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Transcriptional targets 
of senataxin and E2 promoter 
binding factors are associated 
with neuro‑degenerative pathways 
during increased autophagic flux
Aaron E. Casey1,2,7*, Wenjun Liu3,7, Leanne K. Hein4, Timothy J. Sargeant4, 
Stephen M. Pederson3 & Ville‑Petteri Mäkinen1,2,5,6

Autophagy is an intracellular recycling process that degrades harmful molecules and enables survival 
during starvation, with implications for diseases including dementia, cancer and atherosclerosis. 
Previous studies demonstrate how a limited number of transcription factors (TFs) can increase 
autophagy. However, this knowledge has not resulted in translation into therapy, thus, to gain 
understanding of more suitable targets, we utilized a systems biology approach. We induced 
autophagy by amino acid starvation and mTOR inhibition in HeLa, HEK 293 and SH-SY5Y cells 
and measured temporal gene expression using RNA-seq. We observed 456 differentially expressed 
genes due to starvation and 285 genes due to mTOR inhibition (PFDR < 0.05 in every cell line). 
Pathway analyses implicated Alzheimer’s and Parkinson’s diseases (PFDR ≤ 0.024 in SH-SY5Y 
and HeLa) and amyotrophic lateral sclerosis (ALS, PFDR < 0.05 in mTOR inhibition experiments). 
Differential expression of the Senataxin (SETX) target gene set was predicted to activate multiple 
neurodegenerative pathways (PFDR ≤ 0.04). In the SH-SY5Y cells of neuronal origin, the E2F 
transcription family was predicted to activate Alzheimer’s disease pathway (PFDR ≤ 0.0065). These 
exploratory analyses suggest that SETX and E2F may mediate transcriptional regulation of autophagy 
and further investigations into their possible role in neuro-degeneration are warranted.

Maintaining energy homeostasis is essential for cells and biological organisms to survive and thrive. Through-
out most of human history, perturbations to energy metabolism were due to starvation that stunted growth 
and development1, 2, while in modern populations metabolic health is challenged by sedentary life style, excess 
adiposity and ageing3–5. There is evidence that both energy extremes involve the same cellular processes that 
maintain energy homeostasis6–8 and that these disruptions may be important drivers for common diseases such 
as diabetes and cancer9–12. Autophagy is one such process. It is responsible for recycling cellular materials into 
energy resources during periods of nutrient deprivation13–15, but it also has an important role in maintaining the 
optimal composition of cellular organelles during periods of abundance16. Importantly, autophagy is affected 
by ageing17 and impaired autophagy in the ageing brain, in particular, may be an important risk factor for Alz-
heimer’s and Parkinson’s diseases18–21. For these reasons, our long-term goal is to understand how autophagy 
and energy metabolism are regulated in human cells and to use this new fundamental knowledge towards new 
treatments for age-associated diseases.
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Previous studies on autophagy regulation have revealed multiple pathways and genes22–24, of which mamma-
lian target for rapamycin (mTOR) and transcription factor EB (TFEB) are the best characterized25, 26. A specific 
sequence, the coordinated lysosomal expression and regulation (CLEAR) motif seems to be the preferred DNA 
binding target for TFEB and its transcription factor family27 and it may represent a key mechanism by which 
external conditions (e.g. starvation) exert a cascade of adaptation through mTOR, TFEB and the promoters of 
downstream autophagy genes25. As the name implies, the CLEAR motif is present in the promoters of lysosomal 
genes. This is important because the lysosome is the end-terminal of autophagic cascades28 and it is responsible 
for the final degradation and recycling of materials including the two Alzheimer proteins, tau and amyloid-
beta, that accumulate in the brains of affected individuals21, 29, 30. Lastly, we and others have identified genetic 
associations between autophagy and dementia18, 31, 32. These findings motivated us to explore the transcriptional 
responses associated with starvation-induced increase in autophagy and to investigate potential links between 
these responses and neuro-degenerative processes.

The aim of this study was to characterize how the transcriptome changes in response to starvation or mTOR 
inhibition in model systems where we also see responses in autophagy. We used genetically engineered human 
cells where we could confirm the changes in autophagic flux into the lysosome; this sets the experiments apart 
from previous work. Furthermore, we applied RNA sequencing at multiple time points and three cell lines 
to achieve robust systems-level understanding of which genes are reproducibly affected. The multi-faceted 
study design makes our study different from previous RNA-seq profiling experiments. Across the different cell 
line/treatment combinations, we report unexpected associations between differentially expressed genes and 
autophagic flux and characterize universal expression patterns and their predicted driver genes that overlap with 
neuro-degenerative disease processes.

Results
Overview of transcriptome responses.  We collected RNA-seq data at baseline and after two inter-
ventions (mTOR inhibition or amino-acid starvation) in three monoclonal cell lines (HeLa, HEK 293 and 
SH-SY5Y). Initially, 12 differential expression analyses were conducted (2 time points × 2 treatments × 3 cell 
lines = 12 analyses). The nature of our experimental design resulted in thousands of DE genes for each experi-
ment. We observed that there was a significant overlap of DE genes detected at the 15 h and 30 h time points for 
each experiment (mean 53.4%). Therefore, to stratify our results into a manageable dataset, we included only 
genes that not only were DE at both time points, but that were also directionally concordant in their expression 
over the time points (i.e. either both upregulated or both downregulated). For a single estimate of fold-change, 
we used the mean log2 fold change across both time points. Hence the final set of results comprised six separate 
DE listings (3 cell lines × 2 treatments × 1 combined time point). The resulting six lists of differentially expressed 
(DE) genes were used for further analyses and we refer to them as the six DE “experiments” throughout the text 
(Supplementary Tables S1–S6).

