several anti-inflammatories and molecular protective functions.62

Indeed, the consideration of lowering IL-6 strategies for disease
prevention cannot disregard further careful investigations of IL-6
role in parkinsonian neurodegeneration.
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