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ABSTRACT
Medical education assessments are becoming more complex, resulting in the inappropriate-
ness of traditional methods primarily consisting of direct observations, oral examinations, and 
multiple-choice tests. Advancements in research methods have led to the formation of new 
modalities, namely performance assessments, which are, on the other hand, always costly in 
development and implementation. Proposing using the Program Effectiveness and Cost 
Generalization flow within an assessment context (PRECOG-A), this brief report explores the 
real financial cost drivers associated with an assessment case in the context of medical 
education, presents the steps in bridging the effectiveness with its psychometric properties 
via cost-effectiveness analysis, and evaluates the two-side outcomes for further evaluation 
decision-making. Referentially providing a framework to investigators and researchers, the 
illustration of PRECOG-A in this study outlines instructional guidelines for conducting cost- 
effectiveness analysis in a performance assessment.
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Introduction

A performance assessment (PA) typically involves 
applying and showing the attribute(s) levels of inter-
est through various performance tasks. PAs are com-
monly presented with different simulation modalities 
(e.g., mannequins and task trainers) in a laboratory, 
clinic, or classroom setting and are credited for eval-
uating comprehensive skills beyond self- or infor-
mant-report. Methodologically, a PA can be 
regarded as a brief snapshot of a person’s competency 
in a controlled and unfamiliar environment, and 
therefore the pitfalls listed in mainstream measure-
ment theories should be considered. This idea is 
fundamentally reflected in Miller’s Pyramid, of 
which the higher-level components (i.e., ‘shows 
how’ and ‘knows how’) are naturally compatible 
with PAs.

PAs can be regarded as an umbrella term for 
assessment of performance in both standardized 
environments and the workplace; The Objective 
Structured Clinical Examination (OSCE) format, 
a frequently used PA within a standardized environ-
ment in medical education, has test takers rotated 
through multiple stations where knowledge, skills, 
and attitudes (KSAs) are assessed. Harden, Lilley, 
and Patricio described a well-designed OSCE as ‘the 
gold standard for performance assessment’ [1]. 

Perhaps a highly known, if not the most, a PA as an 
OSCE in the field is the Step 2 Clinical Skill of the 
USA Medical Licensing Examination (USMLE) [2]. 
An OSCE circumvents existing deficiencies of tradi-
tional assessments based on multiple-choice items; it 
measures how well a test taker can apply KSAs in 
simulated (and hopefully real) situations, not if they 
can simply recall the knowledge.

The results of PAs may sometimes be questionable 
because the tasks assessed contain measurement 
errors [3]. Measurement errors come from variances 
such as heterogenous test settings (i.e., raters, items, 
tasks, and other elements). That said, improper adop-
tions of simulation modalities and situations prevent 
the measures from accurately predicting what 
a person can do in actual workplace settings. No 
single PA plan fits every evaluation task. However, 
aligning PAs with measurement theory should yield 
a clearer picture of the assessment’s quality, indicated 
presumably by quantified indexes such as reliability.

When it comes to measurement and evaluation, 
classical test theory (CTT) that decomposes observed 
scores (i.e., the well-known X = T +E) into true value 
and measurement errors is almost always a top-notch 
psychometric framework. The measurement errors, 
or the E in the CTT’s formula, consist of all unwanted 
variance/uncertainty but are internally indistinguish-
able. CTT is unsuitable for PAs as there is always 
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more than one facet. In this scenario, facets are 
defined as aspects contributing variance to the 
observed scores, such as raters and tasks/items. 
Using CTT may oversimplify the scenarios of interest 
and result in unreliable analyses.

Invented for multi-facet scenarios, on the other 
hand, generalizability theory (G-theory) can decom-
pose observed scores’ variance into more fine-grained 
categories and characterize the generalizability (akin 
to reliability, consistency, or dependability) of PAs 
[4]. Because of its compatibility with complex 
designs, G-theory is highly popular in investigating 
PAs [5,6]. Specifically, it can subsume facets of var-
ious (error) variances (e.g., raters, tasks, and test sites) 
simultaneously, in addition to test takers’ (latent and 
true) abilities making itself a natural fit for PAs and 
a ‘conceptual breakthrough’ from CTT [7]. What is 
more, G-theory contains a D study that allows 
researchers to generalize the assessment from specific 
levels of facets to an indefinitely large universe and 
identify the optimal number of levels of facets to 
increase generalizability (e.g., using more items/raters 
in an assessment is more reliable than those that are 
less). G-theory has been used in the OSCE evaluation 
to evaluate different sources of variance affecting test 
takers’ performance, thus giving a detailed reliability 
diagnosis [8–11].

