
Technical Report
https://doi.org/10.1038/s43018-022-00415-9

1Nucleic Acid Biomarker Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK. 
2Bioinformatics and Biostatistics Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK. 
3The Christie NHS Foundation Trust, Manchester, UK. 4Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.  
5Preclinical and Pharmacology Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute, University of Manchester, Alderley Edge, UK. 
6Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK. 7Division of Allergy, Pulmonary and 
Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. 8Perlmutter Cancer Center, New York University Langone Health,  
New York, NY, USA. 9These authors contributed equally: Francesca Chemi, Simon P. Pearce. ✉e-mail: dominic.rothwell@cruk.manchester.ac.uk;  
rudinc@mskcc.org; caroline.dive@cruk.manchester.ac.uk

SCLC represents 10–15% of lung cancer cases; it is strongly 
associated with tobacco smoking and characterized by high 
proliferation rate and early, rapid metastatic spread1. Most 

patients with SCLC present with extensive-stage (ES-SCLC) meta-
static disease (stage IV); a third are diagnosed with limited-stage 
disease (LS-SCLC, stage IA–IIIB). SCLC is initially exceptionally 
responsive to platinum-based chemotherapy, although acquired 
resistance emerges rapidly and few patients survive beyond 1–2 
years2. The recent addition of immunotherapy to standard chemo-
therapy yielded durable responses in a small subset of, as yet, unde-
fined patients3. New therapeutic strategies guided by biomarkers for 
patient stratification are clearly needed to improve SCLC survival.

Although SCLC is treated as a homogenous disease, recent stud-
ies revealed morphologic4 and transcriptomic heterogeneity with 
several subtypes identified based on predominant transcription fac-
tor (TF) expression1,5–7. Preclinical studies suggest that these SCLC 
subtypes exhibit dynamic plasticity and have differential therapeutic 
vulnerabilities8–10 although the clinical relevance of these molecular 
subtypes remains obscure and obtaining tissue biopsies even at a 
single time point with adequate quality for transcriptional molecu-
lar analysis remains a significant challenge11.

We previously reported that tumor genomic alterations (copy 
number aberrations (CNAs) and somatic mutations) are readily 
detected in circulating cfDNA extracted from blood of patients with 

SCLC, highlighting the potential of this liquid biopsy as a tumor sur-
rogate12; however, genomic profiling has not mapped to the TF-based 
SCLC subtypes described above5. DNA methylation is considered an 
important regulator of SCLC biology13 and analysis of SCLC primary 
tumor samples revealed epigenetically distinct subgroups14, though 
differential methylomes have not been explored in cfDNA.

Here, we describe a robust workflow for genome-wide DNA 
methylation profiling applied to both patient-derived models and  
to patient-derived cfDNA samples. These data nominate cfDNA 
methylation profiling as a non-invasive, sensitive and univer-
sally applicable approach to stage I–IV SCLC detection, disease 
monitoring and predominant subtyping. This rapid turnaround, 
blood-based subtyping methodology has the potential to substan-
tially inform and accelerate future drug development in SCLC: (1) 
by permitting evaluation of differential response to new agents 
across subtypes of disease; (2) by facilitating analyses of plasticity 
and interconversion between subtypes as a mechanism of acquired 
resistance; and ultimately (3) by allowing rapid and safe enrollment 
of candidates to biomarker-guided clinical trials in patients with 
select subtypes of SCLC.

Results
Shared methylation patterns in preclinical models and cfDNA. 
To evaluate SCLC genome-wide DNA methylation patterns, we 
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employed a bisulfite-free, enrichment-based next-generation 
sequencing (NGS) approach that incorporated an in-house library 
preparation method to allow sample multiplexing before enrichment 

(T7-MBD-seq) (Fig. 1a), which we demonstrated gave reproducible 
methylation profiles for DNA inputs as low as 1 ng (Fig. 1b). We ini-
tially tested this approach on DNA from 110 tissue samples; 97 from 
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Fig. 1 | A workflow for accurate detection of SCLC methylation patterns in CDX/PDX models and cfDNA samples. a, T7-MBD-seq workflow. Fragmented 
genomic DNA or cfDNA were subjected to barcoding and pooling followed by incubation with a methyl-binding domain 2 protein (MBD2). A tenth of 
the pooled sample was kept as input control. NGS libraries were generated for both methylated enriched and input fractions with the aim of obtaining 
methylation and copy number profiles from the same original barcoded and pooled sample. Blood tube image was obtained from BioRender.com. WGS, 
whole-genome sequencing. b, Hierarchical clustering heat map showing Pearson correlation between the normalized reads per million values across 
the whole genome (8,956,617 300-bp windows), for varying starting amounts of DNA (in triplicate) of the lung cancer cell line H1975. c, Hierarchical 
clustering heat map of Spearman correlation of differentially methylated CpG probes (20,578 CpG probes corresponding to 14,887 300-bp windows) 
previously detected between healthy lung tissue (n = 31 individuals) and primary SCLC tumors14 (n = 34 patients) mapped to our SCLC dataset (n = 50 
CDX and PDX models from 33 patients, β-values were averaged over up to three independent mice for each model) and to healthy lung samples (n = 13 
individuals) processed through T7-MBD-seq protocol. d, Dot plot showing methylation enrichment scores of input control samples and methylation 
captured samples (MeCap) for both tissue samples (n = 110) and cfDNA samples (n = 157). e, Spearman correlation between methylation profiles for CDX 
models and cfDNA samples from the same patients (using 76,225 300-bp regions with nrpm < 1 in NCCs, but ≥1 in a CDX/PDX sample). f, Venn diagram 
showing the overlap of most significant DMRs for three different comparisons: CDX/PDXs (n = 50 models, as in c) versus healthy lung (n = 13 individuals) 
(DMRs = 6,793, |Δβ| ≥ 0.5, false discovery rate (FDR) ≤ 0.001), CDX/PDXs (n = 50 models) versus NCCs (n = 79 individuals) (DMRs = 12,542, |Δβ| ≥ 0.5, 
FDR ≤ 0.001) and SCLC cfDNA (n = 78 patients) versus NCCs (n = 79 individuals) (DMRs = 6,443, |Δβ| ≥ 0.3, FDR ≤ 0.001).
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patient-derived xenografts (PDXs) or circulating tumor cell-derived 
explant (CDX) samples (from 50 preclinical models derived from 33 
unique patients) and 13 samples of healthy lungs (Supplementary 
Table 1). Principal-component analysis (PCA) of the most signifi-
cant differentially methylated regions (DMRs) between SCLC mod-
els and healthy controls showed distinct separation (Extended Data 
Fig. 1a). Consistent with previous reports, SCLC samples presented 
with more variable DNA methylation patterns compared to healthy 
lung, suggesting underlying epigenetic heterogeneity (Extended 
Data Fig. 1a). Overall, approximately 75% of DMRs mapped to 
CpG islands (CGIs), shores or shelves (Extended Data Fig. 1b). The 
majority of DMRs identified were hypermethylated in the tumor 
(69%), which is a likely consequence of using a methylation cap-
ture approach that favors high enrichment of CpG dense regions15 
(Extended Data Fig. 1c). Methylation profiles from CDX/PDX and 
healthy lung tissue correlated with previously described methylation 
patterns from SCLC primary tumor14 and healthy lung profiled on 
the Illumina Human Methylation 450k platform (Fig. 1c), confirm-
ing the discriminatory power of the T7-MBD-seq methodology.

