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Abstract

Artificial intelligence (AI) has exceptional potential to positively impact the field of radiation 

oncology. However, large curated datasets - often involving imaging data and corresponding 

annotations - are required to develop radiation oncology AI models. Importantly, the recent 

establishment of Findable, Accessible, Interoperable, Reusable (FAIR) principles for scientific 

data management have enabled an increasing number of radiation oncology related datasets 

to be disseminated through data repositories, thereby acting as a rich source of data for AI 

model building. This manuscript reviews the current and future state of radiation oncology data 

dissemination, with a particular emphasis on published imaging datasets, AI data challenges, and 

associated infrastructure. Moreover, we provide historical context of FAIR data dissemination 

protocols, difficulties in the current distribution of radiation oncology data, and recommendations 

regarding data dissemination for eventual utilization in AI models. Through FAIR principles and 

standardized approaches to data dissemination, radiation oncology AI research has nothing to lose 

and everything to gain.

Introduction

The rise of artificial intelligence (AI) and machine learning in recent years has seen an 

explosion in technical approaches to statistical modeling, driven mostly by innovation on 

large datasets in the computational science community. These groundbreaking efforts have 

benefitted immensely from the availability of large-scale highly annotated datasets, such 

as the ImageNet visual recognition task dataset,1 or the Modified National Institute of 

Standards and Technology (MNIST) handwriting dataset.2 These datasets have allowed 

researchers to train and benchmark AI algorithms using transparent and comparable 

methods through a known corpus with defined properties at large-scale, thereby substantially 
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accelerating AI growth. In fact, some have purported that the modern AI age can be traced 

to the convolutional neural network AlexNet winning the ImageNet challenge in 2012;3 

clearly, this task could not have been accomplished without the careful construction and 

curation of the ImageNet platform several years earlier.4 During the same interval, the “Big 

Cancer Data” era was arguably initiated by the availability of large-scale public cancer 

databases. Specifically, The Cancer Genome Atlas (TCGA) has had a transformative effect 

on oncologic research.5 Crucial for the oncologic imaging community, and consequently the 

radiation oncology community, a subsidiary effort, The Cancer Imaging Archive (TCIA),6 

was originally developed as a repository for matched image data from TCGA cases; 

however, TCIA has become a leader in its own right for distributing reliable and high-quality 

datasets independent of TCGA. Subsequently, radiation oncology has now entered a new era 

for AI applications due to an increasing deluge of data afforded by resources such as TCIA. 

In the following sections, we review and discuss the role of data sharing in the radiation 

oncology ecosystem, important regulatory and ethical considerations, and contemporary 

databases available for public investigation.

FAIR Data Publication as a Normative Component of Modern Scientific 

Dissemination and Knowledge Generation as a Coherent Process

Importantly, the availability of big data on its own does not ensure the development of 

robust, reproducible, and clinically impactful datasets. This is particularly true in medical 

domains such as radiation oncology, where data can be scarce, heterogeneous, and often 

non-standardized.7 To ensure the usefulness of large datasets and foster data re-usability, it 

is fundamental to follow the Findable, Accessible, Interoperable, Reusable (FAIR) principles 

for scientific data management.8 These principles emphasize machine-actionability, that is, 

the capacity of computational systems to find, access, interoperate, and reuse data with 

minimal human intervention. To foster the widespread implementation of FAIR scientific 

principles in day-to-day scientific workflows, several steps can and should be taken by 

practitioners of open-science practices in the radiation oncology community. These practices 

should include the utilization of study preregistration, manuscript preregistration, open-

access journals, and code/data sharing (Fig. 1). We briefly review these components here; an 

in-depth discussion on these concepts can be found in greater detail in Fuller et al.9

Scientific research is often plagued by widespread biases, for example, “p-hacking” (repeat 

measurements leading to significant findings),10 among others.11 Study preregistration 

serves as a tool to potentially reduce these pitfalls.12 The concept of preregistration involves 

specifying details of a research plan on a registry, such as through the Open Science 

Framework,13 before performing the research study. Notably, the practice of preregistration 

has been shown to increase analytical rigor and increase the publication of null findings.14