A detailed introduction to G-theory can be found 
in Shavelson and Webb [12]. Here, we shortly outline 
the fundamental components of G-theory and show 
why it outperforms CTT in the present context. 
Assume an OSCE consists of two facets- tasks and 
raters- that are fully crossed (e.g., each test taker’s 
performance on each task is rated by all raters). 
Instead of simply using X = T +E within CTT, one 
can decompose the performance data to:

Xprt¼ μþvpþvtþvrþvptþvtrþvprþ2prt 

It indicates that observed performance, Xprt , for per-
son p on task t rated by rater r is made of the grand 
mean μ, person effect vp, task-facet effect vt, rater- 
facet effect vr, interaction effects of any two facets 
(i.e., vpt , vtr , and vpr), as well as error effect 2prt. 
Different from the E in CTT’s formula, unwanted 
effects/facets ranging from vt to 2prt (except for the 
concerned effect vp) make up the measurement errors 
in G-theory framework. After analyzing the G-theory 
model, the variance of all facets can be estimated, 
leading towards a series of comparable and interpre-
table values (i.e., σ2

p, σ2
t , σ2

r , σ2
pt, σ2

tr, σ2
pr, and σ2

prt:e). For 
example, if the variance of the rater-facet effect σ2

r is 
very large, it implies that the rater-consistency is low 
so that the OSCE provider may consider improving 
the agreement between raters. The same idea applies 
to all other facets affecting the quality of the OSCE. 
What’s more, generalizability/dependability coeffi-
cients can be calculated as an overall reliability 

index in G-theory for the OSCE: G ¼ σ2
p

σ2
pþσ2

error 
where 

σ2
error is defined according to its definition (i.e., rela-

tive or absolute). To illustrate, if the σ2
error is assumed 

to be relative, we use generalizability coefficient 
instead of dependability one, reforming the for-
mula to:

G = σ2
p

σ2
pþ

σ2
pt

nt
þ

σ2
pr

nr þ
σ2

ptr
nr�nt

:

The n s and their scripts indicate the total level 
number of the corresponding facet. It is evident that 
manipulating n s can affect the value of G estimate, 
which is exactly what a D study attempts to achieve: 
what would the coefficient be if one or multiple 
facets’ levels are changed without actually altering 
them? That said, given a set of one n s, one can 
estimate a new G for the set (i.e., a plan) and, there-
fore, compare the changes if there are different plans.

Like all other PAs, OSCEs consume tremendous 
resources and time for their development and imple-
mentation [13]. Ideally, to make an OSCE a good form 
of assessments, five criteria described by Van der 
Vleuten (i.e., reliability, validity, cost-efficiency, educa-
tional impact and acceptability) should be met [14]. In 
practice, although excelling in all criteria would be 
perfection, pragmatically there often has to be compro-
mised [15]. As the title indicates, this report addresses 
the first three aspects of the criteria: it associates PAs’ 
costs and quality, which is reflected as reliability and 
validity, while reliability is also referred to as internal 
validity or internal structure of the assessment tool [16]. 
Presumably, OSCE providers should spare no effort to 
improve PA quality, but budget limits are almost always 
determining the ceiling of quality improvement. 
Finding a balance between financial capacity and assess-
ment setups is critical to the assessment providers. 
A quantitative investigation of this ‘trade-off’ is termed 
a cost-effectiveness analysis (CEA), widely known in 
health economics [17]. This brief report compares 
a cost reduction proposal with its current plan. A CEA 
for the OSCE is presented to show the flows of bridging 
the costs with its psychometric properties; it provides 
a reference for researchers to decide on PA investment.

Methods

This brief report adopts an OSCE case from Jiang and 
his colleagues [10], where performance data and cor-
responding costs were recorded. As seen in Figure 1.

The Program Effectiveness and Cost Generalization 
(PRECOG [18];) flow that consists of four steps was 
used to conduct the CEA. The PRECOG was initially 
proposed for CEAs in health profession teaching and 
training, which substantially involve the OSCE during 
the educational cycles. The PRECOG was initially pro-
posed for CEAs in health profession teaching and 
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training, which substantially involve the OSCE during 
the educational cycles. The PRECOG underlines the 
need for models that should guide educators, admin-
istrators and decision-makers in prioritizing educating 
programs; its four steps represent ‘increasing levels of 
recommendation strength, from assessment of cost- 
effectiveness and cost to generalization of cost- 
effectiveness evidence’. The 2nd step, particularly, 
sets applications to OSCE scenarios where the cost 
categories are highly OSCE-specific. Since its introduc-
tion, the PRECOG has been adopted in many OSCE- 
related works [19–21].