We next applied our T7-MBD-seq approach to a total of 
157 cfDNA samples; 78 from patients with SCLC (29 LS-SCLC 
and 49 ES-SCLC) and 79 noncancer controls (NCCs; 45 risk- 
and age-matched, 26 age-matched only and 8 unmatched) 

(Supplementary Tables 2 and 3). Despite the lower DNA input used 
for cfDNA samples (range 1.83–34.4 ng) compared to CDX/PDX 
samples (50 ng), methylation enrichment scores were comparable 
across all samples (Fig. 1d). PCA analysis of the most significant 
DMRs between SCLC and NCC cfDNA samples segregated the 
majority of SCLC from NCC cfDNA samples, with the level of sep-
aration dependent on tumor fraction (Extended Data Fig. 1d). A 
similar breakdown of genomic regions featuring a DMR as observed 
in preclinical models was also seen in cfDNA samples (Extended 
Data Fig. 1e,f). Tissue methylation profiles of eight SCLC CDX 
models were compared to a corresponding cfDNA sample collected 
at baseline from the same donor patient. For six of eight patients 
bloods were collected at the same time (baseline) to derive the CDX 
model and assess cfDNA, for two of eight the CDX models were 
derived from bloods collected at disease progression. In all cases 
cfDNA and tissue methylation profiles were highly concordant 
(Fig. 1e). In addition, recurrent SCLC-specific methylation patterns 
observed across 50 CDX/PDX models were recapitulated across 
78 SCLC cfDNA samples in which 84% (5,404 of 6,443) of DMRs 
detected in cfDNA were also found in the CDX/PDX tumors (Fig. 
1f). Collectively, these data suggest that our T7-MBD-seq approach 
provides reproducible and characteristic SCLC methylation profiles 
in tissue, which are also readily detected in cfDNA, prompting us 
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Fig. 2 | Generation of a DNA methylation classifier for sensitive tumor detection. a, Analysis workflow for the generation of the tumor/healthy classifier. 
b, Sensitivity and specificity metrics plotted against cutoff values for the median tumor prediction score output by the tumor/healthy classifier applied 
to held-out synthetic mixture sets (total of n = 1,951 mixture sets). Dotted lines indicate the cutoff value (0.25) that optimizes the balanced accuracy 
metric (average of sensitivity and specificity). c, Box plots of median tumor prediction scores from applying the tumor/healthy classifier to in silico serial 
dilutions of a fragmented SCLC cell line (H446) mixed with an NCC cfDNA sample, with varying proportions of the cell line in the mixture (x axis). For 
each proportion, 11 independent in silico dilution experiments were carried out. Boxes mark the 25th percentile (bottom), median (central bar) and 75th 
percentile (top); whiskers extend to minimum and maximum points. Dotted line indicates the cutoff for the tumor/healthy classifier derived as above. 
Arrow indicates the lowest dilution of H466 with a median value (across the 11 in silico experiments) above this cutoff (0.22% tumor content).
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to extend our research efforts on cfDNA methylation as a potential 
biomarker for clinical application in patients with SCLC.

A classifier for detection of SCLC from cfDNA methylation pro-
filing. We initially explored the extent to which DNA methylation 
profiling could provide a sensitive approach for blood-based detec-
tion of disease in patient samples. We applied a machine-learning 
approach in which a tumor/healthy classifier was trained using 
4,061 DMRs found between CDX/PDX models and either healthy 
lung samples or a training subset of 38 of our NCC cfDNA samples 
(Fig. 2a and Supplementary Table 4). To replicate the lower tumor 
fraction often seen in cfDNA, we generated 1,951 in silico spike-in 
samples consisting of reads from NCC samples mixed with reads 
from a single CDX/PDX model (0.5–5% CDX/PDX reads). An 
ensemble classifier was built by repeating the training procedure 
100 times, using 80% of the samples each time. Sensitivity and spec-
ificity analysis identified an optimal cutoff (0.25) for dichotomizing 
the median SCLC prediction score output by the ensemble classifier 
(Fig. 2b; Methods). In addition, we estimated the limit of detection 
of our approach by applying the ensemble classifier across an in 
silico serial dilution of the H446 SCLC cell line into a NCC cfDNA 
sample. Applying the cutoff value of 0.25 enabled detection of SCLC 
signal down to 0.22% cancer cell content (Fig. 2c).

We next applied the trained tumor/healthy classifier to a vali-
dation set of 119 cfDNA samples, from NCCs not used in train-
ing (n = 41), patients with LS-SCLC (n = 29) and ES-SCLC (n = 49). 
The classifiers correctly assigned 93% and 100% of patients with 
LS-SCLC and ES-SCLC, respectively, with a statistically significant 
correlation of prediction scores with disease stage (Fig. 3a, inset; 

Kendall’s tau coefficient, 0.51; P = 0.0041). The performance in 
predicting SCLC yielded mean area under the receiver operating 
characteristic curve (AUROC) scores of 0.986 (s.d. = 0.005) and 1 
(s.d. = 0), for LS-SCLC and ES-SCLC, respectively (Extended Data 
Fig. 2a,b). In contrast, although copy number-derived (ichorCNA) 
tumor fraction16 is correlated with classifier tumor prediction score 
(Spearman’s ρ = 0.72), it is less sensitive, detecting SCLC in 12 of 
29 (41.4%) LS-SCLC and in 44 of 49 (89.82%) ES-SCLC (Fig. 3b). 
These data suggest that cfDNA methylation profiling substantially 
improves the sensitivity of SCLC detection, even in patients with 
early-stage, localized disease and low tumor burden (Fig. 3c).