After study completion, the utilization of preprints, a manuscript that precedes formal peer 

review, allows for rapid dissemination of study findings to the general public.15 Drawing 

inspiration from the well-known physics preprint server arXiv, in 2019 a clinical medicine 

preprint repository, medRxiv, was established.16 Since its inception, medRxiv has quickly 

become a leading figure in medically related preprint dissemination.17 The benefits of 
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publishing preprints for radiation oncology are numerous, chief among which include 

near-immediate distribution of scientific findings, ease of use, circumvention of journal 

politics and dominant narratives, and complete access by the general public. Naturally, 

the use of preprints raises the potential for faulty analysis. However, these concerns seem 

minor compared to the relative benefit of rapid dissemination of information which could 

then be verified through indicators of internal validity and wider scientific community 

evaluation. Closely related to concepts regarding preprints is the use of open-access options 

for scientific manuscripts. By allowing wider distribution of scientific findings, open-access 

options may lead to a greater return on investment for scientific innovation.18 As of 2008, 

the National Institutes of Health (NIH) has mandated publicly funded research be made 

available through PubMed Central.19 Moreover, as of 2021, the Plan S initiative will 

require that all EU-funded efforts be published through open access journals or platforms.20 

These geopolitical pushes highlight the importance of open access models for manuscript 

dissemination and will likely be a core staple of future radiation oncology research.

Finally, data and code accessibility, which are particularly germane to AI-driven analyses 

in radiation oncology, form a more recently established central tenant for disseminating 

scientific information. An in-depth discussion of data repositories is described in other 

sections of this review (see “NCI Policy, Vision, and Supported Repositories” and “TCIA 

as a Model for Effective FAIR Data in Oncology”). Moreover, the need for structured data 

and corresponding annotations has prompted the rise of journals dedicated to publishing 

data and/or corresponding records explaining dataset contents, termed “data descriptors”.21 

Examples of journals publishing data descriptors include Medical Physics and Nature 

Scientific Data.22 Finally, code repositories, such as GitHub, have allowed for the rapid 

and dynamic development of code related to scientific studies in the medical domain, and 

fostered community engagement for future developments.23

While the current components of scientific dissemination remain relatively independent, in 

the future, one could envision a modular framework where automated processes link these 

components in an integrated fashion (Fig. 2). Corresponding checklists ensuring proper 

completion of steps could allow for the routine integration of these components in scientific 

workflows. Through these processes, the quality of scientific dissemination would increase, 

which could have great potential for advances in radiation oncology research.

Annotation/Ontology Considerations for Public Datasets

Broadly, there are two main types of data relevant to AI model development using public 

datasets in radiation oncology - image data formats and image annotation formats. The 

majority of hospital picture archiving and communication system infrastructure stores 

medical images in Digital Imaging and Communications in Medicine (DICOM) format, 

which is the recognized international standard for image data storage.24 For ease of 

distribution, DICOM data is often transformed into Neuroimaging Informatics Technology 

Initiative format, which is increasingly seen as a standard for reproducible imaging 

research.25 While image data is often standardized and distributed relatively easily due 

to established nomenclature and customs, unfortunately, image annotations are not often 

stored in a single common format.26 For example, image annotations can be stored in 
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picture archiving and communication system and other systems as DICOM presentation 

state objects which may vary from vendor to vendor. The recently developed DICOM 

structured reporting (DICOM-SR) standard has allowed to somewhat combat this lack of 

standardization in annotation but there still remains problems with intersite variability of 

annotation templates.27 For non-graphic annotations, the annotation and image markup 

format was recently developed and incorporated into DICOM-SR.28 Within radiation 

oncology, the DICOM radiotherapy (DICOM-RT) standard has allowed for a systematic 

characterization of radiotherapy-related data.29 However, DICOM-RT was not developed 

with AI/machine-learning applications in mind, thus annotations derived from these files can 

at times be challenging to incorporate directly into models; community-driven undertakings 

have developed some solutions to these problems.30,31 Thus, ongoing efforts will be needed 

to reach a consensus on the best practices to standardize image annotation data for radiation 

oncology applications.

Outside of file objects and corresponding metadata standardization, there are additional 

considerations for radiation oncology annotation data that are crucial for public 

distribution. Specifically, nomenclature conventions can often vary across institutions. For 

example, nomenclature for target/non-target structures is often highly variable (Table 1). 