Because effectiveness is always not monetary in 
a CEA, one should define the maximum amount 
decision-makers are willing to pay to achieve or 
avoid a certain outcome; this is called willingness to 
pay (WTP). A simple illustration of WTP can be 
a question asking, ‘what would be the maximum 
you would have been willing to pay for this course?’ 
[22]. A proposed plan or intervention should only be 
adopted if the cost of effectiveness is less than WTP. 
This report differs from other PRECOG studies 
because the context – assessment demands theoretical 
and methodological support from the educational 
measurement field, meaning that the effectiveness 
analysis should be placed within an assessment con-
text (PRECOG-A). A key concept in a CEA is the 
incremental cost-effectiveness ratio (ICER), which 
evaluates the difference in costs and outcomes 
between a reference intervention (known as the base 
case) and the alternative(s). Mathematically, the ICER 
is equal to (cost of intervention – cost of base case)/ 
(outcome of intervention – outcome of base case).

Despite the G-theory analysis being based on real 
performance, there were also data points simulated 
via the CEA, which deployed the Monte Carlo 
mechanism to support decision-making when uncer-
tainty was assumed to contribute in specific ways. 
The core of the Monte Carlo mechanism is using 

computational sampling to ‘mimic’ possible values 
under some complex scenarios that can be repre-
sented as complex statistical distributions.

The OSCE contained 4 exam forms; each form was 
delivered at 18 test stations (i.e., 10 history-taking, 3 
physical exam, 1 diagnosis and clinical management, 
1 radiographic interpretation, 1 laboratory studies 
interpretation, and 1 critical appraisal of research 
works) from several mandatory specialty tracks (i.e., 
KSA domains such as pediatrics and gynecology). To 
tally up, 72 unique form-based stations (4 forms * 18 
stations) were established in a test site, while there 
were six sites, one of which test takers were randomly 
assigned to. The setting in G-theory could be outlined 
as person: site x form x station, meaning the test 
takers were nested within the sites, where the sites, 
the forms, and the stations are fully crossed.

As the OSCE was a summative end-of-career grad-
uating exam for selecting qualified candidates against 
certain entry standards (i.e., everyone about 
a determined bar/threshold receives a pass), the abso-
lute-error-based generalizability coefficient was calcu-
lated [23].

Results

The detailed calculation and analysis are documented 
in the Appendix. After using a G-theory model, the 
Eρ2

Δ reached at 0.8. At this stage, all the information 
essentially completed the first step of the 
PRECOG-A.

The second step cumulated and classified the costs 
according to the OSCE’s design. Costs for OSCEs 
consist of multiple subjects, including station devel-
opment, question writing and reviews, rater training, 
administration, technician support, scoring, exam 
board meeting, and many others. As the previous 
step deployed G-theory models conditioning on 

Figure 1. The four steps of program effectiveness and cost generalization within an assessment context.
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facets such as sites, test forms, and stations, the costs 
were aggregated correspondingly such that the unit 
amounts were £15,896 per site, £6,677 per version, 
and £4,843 per station, resulting in the total cost of 
£209,240.

Three facets (i.e., sites, forms, and stations per 
track) were proposed to change to 5, 2, 17 by the 
OSCE providers; that said, we ran a D study reducing 
each of site, form and station by one, leading to 
a total cost of £147,491 and an Eρ2

Δ of 0.75. The 
ICER, £1,029,150, was obtained by the ratio of the 
difference in costs between facet combinations to the 
difference in effectiveness, that is, (£209,240- 
£147,491)/(0.81–0.75); To make the interpretation 
more reasonable, the denominator scale could be 
converted to ‘0.01 change in Eρ2

Δ (up to 1)’ and there-
fore, the ICER was £10,292.

The Monte Carlo simulations were used to incor-
porate uncertainty into the cost-effectiveness accep-
table curve (CEAC) construction. The variances of 
the Eρ2

Δ and the costs were obtained from mathema-
tical formulas and the 10-year consumer price index, 
respectively [24]. The WTPs were converted to the 
same scale as the aforementioned ICER and the 
trends are shown in Figure 2.

For WTP values above £5,000 per 0:01� Eρ2
Δ, 

there was a 95% probability that proposal was the 
more cost-effective than the current plan.