A prognostic cfDNA methylation score for SCLC. We next 
hypothesized that measuring the level of tumor-specific methyla-
tion in each sample could be of clinical utility as a reflection of 
tumor burden. Therefore, we derived an SCLC methylation score 
for each cfDNA sample based on the average levels of methylation 
detected across the genomic regions used by the tumor/healthy clas-
sifier and performed an exploratory analysis to assess the prognos-
tic utility of cfDNA methylation for overall survival (OS; Methods). 
This methylation score correlated positively with stage (Extended 
Data Fig. 3a; two-sided Mann–Whitney U-test, P < 0.0001) and 
ichorCNA tumor fraction (Extended Data Fig. 3b; Pearson corre-
lation R = 0.84, two-sided P < 0.0001) and negatively with average 
DNA fragment size (Extended Data Fig. 3c; Pearson correlation 
R = −0.37, P = 0.00082), as expected for a surrogate of tumor bur-
den. Kaplan–Meier analysis of the methylation score, dichotomized 
into low and high groups using the median, showed that patients 
with low scores had significantly longer OS than patients with high 
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scores (Fig. 4a; median OS of 20.6 months and 8.5 months, respec-
tively; two-sided log-rank test, P = 0.00015). The methylation score 
(continuous or dichotomized) was also significant in univariable 
Cox regression analysis, as was clinical stage (Supplementary Table 
5). In multivariable Cox regression analysis, methylation score as 
continuous or dichotomized (Fig. 4b and Supplementary Table 6) 
remained significantly associated with OS in a model adjusting for 
age, sex and stage (hazard ratio (HR) = 3.60; 95% CI = 1.11–11.68; 
P = 0.033 for the continuous score). Compared to a model with only 
age, sex and stage, the models also containing methylation score had 
lower Akaike’s information criteria and Bayesian information crite-
ria values and higher concordance index values. Overall, these data 
indicate that cfDNA methylation profiling has potential clinical 
utility in SCLC by allowing sensitive blood-based tumor detection 
and providing prognostic information beyond clinical stage; how-
ever, further work is needed with increased sample sizes and inde-
pendent validation data to determine an optimal and robust cutoff.

SCLC subtypes can be identified by cfDNA methylation. We next 
sought to determine whether cfDNA methylation profiling could 
be used to subtype SCLC samples and recapitulate the molecular 
subtyping of our CDX/PDX models. Although numerous SCLC 
subtypes have been reported in the literature (achaete–scute com-
plex homolog-like (ASCL1); neurogenic differentiation factor 1 
(NEUROD1); atonal bHLH transcription factor 1 (ATOH1); POU 
class 2 homeobox 3 (POU2F3); Yes1 associated transcriptional 
regulator (YAP1); inflamed)1,9 a recent analysis of 174 SCLC tis-
sue samples revealed the predominance of ASCL1, NEUROD1 
and double-negative subtypes in clinical samples17. Therefore, we 
focused on classifying these three categories using methylation 
analysis. PCA applied to the top 50,000 most variable methylated 
regions in 33 CDX/PDX models with known molecular subtypes 
(RNA-seq) revealed accurate unsupervised segregation accord-
ing to the three categories: NEUROD1 (high NEUROD1 expres-
sion with or without coexpression of ASCL1, n = 8), ASCL1 (high 
ASCL1 expression, n = 24) and double negative (low expression 
of ASCL1 and NEUROD1, n = 1) (Fig. 5a) confirming methyla-
tion differences exist between SCLC subtypes. As we had only one  

example of the rarer double-negative subtype represented in our 
CDX/PDX model biobank, we utilized publicly available array 
methylation and expression data (National Cancer Institute Small 
Cell Lung Cancer Screening Project)18 from 59 previously charac-
terized SCLC cell lines (43 ASCL1, 7 NEUROD1 and 9 double nega-
tive) as a training dataset to identify informative subtype-specific 
methylation. Initial work determined the feasibility of transforming 
array methylation data into normalized reads per million (nrpm) 
to build a subtype classifier applicable to our dataset. Good concor-
dance was seen in CDX models processed through both platforms 
(Supplementary Table 7; Methods). Moreover, a joint PCA applied 
to the 59 cell lines together with 33 CDX/PDX models, using the 
top 50,000 most variable methylated regions according to the cell 
line samples only, showed concordance of the molecular subtypes 
identified independently in both datasets (Extended Data Fig. 4a). 
Using the transformed cell line array data, we identified 366 DMRs 
which discriminated between the three SCLC subtypes (Extended 
Data Fig. 4b and Supplementary Table 8). Clustering analysis of 
the 33 CDX/PDX models using the 366 subtype-specific DMRs 
found all models correctly clustered according to their transcrip-
tional subtype (Fig. 5b). To build a cfDNA-based classifier, we 
applied a machine-learning approach that used the cell line-based 
subtype-specific DMRs and performed model training using in 
silico spike-ins of tumor reads derived from cell lines (5–40%) into 
NCC cfDNA samples (total of 1,787 mixture sets) (Fig. 5c). We ana-
lyzed sensitivity and specificity to derive optimal cutoffs to assign a 
sample as either NEUROD1, ASCL1 or double negative (Extended 
Data Fig. 4c; Methods). The validity of the classifiers was confirmed 
on CDX and PDX samples, which assigned all models correctly (Fig. 
5d). To estimate the limit of detection of ASCL1 and NEUROD1 
signal in cfDNA, we applied the classifiers to serial dilutions of 
CDXs representing the three categories and found positive signals 
for ASCL1 and NEUROD1 down to 3% and 4% tumor fraction, 
respectively (Extended Data Fig. 4d). Finally, we applied the clas-
sifiers to SCLC cfDNA samples with at least 4% tumor content (56 
of 78), resulting in 10 of 11 samples with known subtypes (identi-
fied from a donor matched CDX model) correctly classified (Fig. 
5e). Overall, 73% of the cfDNA samples were classified as ASCL1, 
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13% were classified as NEUROD1 and 14% were classified as being 
double negative, with the distribution of the subtypes correlating 
closely to previously published immunohistochemistry data from 
SCLC tissue samples (Fig. 5f; chi-squared test, χ2 = 0.628, d.f. = 2, 
P = 0.73). Next, we wanted to evaluate whether molecular subtyping 
of SCLC is feasible for longitudinal monitoring of the disease. We 
compared the prediction of the SCLC subtype in samples analyzed 
at baseline and after receiving chemotherapy (both CDX/PDX mod-
els and cfDNA) and found consistency of the predominant SCLC 
detected (Extended Data Fig. 5 and Supplementary Table 9). These 
data suggest that, with further evaluation in a larger cohort, cfDNA 
methylation profiling may provide a broadly applicable and accu-
rate approach for molecular subtyping of patients with SCLC.