A total of 16,506 genes were detectable in at least one cell line and 11,202 (67.9%) were detectable in every cell 
line (Fig. 1A). We observed 8914 DE genes due to starvation in at least one cell line, of which 456 (5.1%) were 
classified as DE genes in every cell line (Fig. 1B). We also observed 6,226 DE genes due to mTOR inhibition in at 
least one cell line; 285 (4.6%) of these were classified as DE genes in every cell line (Fig. 1C). We identified 5672 
DE genes associated with starvation or mTOR inhibition that were up-regulated in at least one cell line (Fig. 1D, 
inconsistent DE genes that were significantly up-regulated in one cell line but significantly down-regulated in 
another were excluded). Of these, 1541 (27.2%) genes were shared by both treatments. Lastly, we identified 5,543 
down-regulated genes of which 1741 (31.4%) were shared between treatments (Fig. 1E).

Differentially expressed genes.  The patterns of DE signals are summarized in Fig. 2 and more detailed 
expression differences and replication for the highlighted genes are available in Supplementary Tables S1–S6 and 
Supplementary Figs. S4–S18. P-values were adjusted for FDR as described in “Materials and methods” (PFDR). 
For each plot, genes were ranked according to the maximum FDR rule: first, we determined the maximum PFDR 
for each gene across the relevant experiments. Genes were then sorted according to maximum PFDR. Lastly, 
genes that were significantly up-regulated in one experiment, but down-regulated in another were excluded to 
maintain directional concordance.

The gene with the lowest maximum P-value across all experiments (Fig. 2A) was LETM1 Domain Containing 
1 (LETMD1, PFDR ≤ 5.0 × 10−7, mean logFC = 1.3, involved in phagocytosis, Supplementary Fig. S4). The greatest 
increase in relative expression was observed for a cancer-associated lncRNA that may inhibit autophagy (Small 
Nucleolar RNA Host Gene 7 or SNHG7, PFDR ≤ 0.0041, mean logFC = 2.0, Supplementary Fig. S5). Genes that 
were down-regulated included a member of the PI3K family (Phosphoinositide-3-Kinase Regulatory Subunit 
3, PIK3R3, PFDR ≤ 5.6 × 10−6, mean logFC =  − 1.6, Supplementary Fig. S6), an L-amino acid transporter (Solute 
Carrier Family 43 Member 2, SLC43A2, PFDR ≤ 0.0029, mean logFC =  − 1.7, Supplementary Fig. S7) and Aldo-
lase Fructose-Bisphosphate C (ALDOC, PFDR ≤ 0.00015, mean logFC =  − 1.6, a glycolysis gene associated with 
Alzheimer’s disease33, Supplementary Fig. S8).

Top 25 genes ranked according to starvation response are shown in Fig. 2B. The smallest maximum P-value 
across starvation experiments was observed for Activity Regulated Cytoskeleton Associated Protein (ARC, 
PFDR ≤ 0.00074, mean logFC = 1.6, associated with memory and cognitive disorders34, Supplementary Fig. S9). 
The greatest increase in expression was observed for G Protein Subunit Beta 1 Like (GNB1L, PFDR ≤ 0.0074, mean 
logFC = 1.1, associated with neurological disorders35, Supplementary Fig. S10). The top down-regulated gene was 
a transcriptional co-repressor involved in photoreceptor degradation and possibly autism (Sterile Alpha Motif 
Domain Containing 11, SAMD11, PFDR ≤ 8.3 × 10−5, mean logFC =  − 1.936, Supplementary Fig. S11). Arrestin 
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Domain Containing 3 (ARRDC3, PFDR ≤ 0.00097, mean logFC =  − 1.8, Supplementary Fig. S12) was also down-
regulated and it is involved in endocytic recycling37 and lysosomal degradation of receptors38.

Genes that were specifically affected by mTOR inhibition are shown in Fig. 2C. Upregulated genes included 
CAMP Responsive Element Binding Protein 3 Like 4 (CREB3L4, FDR ≤ 0.0025, mean logFC = 0.86, a transcrip-
tion factor involved in glucose and lipid metabolism, Supplementary Fig. S13). Of the down-regulated genes, 
Methionyl-TRNA Synthetase 1 (MARS) had the smallest FDR (FDR ≤ 1.3 × 10−8, mean logFC =  − 1.2, involved 
in alveolar disease, Supplementary Fig. S14). The greatest decrease in expression was observed for Solute Carrier 
Family 6 Member 9 (SLC6A9, FDR ≤ 3.1 × 10−5, mean logFC =  − 2.0, Supplementary Fig. S15) which is a glycine 
transporter associated with Alzheimer’s disease39. Of note, we observed an mTOR-specific pattern among the 
top 25 in HEK 293 and HeLa cells, but not in SH-SY5Y.