Discussion and Conclusion

Based on Consensus Statement on Performance 
Assessment in 2011 [25], the board of Ottawa 
Conference 2020 published best practice recommen-
dations for OSCEs, emphasizing evidence-based logic 
such as interpreting and utilizing test scores more 

holistically in the decision-making process [26]. The 
scoring-generalization-extrapolation-implications 
cycle was proposed to justify decisions [27], leading 
toward a programmatic assessment model aiming at 
optimizing the decision function of assessment. It is 
self-evident that any ‘optimization’ is meaningless 
without considering resource constraints and/or lim-
its. This report focuses on optimizing the settings of 
PAs, of which systematic evaluation has received 
increasing attention during the past years [26,28]. 
We provide a methodological demonstration for con-
ducting CEAs to meet the calls for economic evalua-
tions in PAs. The 4-step PRECOG-A offers a clear 
quantitative reference for further decision-making 
from the perspective of the cost-effectiveness trade- 
off. Although our demonstration is rooted in a local 
environment, the reference can be generalized to 
different scales, such as large-scale licensing exams 
organized by corresponding national associations or 
boards. What D-study plays in the PRECOG-A was 
that it provides a quantitative prediction to the 
change of generalizability, a primary PAs’ quality 
index, when the setting is altered

Walsh and colleagues claim that ‘medical education 
is expensive’ [29], and various strands of studies have 
investigated the effectiveness, utility, and acceptability 
of different medical education interventions and pro-
grams, resulting in more CEA in medical education 
[30,31]. However, PAs within an appropriate psycho-
metric framework is rarely set as the central topic in the 
CEA literature, yet they play a critical role in medical 
education. Therefore, this report makes a difference by 
aligning two aspects – PAs’ psychometric properties 
and CEA – together to broaden the research arena of 
this kind. G-theory is integrated into CEA to estimate 
the expenditure of facets’ cost when varying the unit of 

Figure 2. Cost-effectiveness acceptability curve.
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generalizability (0:01� Eρ2
Δ) and the ICER is needed, 

where the balance in between always ends up into 
a decision-making problem. Given a specific budget 
constraint, researchers can optimize the PA configura-
tion to meet a sufficient reliability level; This demon-
strates appealing features that applying G-theory only 
can’t offer. In this report, increasing WTP makes the 
current proposal less attractive. The final decision, of 
course, should be based on selecting an appropriate 
WTP, which is somehow abstract and difficult.

Interpreting CEA results of PRECOG is always chal-
lenging, no matter which context is referred to. In the 
present scenario, the first step is more than simple data 
collection: investigators should learn the design thor-
oughly so that later steps’ modeling strategies can be 
appropriately chosen. The second step heavily con-
sumes time and effort in organizing expenditures and 
defining unit costs for categories/facets that can be 
altered. It is highly recommended to involve quantita-
tive experts in the third step: the modeling for both the 
performance data and the costs matter significantly to 
the analysis. For instance, instead of using G-theory 
models, one can choose item response models for rat-
ing scales to handle the same inquiry, although the 
choice may not be optimal. What makes Steps 3&4 
the hardest among the PRECOG-A is defining 
a threshold between monetary and psychometric 
units: both WTP and CEAC rely on the threshold, 
which in the present context does not have standard 
references. The decision-makers may deploy the Delphi 
method and other similar consulting efforts to draw 
appropriate values for the final decision.

Limitations also exist, for example, Eρ2
Δ was the only 

effectiveness and modeling processes were simplified to 
a certain degree. In practice, researchers are required to 
be more comprehensive in evaluating PAs against valid-
ity standards, such as internal structure and response 
process for OSCEs [27,32,33]. That said, a decision about 
whether a PA possesses the validity evidence to support 
inferences is supposed to be holistic; Adjusting a number 
on increments of generalizability is merely a slice. As 
seen in tremendous published results, it is highly chal-
lenging to boost an OSCE above 0.85 unless the testing 
time is substantially longer, possibly causing overwhelm-
ing cognitive burdens for test takers [34]. Realistically, 
the decision should always be concerned with a broader 
picture, including blueprinting, threats to scoring in 
Kane’s model, and other psychometrics properties.

It is also a significant limitation that the performance 
data and the costs do not originate from the same 
research agenda. It is uncertain if step 2 of PRECOG 
was correctly performed in order to proceed with the 
computation of ICER. When it comes to a high-stake 
decision-making practice, it would be crucial to demon-
strate that main expenses have been considered and the 
cost analysis has been completed properly.