Discussion
The minority of patients with SCLC who are eligible for surgery 
or chemoradiation with curative intent (approximately 30% of 
cases) achieve a 5-year survival rate of up to 65% (ref. 19); however, 
most patients present with advanced, incurable, metastatic dis-
ease. Minimally invasive biomarker assays are needed that enable 
earlier detection and monitoring of this deadly disease and that 
molecularly subtype SCLC (and inform dynamic subtype plasticity) 
to facilitate optimal stratification and scheduling of personalized 
therapies. Here we show that tumor-specific methylation patterns 
are readily detected in SCLC cfDNA samples, including in six of six 
patients with stage I tumors for which, with a parallel cfDNA assay, 
we failed to detect CNAs. We also show that the levels of tumor 
methylation detected in cfDNA correlated with survival outcomes. 
The high sensitivity of our approach opens up new avenues where 
cfDNA methylation profiling, alongside other technologies, could 
be included in large-scale lung cancer early-detection programs20 
with potential for improved SCLC clinical outcomes and earlier 
detection of disease progression after chemotherapy, where further 
lines of treatment could be deployed sooner.

In what has been termed the ‘second golden age of SCLC 
research’13, the molecular subtyping of SCLC heralds new opportuni-
ties for stratified therapies. Several studies using cell line, engineered 
and patient-derived mouse models have shown differential thera-
peutic vulnerabilities across the SCLC molecular subtypes9,21–23. For 
instance, ASCL1-driven subtypes may be more susceptible to BCL2 
apoptosis regulator and δ-like canonical Notch ligand 3 (DLL3) 
inhibitors, whereas NEUROD1-driven subtypes have been reported 
to be more sensitive to Aurora kinase inhibitors24–26. POU2F3-high 
cell lines are more resistant to chemotherapy compared to the other 
subtypes, but are sensitive to insulin like growth factor 1 recep-
tor inhibition21,27. Clinical trials that enrolled patients with SCLC 
without molecular subtype stratification have been disappointing. 
Molecular profiling of SCLC tumors via a blood test could stratify 
patients and ultimately improve their clinical outcome.

This study shows that cfDNA methylation can identify molecular 
subtypes in SCLC, which warrants further validation in a larger inde-
pendent patient cohort. A key advantage of blood-based molecular 
subtyping is circumventing the challenges often encountered in ana-
lyzing scant and often extensively necrotic tissue associated with SCLC 
tissue biopsies11,28. Methylation profiling also has the potential to bring 
insights into the biological behavior and clinical course of the different 
subtypes, including dynamic changes with disease progression.

We did not detect a switch of the predominant subtype after 
receiving treatment (Extended Data Fig. 5); however, the number 
of cfDNA samples analyzed is small (n = 7) and cannot exclude the 
presence of a subpopulation of cells with a different subtype emerg-
ing after treatment, which has been suggested in previous studies 
using single-cell RNA-seq9,29. In conclusion, circulating tumor DNA 
methylation may serve as a liquid biopsy to inform SCLC evolution, 
acquired resistance and future clinical trials of personalized treat-
ment of patients with SCLC.

Methods
Ethical regulations. The research presented in this study complies with all the 
relevant ethical regulations. NCC samples were collected under the Community 
Lung Health Study (ethically approved study REC reference no. 17/LO415) or 
within the University of Manchester (University of Manchester ethics committee 
approval no. 2017-2761-4606) or purchased through Cambridge Bioscience 
(ethics committee approval no. 2019-7920-11797). Blood samples from patients 
with SCLC (ChemoRes trial) were collected after receipt of informed consent 
and according to ethically approved protocols: European Union CHEMORES 
FP6 contract no. LSHC-CT-2007-037665 (NHS Northwest 9 Research Ethical 
Committee). Blood samples from Memorial Sloan Kettering Cancer Center 
Institutional Review Board (IRB) protocol (IRB no.14-192A (4)) were collected 
after receipt of informed consent that met the requirements of the Code of Federal 
Regulations and the IRB/Privacy Board. Participants were not compensated. 
Additional double-spun plasma samples available through the National Cancer 
Institute Early Detection Research Network Funded Clinical Validation Center 
repository (IRB no. 000616) were shipped in dry ice from Vanderbilt Ingram 
Cancer Center to our institution.

Blood samples collection from NCCs and patients with SCLC. Blood samples 
were collected in Cell-Free DNA BCT tubes (Streck), CellSave, BD Vacutainer 
K2 ethylenediaminetetraacetic acid (K2EDTA) for cfDNA analysis. Plasma was 
separated from whole blood by performing two sequential centrifugations (2,000g, 
10 min) and stored at −80 °C before cfDNA analysis.

Generation of CDX and PDX models. For CDXs, CTCs enriched from patients 
with SCLC were injected into the flank of an 8–16-week-old nonobese diabetic 
severe combined immunodeficient interleukin-2 receptor γ-deficient (NSG) 
mouse7. Tumors were collected once tumor volume reached 1,200 mm3; maximal 
tumor size was not exceeded. Female 8–16-week-old NSG mice were used to 
generate PDXs from primary tumors30. Tumor sizes were measured twice weekly 
and collected once tumor volume reached 2,000 mm3, maximal tumor size was not 
exceeded. All procedures were carried out in accordance with UK Home Office 
Regulations, the UK Coordinating Committee on Cancer Research guidelines and 
by approved protocols (Home Office Project license 40-3306/70-8252, Memorial 
Sloan Kettering Cancer Center Animal Care and Use Committee Protocol 04-03-
009 and the Cancer Research UK Manchester Institute Animal Welfare and Ethical 
Review Advisory Body). In vivo studies were reported in accordance with ARRIVE 
guidelines 2.0. No new animal models were generated for this study.

Genomic DNA extraction and fragmentation from preclinical models. 
Snap-frozen tumors from CDX and PDX models, generated as previously 
described7,30,31, were used to extract DNA. DNA was extracted by using Norgen 
Genomic DNA Isolation kit (catalog no. 24700) from up to three independent 
replicate tumors for CDX models and from up to two technical replicates for 
PDX models (Supplementary Table 1). Genomic DNA from healthy lung tissue 
was commercially bought (Origene). gDNA was quantified using NanoDrop 
Spectrophotometer (Thermo Scientific) and sheared to 200 bp (base pairs) on the 
Bioruptor Pico (Diagenode) followed by visualization on a 1.5% (w/v) agarose gel.