We isolated responses specific to SH-SY5Y in Fig. 2D by applying the maximum FDR rule to the two SH-
SY5Y experiments only (see details in figure caption). Piwi Like RNA-Mediated Gene Silencing 2 (PIWIL2, 
a piRNA [Piwi-interacting RNA] regulator of autophagy and apoptosis40) exhibited the smallest maximum 
P-value (PFDR ≤ 4.4 × 10−6, mean logFC = 2.1, Supplementary Fig. S16). The top-ranked down-regulated gene was 
Collagen Type I Alpha 2 Chain (COL1A2, PFDR ≤ 1.4 × 10−10, mean logFC =  − 2.9, a structural component of col-
lagen, Supplementary Fig. S17). Membrane Bound O-Acyltransferase Domain Containing 4 (MBOAT4), which 
stimulates autophagy41, was also among the most down-regulated genes (PFDR ≤ 5.2 × 10−10, mean logFC =  − 2.8, 
Supplementary Fig. S18).

Canonical pathways enriched for differentially expressed genes.  In the previous section, we 
observed multiple genes associated with autophagy and neurodegeneration, however, a single DE gene in isola-
tion does not reveal the wider biological consequences. To gain more robust insight into the biological impact, 
we investigated i) if genes from a known biological pathway were over-represented among DE genes and ii) if DE 
genes were likely to perturb a known pathway when considering the gene–gene interactions within the pathway. 
Selected results are depicted in Fig. 3 and full statistics are available in Supplementary Tables S7–S18.

We identified 31 KEGG pathways over-representing DE genes in at least one of the six experiments (Fig. 3A). 
No pathway was significant in every experiment. The most consistent over-representation signals included Par-
kinson’s and Alzheimer’s diseases and Amyotrophic lateral sclerosis that were significant in four out of six 
experiments (highlighted in Fig. 3A). Significant signals were also observed for Metabolic pathways, Cell cycle, 
Biosynthesis of amino acids, Carbon metabolism and Fluid shear stress and atherosclerosis.

Perturbation tests revealed multiple pathways that were likely to be activated or inhibited by the changes in 
gene expression (Fig. 3B). We observed a directionally consistent activation of the KEGG Alzheimer’s disease 
pathway (perturbation z-scores between + 2.15 and + 7.63) and Ferroptosis (z-scores between + 1.81 and + 3.27) 
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Figure 1.   Overview of differentially expressed (DE) genes. (A) Genes were considered detectable if there 
were > 1.5 counts per million in > 3 samples out of all samples from the same cell line. (B) Genes that were 
DE between starved and control samples in at least one cell line. (C) Genes that were DE between mTOR 
inhibited and control samples in at least one cell line. (D) We collected DE genes associated with starvation or 
mTOR inhibition that were up-regulated in at least one cell line (inconsistent DE genes that were significantly 
up-regulated in one cell line but significantly down-regulated in another were excluded). (E) Down-regulated 
DE genes associated with starvation or mTOR inhibition.
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across all six experiments (highlighted in Fig. 3B). We also observed unexpected but consistent association 
for inhibition of the Autophagy pathway (z-scores between − 5.3 and − 1.58). HIF-1 signaling was predicted to 
be inhibited across all experiments. Multiple immune-system pathways such as Antigen processing and pres-
entation were also predicted to be inhibited due to the DE patterns. Full results are available in Supplement 
Tables S13–S18.

Transcription factor target gene sets enriched for differential expression.  Genome-wide regula-
tory processes are not yet fully understood and may be missed by existing pathway definitions. For this reason, 
we repeated the over-representation analysis from the previous section but replaced the KEGG pathways with 
transcription factor target (TFT) gene sets (defined in “Materials and methods”).

We observed 30 TFT gene sets that were over-represented amongst DE genes in every experiment. Based 
on the literature, TFEB may be a key regulator of autophagy25 and, as expected, the predicted TFEB targets 
were over-represented amongst DE genes associated with autophagy also in our study (highlighted in Fig. 4A, 
Supplementary Tables S19–S24). Noteworthy signals related to neurological health include the MORC Family 
CW-Type Zinc Finger 2 set (MORC2 is associated with multiple neurological conditions), the Senataxin set 
(SETX, also known as Amyotrophic lateral sclerosis 4 protein), the THAP Domain Containing 1 set (THAP1 is 
associated with the neurodevelopmental disease dystonia 6) and SPT16 Homolog set (SUPT16H is associated 
with neurodevelopmental problems).

We identified 22 gene sets that were enriched for DE genes in both SH-SY5Y experiments but not in other 
cells (Fig. 4B); 20 belonged to the same E2F family that shared most of their target genes (note also E2F2 in 

Unadjusted
RNA data

Adjusted
RNA data

A Consistent DE in
every experiment

B DE specific
to starvation

C DE specific to
mTOR inhibition

D DE specific
to SH-SY5Y

PFDR < 0.00001 PFDR < 0.0001 PFDR < 0.001 PFDR < 0.050.2+0.2−
Log2 fold change

EPB41L4A-AS1

SLC43A2
PIK3R3
ALDOC
SDF2L1
PREB
MICOS10
FAM162A
EIF5A
ACLY
GSTP1
MPV17L2
DBI
COQ3
ZNF581
SNHG7
IGBP1
CIRBP
HBP1
GABPB2

LETMD1
CDT1
KLHL24
FBXO32
SPSB3

ARC
MTCL1
SLC22A5
TRIM36
DDX47
MTSS2
DANCR
FADS3
INKA2
AP003119.3
GNB1L
SAMD11
LINC02593
GALNT6
AC245452.1
ARRDC3
TMEM54
MYRF
GNPTAB
FNDC10
HERC6
SERINC2
C17orf97
PDIA3P1
ZNF326