Subsequently, standardized nomenclatures applied to targets, normal tissue structures, and 

treatment planning concepts and metrics would allow for the more facile integration of 

radiation oncology data for standardized distribution and use in AI models. Therefore, 

from 2015–2018, the American Association of Physicists in Medicine (AAPM) collated 

a group of experts in imaging, radiation oncology, and machine learning (Task Group 

263), to provide radiation oncology nomenclature guidelines for use in clinical trials, 

data-pooling initiatives, population-based studies, and routine clinical care.32,33 Among the 

many accomplishments of AAPM Task Group 263, the group was able to standardize: 

(1) structure names across image processing and treatment planning system platforms, (2) 

nomenclature for dosimetric data, (3) templates for clinical trial groups, and (4) formalisms 

for nomenclature schema which could accommodate the addition of other structures defined 

in the future. Through these guidelines, annotation processes for radiation oncology datasets 

and corresponding public data deposition should be more easily standardized for use in 

reproducible and robust research applications.

International Differences in Privacy Guidelines

In research integrity and ethics, it is accepted across public, health, and research institutions 

around the world that the privacy of the study participants must always be respected and 

never compromised to avoid concrete risks such as identity theft, blackmailing, or any other 

possible adverse consequences that a subject might face if their identity is disclosed with 

the data. Institutional review boards and ethical committees ensure that scientific research 

follows the highest standards to protect the safety of human subjects. However, ethics is 

not law, and while the ethical review process is comparable across countries, the legal 

principles and interpretation of data protection vary considerably and even deter FAIR 

data reuse. Currently in the USA, the Health Insurance Portability and Accountability Act 

(HIPAA) advises the removal of 18 pieces of protected health information (PHI) when 

sharing de-identified data34 (Table 2). By removing this PHI, human subject data in the 
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USA can be considered “anonymous” or at least “anonymous enough” so that their data is 

considered to not fall under HIPAA and can then be easily reused for scientific research. 

However, concerns have been raised regarding the potential for intricate biomedical data 

that could be used for re-identification purposes, for example, brain fingerprinting35 and 

sophisticated algorithmic methods for re-identifying supposedly anonymous individuals. 

With these concerns in mind, the European Commission has worked on the General Data 

Protection Regulation (GDPR) which was unveiled in May 2018. GDPR’s main goal is to 

protect data subjects by ensuring that organizations respect and protect the personal data 

associated with an individual. While GDPR’s main goal is aligned with research ethics 

to enable full data protection of the data subject, its strict guidelines have however been 

perceived at times by the scientific community as an impediment to scientific progress.36,37 

The current conundrum of having FAIR data that should also adhere to GDPR is potentially 

solvable with improved techniques for de-identification as well as other approaches like 

differential privacy and federated analysis.38

Considerations for Anonymization, De-identification and Privacy-

Enhancement (e.g., “De-facing”) for Public Datasets

Chief among concerns for utilizing patient-derived medical data in public datasets is proper 

anonymization and de-identification of PHI. The terms de-identification and anonymization, 

when applied to medical data can encompass a wide array of definitions, and at times can 

be vague, inconsistent, or even contradictory.39 Often, data are said to be anonymized when 

PHI has been completely removed such that the data can no longer be associated with an 

individual in any manner, while de-identification refers to the general removal of PHI.40 

More technical definitions include de-identification referring to rule-based techniques to 

remove PHI, with anonymization referring to statistical/probabilistic techniques to remove 

PHI.39 For the purposes of this review, we will refer to the terms de-identification and 

anonymization interchangeably.

For obvious pieces of medical information, such as patient name, medical record number, 

date of birth, and other demographics, the anonymization process is often straightforward 

in removing this data or meta-data from associated files. DICOM formatted files typically 

contain metadata that links images to information regarding patient demographics and image 

acquisition parameters, among other information.41 In cases where meta-data is available in 

DICOM or similar files, these data can be stripped using commonly available tools, such as 

the Radiological Society of North America Clinical Trial Processor,42 though care should 

still be taken to ensure all data has been properly modified. Moreover, PHI may be “burned” 

into existing images, such as when considering radiographs directly scanned into electronic 

medical records. These embedded pieces of information can often be removed using optical 

character recognition techniques or similar methods; however, they can provide additional 

challenges in ensuring the full removal of text-based PHI.43

Perhaps the subject of most controversy within the domain of publicly releasing patient 

medical image data concerns imaging data that contains readily identifiable facial features. 