Circulating cfDNA extraction and quantification. cfDNA was isolated by using 
the QIAmp MinElute ccfDNA MIDI kit (QIAGEN, catalog no. 55284) according 
to the manufacturer’s instructions and/or the QIAsymphony with the Circulating 
DNA kit (QIAGEN, catalog no. 1091063). Sheared gDNA obtained from preclinical 
models and healthy lung samples and cfDNA yields were quantified by using the 
TaqMan RNase P Detection Reagents kit (Life Technologies, catalog no. 4316831).

T7-MBD-seq library preparation and NGS. Approximately 50 ng of sheared 
gDNA and between 1–35 ng of cfDNA were end-repaired and A-tailed 
(New England Biolabs, NEB, catalog no. E7595), dephosphorylated (FastAP 
Thermosensitive Alkaline Phosphatase, catalog no. EF0654) and ligated 
(Roche, catalog no. 07962355001) to custom oligonucleotides (Integrated DNA 
Technologies). These custom oligonucleotides consisted of a T7 RNA polymerase 
promoter sequence, Illumina read 1 sequencing primer-compatible sequence, a 
10-bp sample barcode and a 6-bp unique molecular identifier (UMI), which had 
been pre-annealed to form a hairpin loop (patent PCT/GB2020/050635). The 
T7-MBD-seq library preparation method enabled sample multiplexing before 
methylation enrichment, which removed the need for filler DNA (as used by 
Huang et al.32) and enabled efficient analysis of samples at low cfDNA inputs (down 
to 1 ng). Ligated DNA was pooled (to a minimum of 75 ng in total) and combined 
with 0.3 ng of control methylated and 0.3 ng of control unmethylated Arabidopsis 
thaliana DNA (Diagenode, catalog no. C02040012). Ten percent of pooled ligated 
DNA was stored as input control, while the remaining 90% was subjected to 
methylation enrichment with the EpiMark Methylated DNA Enrichment kit (NEB, 
catalog no. E2600S) following the manufacturer’s instructions. The efficiency 
of the methylation enrichment was assessed by qPCR to detect the recovery of 
methylated (expected to be >20%) and unmethylated controls (expected to be 
<1%) in enriched samples (methylation capture; MeCap) relative to the input 
samples. Amplified RNA was then generated for both MeCap and input samples by 
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in vitro transcription (IVT) using a complementary T7 promoter oligonucleotide 
and T7 RNA polymerase (NEB, catalog no. E2040S) following the manufacturer’s 
instructions. After IVT, a third of amplified RNA was subjected to single-strand 
ligation of an oligonucleotide adaptor containing an Illumina read 2 sequencing 
primer-compatible sequence (NEB, catalog no. M0373L) followed by reverse 
transcription (Thermo Scientific, catalog no. 18-090-050) and indexing PCR 
library amplification (Roche, catalog no. 07958897001). Libraries were paired-end 
sequenced on an Illumina NextSeq 500 or NovaSeq 6000.

Read alignment. A nextflow33 (v.20.11.0) pipeline was generated to take the 
FASTQ files to analysis-ready quantitative sequencing enrichment analysis (QSEA) 
objects and is provided in the supplementary code. In this pipeline, FASTQ files 
were trimmed to all have the same initial length of 91 and 61 bp for R1s and 
R2s, respectively (including the 26-bp construct on R1), the UMI removed using 
umi-tools34 (v.1.0.1) and samples were demultiplexed and trimmed for adaptor 
sequences using cutadapt (https://doi.org/10.14806/ej.17.1.200) (v.3.0). Reads 
were aligned to the GRCh38 reference genome using bwa mem (https://arxiv.org/
abs/1303.3997) (v.0.7.17). Samples from mouse explants were also aligned to the 
mouse genome mm10 before using bamcmp35 (v.2.0) to remove those reads that 
align better to the mouse genome, using the alignment score metric. BAM files 
were deduplicated using umi-tools34 (v.1.0.1), using the start position of R1 and 
the UMI, ignoring the template length (fragment length), followed by running 
samtools36 (v.1.9) fixmate to assign mate quality scores.

QSEA analysis. The QSEA R package37 (v.1.16) was used to analyze BAM files, 
with the use of a custom R package to extend QSEA (https://github.com/cruk-mi/
mesa). The entire genome was tiled into 300-bp non-overlapping windows, with 
the removal of windows lying within the encode exclusion list regions38 (v2) and a 
further set of 3,753 windows with overrepresentation in our initial non-enriched 
input samples. Reads were then uniquely assigned into these 8,956,617 bins 
according to their midpoint location. Reads were filtered by keeping read pairs where 
either end of the pair mapped with a mapping quality (MAPQ) score of at least 10, 
or unpaired R1s with a MAPQ at least 10, using Rsamtools (v.2.6.0). For paired 
reads, a fragment length between 50–1,000 bp was required and for both paired and 
unpaired reads, a distance along the reference genome of at least 30 bp was required. 
Non-paired R1s were extended to the average of the length of the paired reads within 
that sample. Copy number variations were calculated from the non-enriched input 
sequencing for each sample, using HMMcopy39 (v.1.32) with base parameters over 
1-Mbp windows. Each sample was normalized for library size using TMM (trimmed 
mean of M values, part of QSEA) with a pooled reference sample of eight NCCs. 
β-values (a scaled measure of methylation between 0 and 1) for each window in each 
sample were estimated within QSEA using the ‘blind calibration’ method37; windows 
with insufficient reads to estimate a β-value were returned as NAs.

Ichor CNA. IchorCNA16 (v.0.3.2) was also used to give an estimate of the tumor 
fraction for each non-enriched input cfDNA sample, using a panel of normals 
generated from the NCC cfDNA samples, a 1-Mbp window size and without 
estimating subclonal populations. Estimated tumor fractions <0.03 were 
considered below the limit of detection, as in Adalsteinsson et al.16.

Quality controls. FastQC (v.0.11.7), Qualimap40 (v.2.2) and Fastq-screen41  
(v.0.14) were used for quality control of sequencing data, all visualized within 
MultiQC42 (v.1.9).

NGSCheckMate43 (v.1.0.0) was used to verify that all samples matched as 
expected in the tool output, including with previous RNA-seq data for the CDX 
and PDX samples, as well as the corresponding cfDNA from the same patients.