MYO15B
SGMS1-AS1
WDR31
AL356599.1
METTL27
SPACA9
SLC24A1
CREB3L4
PLEKHG4
CCDC24
AP001372.2
SESN2
SLC6A9
PSAT1
SLC39A14
XPOT
LONP1
VLDLR
TNC
ASNS
EIF4EBP1
CARS
GPT2
MARS
GARS

AC051619.5
PIWIL2
SVOP
N4BP2L1
PTGIS
NAT16
CD8A
AC092111.1
ACRBP
IGFBP7-AS1
ADCY8
ZNF826P
GPR85
PTN
ZNF257
ADAMTS4
COL1A2
MBOAT4
AL353693.1
DKK2
DKK1
SEZ6
TRHR
RGS8
INHBA

Highlighted in main text

Figure 2.   Top 25 differentially expressed (DE) genes based on the maximum FDR rule. Genes mentioned in 
the main text are highlighted for easier visual localization. (A) Genes were sorted according to the maximum 
FDR-adjusted P-value across six experiments. Discordant genes that were significantly (PFDR < 5%) up-regulated 
in one and down-regulated in another experiment were excluded. (B) Genes were sorted according to 
the maximum PFDR across all starvation experiments. We also required that all starvation responses were 
directionally concordant and that the mean log2 fold change across mTOR experiments was in the opposite 
direction. (C) Genes were sorted according to the maximum PFDR across all mTOR inhibition experiments. We 
required that all mTOR inhibition responses were directionally concordant and that the mean log2 fold change 
across starvation experiments was in the opposite direction. (D) Genes were sorted according to the maximum 
PFDR across responses in the SH-SY5Y cells. Missing signals were set to zero log2 fold change in other cell lines. 
We also required that the mean log2 fold changes in other cells were in the opposite direction to SH-SY5Y 
responses.
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Fig. 4A). The strongest signal was observed for the Hydroxysteroid 17-beta Dehydrogenase 8 (HSD17B8) gene 
set (PFDR ≤ 7.9 × 10−16). Full results are available in Supplementary Tables S19–S24.

Transcription factors as mediators between differential expression and canonical path‑
ways.  To compare the pathway and TFT responses, we first identified shared genes between a KEGG pathway 
and a TFT set, and then calculated the perturbations scores for this shared subset of genes. We observed ten pairs 
of transcription factors and KEGG pathways that satisfied PFDR < 0.05 across every experiment—all of them were 
predicted to have increased activity due to the DE pattern and seven of them were pairings with KEGG neuro-
degenerative diseases (Fig. 5A, full results in Supplementary Tables S25–S30). Moreover, three signals involved 
the THAP1 gene set (paired with Alzheimer’s disease, ALS and viral infection) and four involved the SETX gene 
set (paired with Alzheimer’s, Parkinson’s, Huntington’s and ALS).

We also found 32 pairs of TFT sets and pathways that were specific to SH-SY5Y (Fig. 5B). Notably, the per-
turbation scores were mostly negative, which suggests that the DE of the TFT sets may result in the inhibition of 
these pathways. Exceptions included SETX and Dopaminergic synapse (PFDR ≤ 0.00021), and multiple pathways 
perturbed by the E2F family of transcription factors, such as E2F and Alzheimer’s disease (PFDR ≤ 0.0065).
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Figure 3.   Enrichment of differentially expressed genes in the Kyoto Encyclopedia of Genes and Genomes 
pathway repository. (A) Over-representation analysis of DE genes. Pathways that produced a significant signal 
(PFDR < 0.05) in at least one experiment are shown. (B) Normalized perturbation scores from Signaling Pathway 
Impact Analysis. A negative (positive) score implies that the aggregate impact of DE genes is likely to decrease 
(increase) the activity of a pathway. Pathways that were directionally concordant (all significant signals in the 
same direction) and that produced at least three significant signals (PFDR < 0.05) are included.
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Discussion
To investigate the transcriptional regulation of autophagy in living human cells, we induced autophagic flux by 
amino acid starvation and mTOR inhibition and investigated the transcriptional responses in HeLa, HEK 293 
and SH-SY5Y cell lines. Increase in autophagic flux was confirmed by a tandem-fluorescent LC3 assay (tf-LC3) 
and gene expression was quantified by RNA sequencing. We found that the KEGG autophagy pathway was 
inhibited at 15 h and 30 h after treatment, while pathways associated with neuro-generative diseases were acti-
vated. In particular, our results suggest that transcription target genes assigned to SETX and E2F may represent 
important regulatory mediators that connect energy metabolism, autophagy and cellular stress with Alzheimer’s 
and Parkinson’s diseases.

Previous literature and the tf-LC3 assay used in this study show how autophagic flux increased in response to 
starvation or mTOR inhibition15, 26, 42. We chose the time points of 15 h and 30 h based on time-series experiments 
to capture the inflection and saturation points of the autophagy response. A recent report on the dynamics of 
autophagy suggests that autophagy responses with respect to vesicular flux start within 10 min of treatment and 
saturate by 15 h43. In the first phase, mTOR Complex 1 inhibition by rapamycin induces an increase in autophago-
somes which represents the initial packaging of molecular cargo into vesicles. Next, the autophagosomes fuse 
with lysosomes to form autolysosomes. Lastly, the autolysosomes degrade and the contents are recycled. The 
authors found that these three stages reached a steady state by 15 h where the numbers of autophagosomes and 
autolysosomes stabilize. Other studies have also demonstrated autophagic flux is still supported at late time points 
such as 8 h and 24 h in mouse embryonic fibroblasts44, and 48 h in HeLa cells, as demonstrated by measure-
ment of LC3-II with and without a lysosomal inhibitor drug45. Our results from the tf-LC3 assay, which tracks 
the proportion of LC3 within acidic autolysosomes, are compatible with these findings, although we observed 
stabilization at 30 h rather than 15 h in most cases.