HIPAA references “full-face photographs and any comparable images” as a part of PHI. 
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This raises specific concerns for high-resolution images where the intricacies of facial 

features can be reconstructed (i.e., CT scans, MRI, etc.) to generate similar “comparable” 

visualizations of a patient’s face with relative ease. Several studies have shown the potential 

danger in releasing unaltered medical images containing facial features as they can often 

be easily recognized by humans or machines.44–46 For example, using facial recognition 

software paired to MRI-derived facial reconstructions, 83% of research participants were 

able to be identified from their MRI scan.46 Within the realm of radiation oncology, perhaps 

the avenue where the greatest amount of concern for facial identification is in the generation 

of public medical imaging datasets of head and neck cancer. While brain images are often 

processed such that obvious facial features are removed (i.e., skull stripping), these crude 

pre-processing techniques will likely remove important information for building predictive 

models with head and neck cancer imaging data, prohibiting their use in data resharing 

strategies. “De-facing” tools, where voxels that correspond to the areas of the patient’s 

facial features are either removed or altered are one solution. However, they encounter the 

problem of information loss in important areas needed for predictive modeling or treatment 

planning. While several studies have investigated the effects of de-facing for applications 

in neuroimaging,47–50 to our knowledge only one study has investigated the effects of de-

facing tools for radiation oncology applications in head and neck cancer.51 As an example 

use case, we demonstrate organs at risk are obscured with 4 state-of-the-art de-facing 

tools49,52–54 (Fig. 3), which would have obvious downstream consequences for analysis. 

Importantly, Sahlsten et al. highlight that the specific selection of de-facing methods has 

a significant impact on the radiotherapy organs at risk for AI algorithmic development, in 

some cases rendering structures completely unusable.51 While existing tools are seemingly 

unsatisfactory, future de-facing approaches based on deep learning may be a promising 

solution.55

NCI Policy, Vision, and Supported Repositories

Broadly, the sharing of biomedical data generated through research studies allows the 

scientific community to expedite the translation of findings into knowledge, products, and 

procedures to improve health.56 As of 2003, the NIH has implemented a Data Sharing 

Policy which encourages data to “be made as widely and freely available as possible while 

safeguarding the privacy of participants, and protecting con-fidential and proprietary data.” 

Specifically, investigators were required to specify data sharing protocols within NIH grant 

applications. These protocols for data sharing could be accomplished through the use of 

data archives, data enclaves, or under the auspices of the principal investigator. Congruent 

with the increasing ability to generate, store, share, and combine data, in 2015 the NIH 

initiated a more comprehensive data sharing policy in tandem with efforts to modernize data 

sharing infrastructure in its Plan for Increasing Access to Scientific Publications and Digital 

Scientific Data from NIH Funded Scientific Research.57 Effective in 2023, the NIH has 

issued a new Final NIH Policy for Data Management and Sharing which will require NIH 

funded researchers to prospectively submit a plan detailing how scientific data and metadata 

will be managed and shared taking into account potential restrictions or limitations58; 

this plan will replace the 2003 NIH Data Sharing Policy. These policies underscore the 

importance of data stewardship and management for nationally-funded research, and have 
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influenced data sharing practices to funders of radiation oncology research, particularly the 

National Cancer Institute (NCI).

Within the Final NIH Policy for Data Management and Sharing, detailed documentation 

has been provided to help researchers select specific repositories for data deposition 