To calculate the relative enrichment scores, we followed the MEDIPS R 
package44 (v.1.42), calculating the total density of cytosine-guanine (CGs) 
contained within the mapped DNA positions (on the reference sequence) and 
dividing by the total density of CGs across the entire reference sequence. Samples 
with a relative enrichment <2.5 are excluded as being low quality.

Using a set of 805 windows that correspond to CpG sites that were shown to be 
always methylated in methylation array data from cancer and noncancer samples45, 
we required at least 40% of these windows to have a β-value of 0.8 or above.

Differential methylation analysis. To calculate DMRs, we used the QSEA package, 
which implements a negative binomial generalized linear model, adjusting for 
the region CpG density. A minimum nrpm count >1 in at least one sample was 
required to consider a window for differential methylation and an FDR of 0.001 
was applied. A difference between the average β-values for each class, Δβ, was 
calculated and a Δβ > 0.5 and 0.3 was used to identify the most significant DMRs 
in preclinical models and cfDNA samples, respectively. DMRs were annotated 
using the ChIPseeker R package46 and were mapped to CGIs, shores and shelves 
by using a list of CGIs (GRCh38) downloaded from Genome Browser47 annotation 
track database. CGIs were then extended by 2 kb using the plyranges R package48 
(upstream and downstream) to identify shores and further 2 kb to identify shelves.

Dilution series. To estimate the tumor fraction required to correctly call samples 
with each classifier, we generated an in silico dilution series using fastq-tools 

(v.0.8.3; https://github.com/dcjones/fastq-tools), mixing together raw, unfiltered 
reads between a cancer sample (H446 cell line or CDX) and a validation set NCC 
cfDNA at various proportions to make 20 million FASTQ read pairs, followed by 
our standard processing pipeline as detailed above. For the predictions, only those 
individual classifiers that had not been trained using the corresponding CDX 
(when relevant) were used.

Tumor/healthy classifier. We split the NCC cfDNA samples into training and 
validation sets, with 38 NCC cfDNA samples used for training of the classifiers and 
41 NCC samples held for the validation set. To train the classifier, we generated 
1,951 synthetic mixture sets by mixing processed fragment counts between 
samples, either CDX/PDX samples with a NCC cfDNA at proportions between 
0.5–5% or a mixture of two NCC samples, all at varying numbers of fragments.

A set of 4,061 SCLC-specific DMRs were identified that were differentially 
methylated between the CDX/PDX samples and both the healthy lung and the 
38 training NCC cfDNA samples (both comparisons with a FDR of 0.001 and a 
Δβ ≥ 0.5).

An ensemble set of 100 classifiers was then built on these synthetic mixture sets 
and these windows, including mixtures built from 80% of the NCCs and 80% of the 
CDX/PDX samples in each individual classifier, using Extreme Gradient Boosting49 
(xgboost R package, v.1.3.2.1) within the R tidymodels (v.0.1.3) framework, with 
default parameters (except trees, 500 and learn_rate, 0.02).

To derive a cutoff for the ensemble of classifiers from test data, we applied each 
of the classifiers to the remaining mixture sets that were not seen by that classifier 
during model training (together consisting of 20% of the NCC and 20% of the 
CDX/PDX samples). For each mixture set, we calculated the median of the 100 
resulting prediction scores and compared against the ground truth (NCC mixture 
or SCLC mixture). We took the value of the cutoff that optimizes the balanced 
accuracy metric (the average of sensitivity and specificity). This cutoff was given by 
0.25 with a balanced accuracy of 0.95 (0.93 sensitivity and 0.96 specificity).

The ensemble of trained classifiers was then applied to the remaining 41 
held-out NCC cfDNA samples and all 78 SCLC cfDNA samples as a validation 
set, giving a median prediction score as well as showing the variability between 
classifiers. For cfDNA samples with an associated CDX model, only classifiers that 
did not use that CDX sample are used. The associated cutoff was also applied to the 
median predictions to give a hard assignment of each validation sample as either 
NCC or SCLC. Feature importance was estimated for each classifier using the vip 
R package (v.0.3.2; https://doi.org/10.32614/RJ-2020-013) and averaged over the 
ensemble (Supplementary Table 4).

Methylation score and survival analysis. The 4,061 DMRs used within the 
tumor/healthy classifier were used to compute a ‘methylation score’, defined as 
the average of the β-values across these windows. Univariable Cox proportional 
hazards regression analysis for OS was performed for the following variables: 
methylation score (continuous), dichotomized methylation score (using median 
as a cutoff), age, sex and clinical stage. Additionally, for the categorical variables, 
Kaplan–Meier curve analysis and log-rank tests were carried out. The proportional 
hazards assumption was investigated using Schoenfeld residuals. Multivariable 
Cox proportional hazards regression models were fitted with methylation score 
as either a dichotomized or continuous variable, adjusting for age, sex and clinical 
stage. These models were compared to a model including only age, sex and clinical 
stage, using the Akaike information criterion, Bayesian information criterion and 
concordance index. Survival analysis was performed using the survival (https://
CRAN.R-project.org/package=survival) and survminer (https://CRAN.R-project.
org/package=survminer; R packages, v.3.2.11 and v.0.4.9, respectively).

Assess the feasibility of using cell line array data to generate a SCLC subtype 
classifier. SCLC cell lines methylation data (from Illumina EPIC arrays21) 
and transcript data (from Affymetrix Exon Microarrays18) for SCLC cell lines 
were downloaded from sclccelllines.cancer.gov/sclc/downloads.xhtml (data 
time-stamped as December 2019) as pre-processed β-values and gene expression 
data. The expression levels of the genes ASCL1, NEUROD1, POU2F3 and YAP1 
were used to assign subtypes to the cell lines (with a threshold of nine normalized 
expression for each gene), giving 43 ASCL1-, 7 NEUROD1-, 3 POU2F3- and 6 
YAP1-expressing cell lines; excluding 7 that express both ASCL1 and NEUROD1. 
We termed the POU2F3 and YAP1-expressing samples as dual negative, as they 
were expressing neither ASCL1 nor NEUROD1.

Converting methylation array data to QSEA objects. To use the array data 
to generate mixture sets as with the CDX/PDX data above, we developed a 
procedure to convert from β-values to estimates of nrpm. To do this, we used our 
pooled NCC reference (a mixture of eight cfDNA samples from healthy normal 
volunteers) within QSEA to generate a lookup table of counts to β-values, given 
the CG density for each window and for the enrichment/read depth of this pooled 
sample. We then applied this lookup table to estimate how many reads would have 
been captured by our T7-MBD-seq method in each window, given the β-values 
from the array, taking the maximum β-value where multiple probes lie within a 
window. Supplementary Table 7 shows the correlation between eight CDX samples 
sequenced using T7-MBD-seq and the estimated normalized reads per million 
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from Infinium 450k array data of the same CDX models (restricted to the SCLC 
versus healthy lung DMRs), showing that matched samples have a high Spearman 
correlation.