Against our expectations, we observed significant inhibition of the KEGG Autophagy pathway and possible 
autophagy regulators such as ARRDC3 and PIKR3 in the RNA-seq data. Moreover, putative autophagy inhibitors 
LETMD1 and SNHG7 were up-regulated. Extrapolation of the dynamic autophagy process to transcriptional 
regulation may explain the negative DE we observed. We did not see substantial changes in gene expression at 1 h, 
which means that there was limited if any immediate transcriptional response associated with the initial increase 

Unadjusted
RNA data

Adjusted
RNA data

A Over-representation of DE genes

PFDR < 0.00001
PFDR < 0.0001
PFDR < 0.001
PFDR < 0.05

Highlighted in main text

0 50%
Proportion of DE genes

B Specific to SH-SY5Y

E2F5_TARGET_GENES
E2F_01
SGCGSSAAA_E2F1DP2_01
MIER1_TARGET_GENES
E2F1_Q6_01
E2F_Q4_01
HSD17B8_TARGET_GENES
E2F4DP1_01
E2F4DP2_01
E2F1DP2_01
E2F_02
E2F1DP1_01
E2F_Q3
E2F_Q6_01
E2F1_Q3
E2F_Q3_01
E2F_03
E2F1_Q4_01
E2F1DP1RB_01
E2F_Q4
E2F_Q6
E2F1_Q6

PSMB5_TARGET_GENES
GTF2A2_TARGET_GENES
ZNF350_TARGET_GENES
CACGTG_MYC_Q2
SETD7_TARGET_GENES
BARX2_TARGET_GENES
CEBPZ_TARGET_GENES
ASH1L_TARGET_GENES
BARX1_TARGET_GENES
IRF9_TARGET_GENES
UBP1_TARGET_GENES
E2F2_TARGET_GENES
MORC2_TARGET_GENES
ZBED5_TARGET_GENES
ZBTB7B_TARGET_GENES
SETX_TARGET_GENES
THAP1_TARGET_GENES
ZNF92_TARGET_GENES
ZBTB12_TARGET_GENES
SKIL_TARGET_GENES
SUPT16H_TARGET_GENES
CHAF1B_TARGET_GENES
ZNF423_TARGET_GENES
PHF2_TARGET_GENES
SFMBT1_TARGET_GENES
MZF1_TARGET_GENES
TFEB_TARGET_GENES
TEAD2_TARGET_GENES
BACH2_TARGET_GENES
ZNF84_TARGET_GENES

Figure 4.   Enrichment of differentially expressed genes in transcription factor target (TFT) sets. (A) Over-
representation analysis of DE genes. Pathways that produced a significant signal (PFDR < 0.05) in at least one 
experiment are shown. (B) DE enrichment within TFT sets in SH-SY5Y cells but not in other cells.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17665  | https://doi.org/10.1038/s41598-022-21617-2

www.nature.com/scientificreports/

in autophagosomes. On the other hand, by 15 h the transcriptome was responding to the nutrient deprivation, 
while the tf-LC3 assay was starting to level off. It is plausible that expressing autophagy genes at 15 h onward 
may become less of a priority for the cell and the relative expression of the pathway is subsequently decreased.

SETX was first discovered via ataxia-associated mutations in a human homolog of the yeast gene Sen146 and 
numerous additional mutations have since been reported that are associated with a rare type of ALS47, 48. Initial 
studies showed that SETX helps to remove unintended DNA-RNA hybrid molecules (R-loops) that would oth-
erwise promote genomic instability49, 50. Interestingly, recent evidence indicates that SETX may be an important 
regulator of autophagy, especially with respect to the removal of stress granules that form when a cell is starved 
or under other types of environmental pressure49. For example, Richard et al. investigated a SETX knock-out51 
and reported that “SETX depletion inhibits the progression of autophagy, leading to an accumulation of ubiqui-
tinated proteins, decreased ability to clear protein aggregates, as well as mitochondrial defects” which describes 
most neuro-degenerative diseases with features of proteinopathy. In another study, Bennet et al. induced SETX 
over-expression that disrupted the cell cycle of HEK 293 cells and they concluded that neurons due to their long 
RNA transcripts (i.e. propensity for R-loops) may be particularly vulnerable if SETX expression is outside the 
optimal range52.

We observed up-regulation of genes that were implicated in Alzheimer’s and Parkinson’s disease, respectively, 
and predicted to be downstream targets of SETX (Fig. 5A). On the other hand, SETX itself was not differentially 
expressed, which could be the result of tightly controlled expression range or transient expression patterns that 
are characteristic of transcription factors. Given the generic nature of our transcriptome findings, further studies 
of SETX may benefit from expanding the focus from ataxia and ALS to other types of neuro-degenerative diseases 
and focusing on energy restricted cellular milieu that may be characteristic to an ageing brain.

Unadjusted
RNA data

Adjusted
RNA data

A Overlaps between transcription targets and KEGG pathways B Specific to SH-SY5Y

THAP1 Human papillomavirus inf..
ZBTB12 PI3K-Akt signaling path..
CEBPZ Amyotrophic lateral scle..
SETX Alzheimer disease
SETX Amyotrophic lateral scler..
SETX Parkinson disease
SETX Huntington disease
ZBTB12 Parkinson disease
THAP1 Alzheimer disease
THAP1 Amyotrophic lateral scle..