Future applied studies should comprehensively 
collect evidence with an integration of relevant ele-
ments from both theories and practices, grounded an 
umbrella perspective.
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Appendix: Detailed Calculation and Analysis

##Known parameters from
var_pvs = var_p = 17.652
var_s = 0
var_v = 0.737
var_sv = 0.867
var_e = 42.157
var_ev = 38.968
var_es = 46.631
var_evs = 34.692
var_pevs = 187.374
var_p+ var_s+ var_sv+var_e+ var_ev+var_es+var_evs 
+var_pevs+var_pvs

g_coef<-function(n_v,n_s,n_e){
var_pvs = var_p = 17.652
var_s = 0
var_v = 0.737
var_sv = 0.867
var_e = 42.157
var_ev = 38.968
var_es = 46.631
var_evs = 34.692
var_pevs = 187.374
var_p/(var_p+var_pvs/(n_v*n_s)+var_pevs/ 
(n_e*n_v*n_s))
}

phi_coef<-function(n_v,n_s,n_e){
var_pvs = var_p = 17.652
var_s = 0
var_v = 0.737
var_sv = 0.867
var_e = 42.157
var_ev = 38.968
var_es = 46.631
var_evs = 34.692
var_pevs = 187.374

var_p/(var_p+var_s/(n_s)+var_v/(n_v)+var_sv/(n_s*n_v) 
+var_e/(n_e)+var_ev/(n_e*n_v)+var_es/(n_e*n_s)+var_-
evs/(n_e*n_s*n_v)+var_pevs/(n_e*n_s*n_v))

}
g_coef(4,6,18)
phi_coef(4,6,18)
## Specify costs for each facet
cost_s<-15,896
cost_v<-6677

cost_e<-round((6577 + 3108)/2,0)

## Use this function to optimize the model. The three 
parameters are

## evaluated on given their range and scope.
totalcost_unlist_phi <- function(x) {
n_v<-round(x[1]);n_s<-round(x[2]);n_e<-round(x[3])
if(phi_coef(n_v,n_s,n_e)>Threshold){penalty<-1}else 
{penalty<-50}

(cost_s*n_s+ cost_v*n_v+ cost_e*n_e)*penalty
}
#Original Cost
totalcost_unlist_phi(c(4,6,18))
SD_g<-function(x,n){
sqrt(x*(1-x)/n)
}
ou1<-rnorm(200,0.81,SD_g(0.81,278))
ou2<-rnorm(200,0.75,SD_g(0.81,278))
ou<-cbind(ou2,ou1);ou<-ou*100
#10 Year’s CPI
CPI<-rbind(

c(2020,108.2, 108.6, 108.6, 108.5, 108.5, 108.6, 109.1, 
108.6, 109.1, 109.1,108.9, 109.2, 108.8),
c(2019, 106.3, 106.8 ,107.0, 107.6, 107.9, 107.9, 107.9, 
108.4, 108.5, 108.3, 108.5, 108.5, 107.8),
c(2018, 104.4 ,104.9 ,105.0, 105.4, 105.8, 105.8, 105.8, 
106.5, 106.6, 106.7, 107.0 ,107.1, 105.9),
c(2017, 101.4 ,102.1 ,102.5, 102.9, 103.3, 103.3, 103.2, 
103.8, 104.1, 104.2, 104.6 ,104.9, 103.4),
c(2016, 99.6, 99.8, 100.2, 100.2, 100.4, 100.6, 100.6, 
100.9, 101.2, 101.2, 101.5, 101.9, 100.7),
c(2015, 99.3, 99.5, 99.7, 99.9, 100.1, 100.2 ,100.0, 100.3, 
100.2, 100.3, 100.3, 100.3, 100.0),
c(2014, 99.0, 99.5, 99.7, 100.1, 100.0, 100.2,99.9, 100.2, 
100.3, 100.4, 100.1, 100.1, 100.0),
c(2013, 97.1, 97.8, 98.1, 98.3, 98.5, 98.3, 98.3, 98.7, 99.1, 
99.1, 99.2, 99.6, 98.5),
c(2012, 94.6, 95.1, 95.4, 96.0, 95.9, 95.5, 95.6, 96.1, 96.5, 
97.0, 97.2, 97.6, 96.0),
c(2011, 91.3, 92.0, 92.2, 93.2, 93.4, 93.3, 93.3, 93.8, 94.4, 
94.5, 94.6, 95.1, 93.4),
c(2010, 87.8, 88.2, 88.7, 89.2, 89.4, 89.5, 89.3, 89.8, 89.8, 
90.0, 90.3, 91.2, 89.4)
co1<-rnorm(200,209,240,209,240*sd(CPI[,-1])/100)
co2<-rnorm(200,147,491,147,491*sd(CPI[,-1])/100)
co<-cbind(co2,co1)
he <- BCEA::bcea(ou, co)
ceac.plot(he)

MEDICAL EDUCATION ONLINE 7


	Abstract
	Introduction
	Methods
	Results
	Discussion and Conclusion
	Ethical statement
	Disclosure statement
	Funding
	References
	Appendix: Detailed Calculation and Analysis