Unsupervised DNA methylation analysis for SCLC molecular subtyping. PCA 
was used to perform an unsupervised analysis of the β-methylation values for 33 
CDX/PDX models (not including second models derived from the same patient), 
averaging across replicates. To take account of differences in enrichment between 
experimental runs, we carried out a batch-effect removal pre-processing step using 
the limma R package50 (v.3.46). β-values for each window were then centered 
and PCA was applied to the top 50,000 most variable windows, as determined by 
window s.d. across the 33 samples (Fig. 5a).

PCA was also applied to the 59 cell line samples, together with the CDX/PDX 
samples, by joining the β-values for the cell line samples with the (batch-corrected) 
β-values for the CDX/PDX samples. A further batch-effect removal step was then 
applied to account for systematic differences between the CDX/PDX and cell line 
data. The 50,000 windows with the highest s.d. in the cell line samples were used in 
the PCA (Extended Data Fig. 4a).

Subtyping of CDX/PDX and corresponding cfDNA samples. For the CDX/
PDX models, RNA-seq was processed as previously described7,30,51 followed by the 
calculation of variance-stabilized-transform values using the DESeq2 package52. 
Subtypes were assigned based on the highest TF expression among ASCL1, 
NEUROD1 and POU2F3 (dual negative), except for CDX38, which expresses high 
values of both ASCL1 and NEUROD1 and so was assigned as NEUROD1 positive. 
This gave 37 ASCL1 CDX/PDXs (from 24 patients, with 7 matched cfDNA 
samples), 12 NEUROD1 CDX/PDXs (from 8 patients, with 3 matched cfDNA 
samples) and 1 POU2F3 CDX (with a matched cfDNA sample).

SCLC subtype classifier. Cell line DMRs were calculated between the subtypes 
(ASCL1, NEUROD1, YAP and POU2F3) using QSEA objects generated from 
arrays as detailed above, with an FDR rate of 0.001. These DMRs were ranked by 
their Δβ-values, with the 50 most hypermethylated and 50 most hypomethylated 
windows between a target class (ASCL1 or NEUROD1) and each of the other three 
subtypes used in the classifier for that target (300 windows in total). With windows 
being DMRs between multiple subtypes, this gave 261 distinct windows for the 
NEUROD1 classifier and 277 windows for ASCL1. Due to overlaps between these 
two sets of windows, this gave 366 windows in total.

Synthetic mixture sets were generated by mixing estimated read depths 
corresponding to the 59 cell line array β-values (as detailed above) with the same 
38 NCC cfDNA samples as before, at concentrations between 5–40% from the 
arrays as well as varying numbers of reads, for a total of 1,787 mixtures. Two 
sets of 100 classifiers were generated using these mixture sets, one for predicting 
whether a sample is ASCL1 and one for predicting NEUROD1. Each classifier uses 
mixture sets corresponding to 80% of the NEUROD1 and dual-negative samples, 
with a similar number of ASCL1 samples (undersampling for class balance), as 
well as 80% of the NCCs in the same way as the tumor/healthy classifier to provide 
variability in exactly which mixtures were used in each classifier. Each classifier 
was trained using the R package xgboost49, v.1.3.2.1 with default parameters except 
trees, 500; learn_rate, 0.02.

We derived a cutoff for the NEUROD1 and ASCL1 ensemble classifiers in 
a similar way to the tumor/healthy classifier, using the mixture sets previously 
unseen during model training and calculating median prediction scores; however, 
here, the ASCL1 classifier cutoff was derived using only the samples that were 
not classified as NEUROD1 by the NEUROD1 classifier (the ASCL1 classifier 
cutoff was set after and was dependent on the NEUROD1 classifier cutoff). We 
considered a grid of cutoff values (with increments of 0.01) to jointly optimize the 
cutoffs for the two ensemble classifiers, using the average balanced accuracy across 
the two classifiers as the metric. This resulted in cutoffs of 0.16 for the NEUROD1 
classifier and 0.76 for the ASCL1 classifier, with an optimal average balanced 
accuracy of 0.95 (NEUROD1 classifier, 0.95 balanced accuracy, 0.97 sensitivity and 
0.94 specificity; and ASCL1 classifier, 0.95 balanced accuracy, 0.96 sensitivity and 
0.94 specificity).

As a validation set, the classifiers were then applied to the CDX/PDX samples 
and the SCLC cfDNA samples (with a tumor fraction estimated by ichorCNA of 
at least 4% as suggested by our in silico dilutions) and hard predictions were made 
using the cutoffs derived on the mixture sets. Feature importance was estimated for 
each classifier using the vip package (v.0.3.2; https://doi.org/10.32614/RJ-2020-013) 
and averaged separately over the two ensemble classifiers (Supplementary Table 8).

Statistics and reproducibility. Details of statistical analyses are provided 
throughout the text and in figure legends. All statistical tests were two-sided and, 
unless stated otherwise, results were considered significant at a P value threshold 
of 0.05. Multiple testing (FDR) correction was applied to P values arising from 
the DMR analysis. Most statistical tests used were nonparametric. For Pearson 
correlation hypothesis tests, data distributions were assumed to be normal but 
this was not formally tested. For Cox proportional hazards regression analysis, the 
proportional hazards assumption was investigated using Schoenfeld residuals. No 
statistical method was used to predetermine sample size but our sample sizes are 

similar to those reported in previous publications53,54. Samples were chosen and 
processed based on the availability of tissue and plasma samples at the time of 
data generation. Data failing quality controls or NCCs with a later known cancer 
diagnosis were excluded. The investigators were not blinded to the cancer status 
or subtype of any of the samples. As NCC cfDNA samples were required for both 
classifier training and validation, they were randomly allocated into two subsets, 
stratifying for the collection source. One subset was used for training the classifiers 
(within mixture sets) and the other was used to form part of the tumor/healthy 
classifier independent validation set (along with all the SCLC cfDNA samples). 
All other samples (CDX/PDX, cell lines and SCLC cfDNA) were only used either 
in classifier training or in the validation set. The majority of PDX models have 
two technical replicates (Supplementary Table 1). Read counts for these technical 
replicates were merged within QSEA to provide a single combined sample that was 
used for analysis. CDX models have up to three biological replicates (from different 
mice; Supplementary Table 1); these were kept as separate entries or were averaged, 
as indicated in the text or figure legends. Plots were generated with GraphPad 
Prism (v.9.2) and R (v.4.0.3), using ggplot2 (v.3.3.5) and pheatmap (v.1.0.12).