SETX Natural killer cell media..
SETX Renal cell carcinoma
SETX Prolactin signaling pathway
SETX ErbB signaling pathway
SETX Acute myeloid leukemia
SETX Signaling pathways regula..

E2F JAK-STAT signaling pathway
CEBPZ Hepatitis B
E2F Alzheimer disease
SETX Dopaminergic synapse
E2F Amyotrophic lateral sclero..
E2F Morphine addiction
E2F Insulin signaling pathway
E2F Pathways in cancer
E2F Circadian entrainment
SFMBT1 Necroptosis
E2F Non-small cell lung cancer
BARX2 Small cell lung cancer
E2F Kaposi sarcoma-associated ..
CEBPZ Natural killer cell medi..
E2F Alcoholism
CEBPZ ErbB signaling pathway
CEBPZ Acute myeloid leukemia
ASH1L Platelet activation
E2F Thermogenesis
E2F mTOR signaling pathway
E2F Th17 cell differentiation
ASH1L Regulation of actin cyto..
CEBPZ Gastric cancer
CEBPZ GliomaPFDR < 0.00001

PFDR < 0.0001
PFDR < 0.001
PFDR < 0.05

Highlighted in main text−10.0

+10.0

Perturbation
score

Figure 5.   Combined perturbation analysis of canonical pathways and TFT sets. First, we identified DE genes 
that were shared between a KEGG pathway and TFT sets. Then, we used Signaling Pathway Impact analyses to 
test if the shared genes would impact the activity of the KEGG pathway. Therefore, the perturbation scores are 
predictions on the potential regulatory effects differentially expressed transcription factor target genes will have 
on canonical pathways. (A) TFT-pathway pairs that showed directionally consistent and significant (PFDR < 0.05) 
perturbation scores across every experiment. (B) TFT-pathway pairs that showed directionally consistent and 
significant (PFDR < 0.05) perturbation scores in the two experiments on SH-SY5Y cells but no significant signals 
in other cells.
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The E2F family of transcription factors is implicated in the regulation of energy metabolism, adipose tissue, 
obesity and growth in general53–56 and our results from starved and mTOR-inhibited cells fit this picture well. 
The first family member, E2F1, is the most extensively studied. E2F1 binds with retinoblastoma protein to induce 
autophagy in cancer cells56 and, inversely, E2F1 knockout inhibits autophagy to increase brown fat formation54. 
In Drosophila, E2F1 enables the regulation of TOR Complex 1 independent of insulin or amino acid pathways55 
and interacts with the cell cycle in a biphasic manner to promote organismal growth53. The E2F1 protein may 
be up-regulated in people with Down’s syndrome and amyloid-beta deposition57.

The E2F signals we observed are most likely explained as universal consequences of energy restriction across 
cell types. In the neuroblastoma cell line, the E2F-targeted portions of cancer pathways, thermogenesis, mTOR 
signaling, insulin signaling, and circadian entrainment were all inhibited (Fig. 5B), as one would expect based 
on the previous research on E2F1. On the other hand, ALS and Alzheimer’s disease pathways were predicted to 
be activated. Our data cannot reveal causal relationships, but we speculate that E2F transcription factors respond 
to age-associated metabolic dysfunction and may subsequently trigger neuronal apoptosis58, 59. There is evidence 
that inducing E2F1 and E2F2 may help maintain genomic stability in neurons under toxic conditions60 while 
other experiments showed that reducing E2F1 in mice improved the survival of dopaminergic neurons59. Given 
these complex and contradictory findings, additional research into the exact roles of each E2F family member 
in relation to human tissues is warranted.

The inclusion of three cell lines, three time points and two conditions provide statistical and biological robust-
ness to our findings. HEK 293, HeLa and SH-SY5Y cells are established platforms for experimental studies and 
grow predictably in standard conditions, which helped us to maintain high consistency between cultures. On 
the other hand, these immortalized cells may differ substantially from human cells in situ and the interventions 
we chose are beyond the typical physiological stresses most cells would encounter. Hence, we caution against 
over-reaching conclusions about possible therapeutic targets among the top DE genes. These data should not be 
interpreted as causal evidence. Instead, these data should be interpreted as further evidence on the associations 
between energy metabolism, autophagy machinery and neuro-degenerative diseases, whereas the exact causal 
mechanisms may be highly dependent on the cell type or on an individual’s genetic profile.

The use of immortal cell lines allowed us to optimize monoclonal cultures that expressed the tf-LC3 construct. 
This was important to achieve a high signal-to-noise ratio for the fluorescence assay for autophagic flux. Fur-
thermore, the technical quality and depth of the RNA-seq data were high and we used additional permutation 
tests to verify signals beyond the original pathway tools. For these reasons, we are confident that the analytical 
quality of the study is high. Of note, the RNA-seq data from this study are publicly available (Annotare accession 
code E-MTAB-12020) and will contribute to the existing collection of datasets on autophagy gene signatures24, 61.