(“Selecting a Repository for Data Resulting from NIH-Supported Research”). Ideally, where 

applicable, data should be deposited in discipline or data-type specific repositories. The NIH 

has provided a list of approved specific repositories at https://www.nlm.nih.gov/NIHbmic/

domain_specific_repositories.html; a subset of radiation oncology related repositories is 

shown in Table 3. For an in-depth discussion on one specific NIH-approved data repository 

particularly salient for radiation oncology applications, we refer the reader to the section 

of our review titled “TCIA as a Model for Effective FAIR Data in Oncology”. When 

no appropriate disciplinary or data-type specific repositories are available, the NIH 

recommends the use of generalist or institutional repositories. For example, Figshare is 

an appropriate and well-established generalist repository that can permanently store datasets 

and assigns DOIs to all published research items.59

Driven by improvements and innovations in cloud-computing paradigms for use in big data 

research, the NCI has created the Cancer Research Data Commons (CRDC) as a component 

of a national cancer data ecosystem.60 The NCI CRDC includes cloud-based domain-

specific data repositories and analysis-focused cloud resources to facilitate collaborative 

and standardized research practices using diverse data types. Within the CRDC, several data 

repositories have been established, such as the Genomic Data Commons61 and the Imaging 

Data Commons.62 As opposed to previously described data repositories, the cloud-based 

infrastructure of the CRDC allows researchers to utilize data in real-time without the need 

for local downloading of data files. Moreover, through these data repositories, disparate data 

sources (imaging, genomic, proteomic, clinical trial, etc.) can be combined and investigated 

with compute resources provided by cloud environments, thereby providing researchers 

with the ability to perform robust harmonized analysis. An example of the IDC user portal 

interface is shown in Figure 4. The integrated analysis capabilities provided by infrastructure 

such as CRDC will likely have a significant impact on radiation oncology research in 

coming years.

TCIA as a Model for Effective FAIR Data in Oncology

TCIA is a recently developed service that de-identifies and hosts various medical imaging 

datasets and supporting data for public distribution. Launched in 2011 with funding from 

the NCI,6 this integrated database has offered the imaging community large volumes of 

curated data for exploratory image analysis, computational model development, and model 

validation.63 Provided human data originates from various sources, ranging from small-scale 

calibration studies to large-scale clinical trials. These imaging data have been crucial to 

developing contemporary medical AI models and catapulted TCIA as a de-facto leader of 

medical image data dissemination (Fig. 5). It stands to reason that TCIA will continue to 

provide much-needed high-quality datasets for clinical decision support tool development in 

the coming years, particularly for radiation oncology.
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The overarching structure of the TCIA is stratified into individual collections defined by a 

common disease (e.g., brain cancer, head-neck cancer, lung cancer), imaging modality (e.g., 

MRI, CT, PET, histopathology), and/or research focus. Collections are assigned persistent 

digital object identifiers (DOIs), thereby allowing researchers to reference and acquire 

datasets.64 DOIs contain “Primary Data”, that is, radiological or pathological images, 

which can be coupled to supporting data (demographics, clinical outcomes, annotations, 

genomic information, etc.). Before publication, datasets are rigorously curated to ensure 

acceptable image quality and data integrity. Currently, TCIA utilizes the Posda open-source 

framework65 to aid in the curation process and remove any identifying information in 

metadata. Collection contents are described through “wiki pages”, which also list relevant 

publications and instructions for data use. Increasingly, focused “data descriptors,” in-depth 

manuscripts detailing individual datasets, such as those published through Nature Scientific 

Data,22 are also generated for TCIA collections to engender greater transparency in data 

generation, collection protocols, and intended use-cases. For end-users, TCIA provides web 

interfaces and software (National Biomedical Imaging Archive Data Retriever) to easily 

retrieve and catalog collections on local computing infrastructure.

TCIA data is most often available through standardized imaging formats such as DICOM.24 

Importantly, TCIA has formed a corpus for not only raw imaging data, but also 

corresponding supporting data, such as region of interest segmentations through DICOM 

radiotherapy structure set (RTSTRUCT) files and clinical outcome data. Therefore, TCIA 

houses a rich stream of information for supervised machine learning segmentation and 

classification models. For radiation oncology applications, DICOM radiotherapy plan 

(RTPLAN) and DICOM radiotherapy dose (RTDOSE) are often also included in collections 

which can be used for model development germane to radiation therapy planning. A list 

of currently available TCIA collections that include RTPLAN and/or RTDOSE data is 

shown in Table 4. Currently, most collections with corresponding radiotherapy planning 

data correspond to head and neck cancer. Importantly, this subset of data comes with 

additional important considerations for re-use (discussed more in the “Considerations 

for Anonymization, De-identification and Privacy-Enhancement (e.g., “De-facing”) for 

Public Datasets” section). As TCIA continues to engender straightforward integration of 

community contributions, the number of collections that include radiotherapy-related data is 

expected to continue to rapidly increase over time.

