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ABSTRACT

Axarus fungorum (Albu, 1980) exhibits certain adaptations to different aquatic environments, appearing
as an important evaluation element for freshwater quality monitoring. In this study, complete mitoge-
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nome of A. fungorum was provided for the first time to define the systematic and phylogenetic history

of this taxon. The whole mitogenome is 15,696 bp long with high A+ T content that consists of 13 pro-
tein-coding genes, 22 tRNA genes, two rRNA genes, and a noncoding control region. ML analysis
showed support for monophyly of Chironominae and close relationship between A. fungorum and

Chironomus generic genera.

Axarus fungorum (Albu, 1980) belongs to Chironominae, a
subfamily under the Chironomidae, one of the most abun-
dant invertebrate taxa in freshwater ecosystems with more
than 6300 valid species. Chironomid larvae are considered as
an excellent indicator for monitoring aquatic environment
quality due to their wide distribution, high species diversity,
large population, sensitivity, and adaptability (Ferrington
2008). Due to species diversity and variable morphological
features within Chironomidae, the traditional morphological
identification is inconvenient. In such instances, mitogenomic
data can be considered as powerful and convenient material
for molecular identification and phylogenetic studies for
Diptera (e.g. Yan et al. 2019; Li et al. 2020; Zhang et al. 2022).
However, complete mitogenomes are still scarce for
Chironomidae (Beckenbach 2012; Kim et al. 2016; Deviatiiarov
et al. 2017; Kong et al. 2021; Lei et al. 2021; Zheng et al.
2021, 2022; Fang et al. 2022). In the present study, we have
provided complete mitochondrial genome of A. fungorum for
the first time.

Fresh and adult male individuals of A. fungorum were col-
lected from Meitan, Guizhou, China (27.828857°N,
107.5955098°E) on 8 June 2020. The DNeasy Blood and
Tissue kit (QIAGEN Sciences, Valencia, CA) was used to isolate
total genomic DNA from the muscle tissues of head and
thorax. The DNA and voucher specimen of A. fungorum has
been deposited in the College of Fisheries and Life Science,
Shanghai Ocean University, Shanghai, China (https://www.
shou.edu.cn, Xiao-Long Lin, 1in880224@gmail.com) under the
voucher number DLC28. COl of A. fungorum (GenBank
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accession: MN521232) was used as bait to iterate and assem-
ble the mitogenome of A. fungorum. DNA fragments with
350bp insert size were sequenced by Illumina Nova6000
(PE150, lllumina, San Diego, CA) platform using pair-end
strategy at Novogene Co. Ltd. (Cambridge, UK). Four Gb
clean data were obtained from the library by trimming using
Trimmomatic (Bolger et al. 2014). IDBA-1.1.1 (Peng et al.
2012) software package was employed to assemble the data.
The bait sequence of COI (Crampton-Platt et al. 2015) was
used in the BLAST program (Altschul et al. 1990) to compare
with the mitogenome of A. fungorum. The percentage of
match rate was found as 100% from the blast result. The
mitogenome annotation was conducted as previously
described by Zheng et al. (2020).

The double-strand circular mitogenome of A. fungorum is
15,696 bp in length (GenBank accession no. ON099430) which
encodes for 37 genes (13 protein-coding genes, two rRNA
genes, and 22 tRNA genes) and a control region. Nucleotides
within the mitogenome were distributed as follows: 41.2% A,
383% T, 12.2% C, and 8.3% G. The most frequently observed
start codons were ATG for ATP6, COII, COIll, CytB, ND4, ND4L
and ATT for ATP8, ND2, ND3, ND6, respectively, while GTG
for ND5; TTG for COl and ND1. All of the 13 PCGs were termi-
nated with TAA stop codon. Mitogenome organization,
nucleotide composition and codon usage were similar to the
previously sequenced Chironomidae mitogenomes with a
high AT bias (79.5%).

Eighteen mitogenomes of Chironominae and two of
Orthocladiinae  were mined from GenBank for the
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Figure 1. Phylogenetic tree of 20 Chironomidae species based on the concatenated dataset of 13 PCGs using the maximum-likelihood (ML) method. The following
sequences were used: Axarus fungorum ON099430 (present study), Chironomus flaviplumus MW770891 (Park et al. 2021), Chironomus kiiensis MZ150770 (Liu et al.
2022), Chironomus nipponensis MZ747092 (Shen et al. 2022), Chironomus tepperi IN861749 (Beckenbach 2012), Dicrotendipes sp. YF-2022 MZ747093 (direct submis-
sion), Glyptotendipes tokunagai MZ747091 (direct submission), Limnophyes minimus MZ041033 (Fang et al. 2022), Microchironomus tabarui MZ261913 (Kong et al.
2021), Rheocricotopus villiculus MW373526 (Zheng et al. 2021), Stenochironomus gibbus OL742440 (Zheng et al. 2022), Stenochironomus okialbus OL753645 (Zheng
et al. 2022), Stenochironomus sp. 1CZ OL753646 (Zheng et al. 2022), Stenochironomus sp. 2CZ OL742441 (Zheng et al. 2022), Stenochironomus sp. 3CZ OL753647
(Zheng et al. 2022), Stenochironomus tobaduodecimus OL753648 (Zheng et al. 2022), Stenochironomus zhengi OL753649 (Zheng et al. 2022), Polypedilum nubifer
MZ747090 (direct submission), Polypedilum unifascium MW677959 (Lei et al. 2021), and Polypedilum vanderplanki KT251040 (Deviatiiarov et al. 2017).

phylogenetic analysis. Initially, sequences of 13 PCGs were
concatenated and then aligned with MAFFT (Katoh and
Standley 2013) keeping all the settings in default (Katoh and
Standley 2013). Using 1000 bootstraps and PMSF acid substi-
tution model, we conducted phylogenetic analysis by max-
imum-likelihood (ML) method with IQ-TREE (Nguyen et al.
2015) considering Limnophyes minimus and Rheocricotopus
villiculus as outgroups. Topologies from the reconstructed
tree strongly supported the monophyly of Chironominae,
and the sister relationship between A. fungorum and the
Chironomus generic genera (Figure 1).
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