In conclusion, we conducted an experimental study to characterize transcriptomic changes associated with 
autophagy in three human cell lines. Our setup was not optimized for neuro-degenerative diseases beyond 
the neuronal SH-SY5Y cells, yet to our surprise we identified an enrichment of differentially expressed genes 
in Alzheimer’s and Parkinson’s disease pathways that emerged from the RNA-seq data. This re-enforces the 
idea that autophagy and energy metabolism are intrinsically involved in these major human diseases, however, 
further mechanistic work is required to identify which parts of the transcriptomic response come from which 
pathways, and if the genes we identified can drive these responses.. Furthermore, we identified SETX and the 
E2F transcription factor family as potential mediators between transcriptional regulation of autophagy and 
neuro-degenerative conditions.

Materials and methods
Study design.  The experimental part of the project comprised four subcomponents: (i) an assay for 
autophagic flux, (ii) the selection and culture of cell lines, (iii) time series design for mTOR inhibition and 
starvation, and (iv) final experiments for transcriptomic analysis. Firstly, we used a tandem fluorescent LC3 (tf-
LC3) assay to measure autophagic flux. LC3 is a core protein component of the autophagosome membrane that 
is eventually incorporated into the lysosome at the end of the vesicular autophagy pipeline42. The tf-LC3, which 
comprises the LC3 protein fused to a red fluorescence protein and a pH-sensitive green fluorescence protein, is 
incorporated into the autophagosome in the same manner as the native LC3. Once the tf-LC3 proteins reach the 
acidic interior of the lysosome the pH-sensitive green fluorophore is quenched while the red fluorophore is unaf-
fected. Therefore, the ratio between red and green fluorescence indicates the proportion of tf-LC3 in lysosomes 
versus total cellular tf-LC3, which we use as a proxy for autophagic flux.

Secondly, we selected three different cell lines to identify consistent and universal RNA expression changes 
associated with changes in autophagic flux. We chose Hela and HEK 293 cells due to their robust growth in 
cultures, as well as their common experimental use, which allows the dataset to be comparable to previous and 
future experiments. We chose SH-SY5Y due to their brain-tissue origin, which is important for neurobiologi-
cal implications directly arising from the findings of this work. Each cell line of interest was transfected with 
lentiviral particles that contained the sequence for the tf-LC3 construct under the cytomegalovirus promoter62. 
Multiple monoclonal lines were cultured for each cell line, each of which had total red and green fluorescence 
quantified by flow cytometry, thus allowing for selection of clones most appropriate for quantifying autophagic 
flux in the proposed experiments.

Thirdly, we subjected the clones to mTOR inhibition using 1 μM of AZD8055 (Selleck Chemicals LLC, 
Houston TX, USA) and to amino-acid starvation using Earl’s balanced salt solution (EBSS; MSD, Kenilworth 
NJ, USA) to induce autophagy. Temporal curves of autophagic flux were determined by measuring the tf-LC3 
red/green ratio at 1 h intervals (Supplementary Fig. S2). Based on the curves, we chose 1 h, 15 h and 30 h time 
points as the initial response, inflection point and saturation point of autophagic flux respectively. Three technical 
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replicates were collected from every experimental arm. We observed no difference between the baseline and 1 h 
RNA profiles, thus only 15 h and 30 h time points were used for statistical analyses.

In addition to the main study, we included data from a pilot study of 36 samples we did to test the tf-LC3 assay 
(these data were used as an independent replication of top genes and are included in Supplement in Supplement 
Figs. S4–S18). The technical details for the pilot study were the same, with the following exceptions. The pilot 
study did not include SH-SY5Y cells. The experiments included an extra comparison between the top and bottom 
20% of untreated cells sorted according to their tf-LC3 ratio at baseline. The treatment vs. vehicle was evaluated 
at 24 h instead of 15 h or 30 h. RNA-seq data did not include non-coding variants.

Cell culture and materials.  HeLa (Sigma Aldrich, St. Louis MO, USA) and HEK 293 (ATCC, Manassas, 
VA, USA) cell lines were cultured in Dulbecco’s Modified Eagle Medium (DMEM; Life Technologies, Thermo 
Fisher Scientific, Waltham MA, USA), while SH-SY5Y (ATCC, Manassas, VA, USA) cells were cultured in 1:1 
DMEM:Ham’s F12 (MSD, Kenilworth NJ, USA). All three cell lines were maintained with 10% (v/v) foetal 
bovine serum (Life Technologies), and 5 mg/mL penicillin and streptomycin (MSD, Kenilworth NJ, USA) in a 
humidified atmosphere of 5% CO2 at 37 °C. For RNA profiling, T25 flasks were seeded with 1.24 × 106 cells from 
80% confluent T75 flasks 24 h prior to the start of experiments. Both the treated and non-treated samples were 
seeded from the same flask. Parental clones without the tf-LC3 proteins were used to calibrate the flow cytometer 
before measuring autophagic flux.

RNA sequencing.  Total RNA was extracted using the RNeasy Plus Mini Kit (QIAGEN, Hilden North 
Rhine-Westphalia, Germany) as per the manufacturer’s instructions (sample RNA concentration ≥ 15  ng/
μL, ≤ 2809 ng/μL, median 361.5 ng/μL). The RNA library was prepared with indices and was sequenced on an 
Illumina NovaSeq 6000 S4 at 2 × 150 bp at the David R Gunn Genomics Suite in the South Australian Health and 
Medical Research Institute.