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
T7-MBD-seq data and shallow WGS data that support the findings of this study 
have been deposited in the European Genome–Phenome Archive under accession 
no. EGAS00001005739. Processed QSEA R objects are deposited in Zenodo at 
https://doi.org/10.5281/zenodo.5569261. Previously published array methylation 
and expression data that were reanalyzed here are available under GSE145156 and 
GSE73160. Previously published RNA-seq data from the CDXs and PDXs studied 
here are available from ArrayExpress under accession code E-MTAB-8465 (CDXs) 
and the database of Genotypes and Phenotypes under accession no. phs001249.
v1.p1 (PDXs). Source data have been provided as Source Data files. All other data 
supporting the findings of this study are available from the corresponding author 
on reasonable request. Source data are provided with this paper.

Code availability
Scripts for the analysis used in this paper are available at gitlab.com/cruk-mi/
sclc-cfDNA-methylome-profiling and the R package is available at github.com/
cruk-mi/mesa.
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Extended Data Fig. 1 | SCLC methylation patterns in preclinical models and cfDNA samples. a, PCA plot of CDX/PDX models (n = 50 models from 
33 patients, β-values were averaged over up to three independent mice for each model) and normal lung tissue samples (n = 13 individuals), from PCA 
applied to β-values for the 6,793 most significant DMRs detected between CDX/PDX and normal lung. b, Distribution of the 6,793 DMRs over regulatory 
regions (CpG Islands, shores and shelves) in CDX/PDX vs normal lung comparison. c, Bar plot showing the percentage of the 6,793 DMRs detected as 
hypermethylated and hypomethylated in CDX/PDX vs normal lung comparison. d, PCA plot of SCLC cfDNA (n = 78 patients) and NCC cfDNA (n = 79 
individuals), from PCA applied to β-values for the 6,443 most significant DMRs detected between SCLC cfDNA and NCC cfDNA. e, Distribution of the 
6,443 DMRs over regulatory regions (CpG Islands, shores and shelves) in SCLC cfDNA versus NCC cfDNA comparison. f, Bar plot showing the percentage 
of the 6,443 DMRs detected as hypermethylated and hypomethylated in SCLC cfDNA versus NCC cfDNA comparison.
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Extended Data Fig. 2 | Sensitivity and specificity of the tumor/normal classifier. a,b, ROC curves from applying the 100 individual tumor/normal 
classifiers to 29 limited stage SCLC cfDNA samples and 41 NCC cfDNA samples (a), and to 49 extensive stage SCLC cfDNA samples and 41 NCC cfDNA 
samples (b).
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Extended Data Fig. 3 | The methylation score as a surrogate of tumor burden. a, Box plot showing the methylation score (calculated as the average 
β-value across the 4,061 genomic regions used by the tumor/normal classifier) for cfDNA samples from limited or extensive stage patients. Boxes mark 
the 25th percentile (bottom), median (central bar) and 75th percentile (top). Whiskers extend to the most extreme value within 1.5-fold of interquartile 
range. Individual data points also shown. P value calculated by two-sided Mann-Whitney U test. b,c Scatter plots between the methylation score (as 
in a) and the copy-number estimated tumor fraction from ichorCNA (b), and median DNA fragment size (across the whole genome) from paired-end 
sequencing reads (c). Pearson correlation (R value) and two-sided P value are indicated. Black, dashed line shows linear regression fit. a–c, n = 78 cfDNA 
samples from independent SCLC patients (n = 29 limited stage and n = 49 extensive stage).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Identification of SCLC subtype-specific DMRs. a, PCA plot showing the 59 SCLC cell lines (43 ASCL1, 7 NEUROD1, 9 dual 
negative) and 33 CDX/PDX models (24 ASCL1, 8 NEUROD1, 1 dual negative; second models derived from the same patient were excluded), from PCA 
applied to β-values for the 50,000 most variable methylated regions according to the cell lines. β-values for each CDX model were averaged over up to 
three independent mice. b, Hierarchical clustering heatmap showing 366 subtype-specific DMRs derived by publicly available DNA methylation data from 
59 cell lines. Bars on the top show the normalized expression values of ASCL1, NEUROD1, POU2F3 and YAP1 derived from Affymetrix Exon Microarrays 
for each cell line. c, Heatmaps showing sensitivity and specificity for varying cutoff values applied to the median prediction scores output by applying the 
ASCL1 and NEUROD1 classifiers to mixture sets in held-out test data (total of n = 1,787 mixture sets). Red crosses indicate the cutoffs (0.16 for NEUROD1; 
0.76 for ASCL1) that jointly optimize the balanced accuracy metric (average of sensitivity and specificity) across both classifiers. d, Box plots of classifier 
prediction scores for n = 100 individual ASCL1 classifiers (top) or n = 100 individual NEUROD1 classifiers (bottom), applied to in silico serial dilutions of 
a POU2F3 (left), NEUROD1 (middle) or ASCL1 (right) CDX model mixed with an NCC cfDNA sample, with varying proportions of the CDX model in the 
mixture (x-axis). Boxes mark the 25th percentile (bottom), median (central bar) and 75th percentile (top). Whiskers extend to the most extreme value 
within 1.5-fold of interquartile range. Points lying outside the whiskers are plotted individually. Horizontal lines show the cutoffs for ASCL1 and NEUROD1 
classifiers derived above.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Prediction of SCLC subtype in post-treatment samples. Box plots showing prediction scores from n = 100 individual ASCL1 and 
NEUROD1 classifiers for a panel of paired CDX and PDX models, and paired cfDNA samples. CDX models were derived longitudinally from patients at 
baseline and post-treatment while paired PDX models were generated in vivo (as described in ref. 30). cfDNA samples were isolated from patients at 
baseline and again at post-treatment. Horizontal dotted lines show the median cutoffs for ASCL1 and NEUROD1 classifiers, 0.76 and 0.16 respectively. 
Colored regions indicate the predicted SCLC subtype. Boxes mark the 25th percentile (bottom), median (central bar) and 75th percentile (top). Whiskers 
extend to the most extreme value within 1.5-fold of interquartile range. Points lying outside the whiskers are plotted individually. Data for CDX models are 
averaged over tumors from up to three independent mice.
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