RNA data processing.  The scripts that were used for the analyses are available at https://​github.​com/​Wen-
jun-​Liu/​Induc​ed_​autop​hagy. Default parameter settings were used at each step unless otherwise indicated. Each 
sample was sequenced to a median of 132 million paired reads per sample. We applied a three-step protocol to 
process raw reads into gene-level expression estimates. Firstly, we used cutadapt version 1.1463 to trim away low 
quality bases, adapters and other non-useful sequences. Secondly, trimmed reads were aligned to the human 
genome assembly GRCh38.p13 from Ensembl Release 9864 using STAR v2.765. Thirdly, total read counts for 
each gene (i.e. gene-level expression estimates) were quantified using featureCounts from the Subread package 
version 1.5.266, with the setting 1 for fracOverlap and 10 for Q. Gene annotations were obtained from Ensembl 
Release 9864.

For each of the three steps, quality checks were performed using FastQC v0.11.7 (URL: https://​www.​bioin​
forma​tics.​babra​ham.​ac.​uk/​proje​cts/​fastqc/) and ngsReports67. We observed no issues related to low sequencing 
quality, variable GC content or high adapter content across the set of libraries. We considered a gene detectable 
for a cell line if we observed > 1.5 counts per million in > 3 samples out of 15, representing all samples from a 
complete treatment arm. A total of 16,506 (24.3%) out of 67,946 annotated genes were detectable in at least one 
cell line and 11,202 (16.5%) genes were detectable in every cell line. Lastly, we applied the conditional quantile 
normalization method to mitigate remaining artefacts from GC content and gene length in preparation for the 
statistical analysis68.

Differential expression analysis.  We identified differentially expressed (DE) genes between the treated 
and untreated cell lines by quasi-likelihood negative binomial generalised log-linear regression as implemented 
in edgeR69, 70. We defined DE that exceeded the range of ± 20% fold change as biologically meaningful71. We then 
used the quasi-likelihood F-test to calculate P-values. P-values were further adjusted by the Benjamini–Hoch-
berg method of false discovery rates (PFDR) to account for multiple testing12.

We conducted 12 initial DE analyses where we compared the expression levels at 15 h and 30 h against the 
baseline at 0 h (3 cell lines × 2 treatments × 2 time points, Supplementary Fig. S1). Statistically significant genes 
(PFDR < 0.05) were then selected for further investigation from each DE analysis. Given the overlap between 
significant genes at 15 h and 30 h time points (mean 53.4% across cell lines and treatments), we included only 
those that showed significant DE in the same direction at both time points, as a strategy to focus on the most 
consistently changed genes. For a single estimate of fold-change, we used the mean log2 fold change across both 
time points. Hence the final set of results comprised six separate DE listings (3 cell lines × 2 treatments × 1 com-
bined time point, Supplementary Fig. S1).

Pathway enrichment analysis.  We investigated (i) if genes in pre-defined biological pathways were over-
represented among DE genes and (ii) to what extent DE genes were likely to perturb a given pathway when 
considering the known functional relationships between the pathway members. Firstly, over-representation of 
DE genes was tested with using goseq72, including gene length as an offset term to account for any bias.

Secondly, we applied the Signaling Pathway Impact Analysis (SPIA) method to identify potentially perturbed 
pathways73. The SPIA adds to the results from goseq since it provides deeper functional insight into the conse-
quences from altered gene expression. In SPIA, pathways are represented as networks of genes based on pathway 
topology and activating/inhibitory roles of individual genes. Perturbation is defined as the propagating effect 
from altering the expression of one or more genes within the network. Crucially, the SPIA algorithm predicts the 
accumulated perturbation effect from multiple DE genes and summarizes the total effect as a single numerical 
score. This perturbation score is directional: a negative score indicates down-regulation of a pathway, whereas 

https://github.com/Wenjun-Liu/Induced_autophagy
https://github.com/Wenjun-Liu/Induced_autophagy
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/


10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17665  | https://doi.org/10.1038/s41598-022-21617-2

www.nature.com/scientificreports/

a positive score indicates up-regulation. In this study, we used a novel permutation procedure to calculate the 
statistical significance of the perturbation score (Supplementary Fig. S3).

Canonical pathway definitions were obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database74. We retrieved 312 KEGG pathways and converted them into an SPIA-compatible network format 
using the tool graphite75. Over-representation and perturbation tests were applied to each of the six DE listings, 
respectively. The threshold for significant over-representation was set at 5% FDR. The same threshold was also 
applied to define significant perturbation.

Transcription factor target genes.  We retrieved 957 transcription factor (TFT) gene sets from the 
Molecular Signatures Database version 7.276, 77 where, for a specific transcription factor, the TFT gene set was 
determined according to the binding sites or promoter binding motifs in the target genes. TFT gene sets were 
analysed for over-representation of DE genes the same way as the KEGG pathways, however, as the TFT defi-
nitions do not include interaction information between the target genes, we developed a strategy to combine 
the TFT information with KEGG pathway topologies. First, we determined subsets of genes that were shared 
between a KEGG pathway and a TFT gene-set; these subsets represent potential mechanisms by which a tran-
scription factor may regulate a KEGG pathway. To test the regulatory potential further, we applied SPIA the 
same way as before, but using the subset of genes within the KEGG pathway (that were also TFT genes). KEGG 
pathways with PFDR < 0.05 were considered to be significantly perturbed due to the given transcription factor.

Data availability
RNA sequencing data with autophagic flux measurements is available in the EBI ArrayExpress repository under 
accession number E-MTAB-12020 (URL: https://​www.​ebi.​ac.​uk/​array​expre​ss/​exper​iments/​E-​MTAB-​12020/). 
Analysis scripts are available in GitHub (URL: https://​github.​com/​Wenjun-​Liu/​Induc​ed_​autop​hagy).
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