Examples of Published “Challenges” Using Public Datasets

Data “challenges,” that is, competitions where datasets are publicly provided to interested 

participants to solve a specific problem, have been a staple in developing modern-day 

cutting-edge AI algorithms. For example, the ImageNet Large Scale Visual Recognition 

Challenge, a competition where participants are tasked with classifying photographic images 

of common objects, was the impetus for the rise of deep learning approaches for computer 

vision applications.66 A similar trend has emerged in the medical domain, particularly 

for medical imaging, where anonymized data is provided to challenge participants to 

solve important healthcare problems.67,68 The field of radiation oncology, which is heavily 

centered on image-based workflows, is no exception to this increasing trend, with several 

radiotherapy-related data challenges emerging in recent years. Here, we summarize a 
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few key data challenges that have been particularly impactful for radiation oncology 

applications.

In 2016, inspired by the up-and-coming trend of radiomics, i.e., the use of quantitative 

features derived from medical imaging,69 the University of Texas MD Anderson Cancer 

Center and the Medical Image Computing and Computer Assisted Intervention Society 

organized two public radiomics challenges in the head and neck radiation oncology 

domain.70 Through the Kaggle InClass commercial educationally-oriented platform,71 the 

organizers tasked participants to develop predictive models to: (1) classify patients based 

on human papillomavirus (HPV) status, and (2) predict local tumor recurrence status. 

A large number of contrast-enhanced CT images of oropharyngeal cancer patients and 

corresponding clinical data72 were provided to participants to build models to solve the 2 

tasks through evaluation of independent test data (Fig. 6). The majority of participants used 

pre-defined radiomic features extracted from images in combination with machine learning 

models to solve the 2 challenges. Many participants also utilized the provided clinical data 

in constructing their models. Interestingly, the winner of the HPV classification challenge 

only utilized radiomic features, while the winner of the recurrence prediction challenge only 

utilized clinical features. While the challenge has not been renewed for additional iterations, 

these important results highlighted the difficulty of integrating imaging and clinical data not 

only for designing data challenges in radiation oncology but also for eventual downstream 

model implementation.

In 2019, the AAPM hosted a 2-part competition, titled the “RT-MAC” challenge, for auto-

segmentation of radiotherapy-related structures using MRI scans.73 Participants were tasked 

with developing algorithms to segment parotid glands, submandibular glands, and various 

lymph node levels (Fig. 7). The challenge used a relatively limited number of training cases 

(n = 35), but participants were still able to generate segmentation results of reasonable 

quality on the independent pre-AAPM challenge test set (n = 10) and online challenge test 

set (n = 10). These datasets have become publicly available in their entirety through TCIA,73 

allowing for the community to continue improving upon methods for radiotherapy planning 

segmentation. Moreover, given the rapidly increasing interest in MRI-guided radiotherapy,74 

it is foreseeable that analogous datasets could be released in the near future to aid in adaptive 

radiotherapy auto-segmentation applications.

More recently, the HEad and neCK TumOR (HECKTOR) challenge was established to 

benchmark the utility of computational methods using PET/CT imaging for head and 

neck cancer radiotherapy-related applications. Initiated in 2020 through the Medical Image 

Computing and Computer Assisted Intervention Society, the first edition of the challenge 

sought to develop automatic methods to segment primary gross tumor volumes in patients 

with oropharyngeal cancer (Fig. 8).75 The challenge utilized data from multiple Canadian 

and European medical institutions to provide participants with highly curated imaging and 

segmentation data. Participants were able to develop AI models, predominantly based on 

deep learning, to generate high-quality primary tumor segmentations on unseen test data. 

In the 2021 edition of the challenge, additional imaging data from a greater number of 

institutions were added to the training and testing datasets. Moreover, new tasks based on the 

prediction of progression-free survival were integrated into the challenge. While the official 

Wahid et al. Page 9

Semin Radiat Oncol. Author manuscript; available in PMC 2022 October 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



post-challenge analysis for the 2021 edition has not been made public yet, participants 

were shown to improve upon segmentation from the previous year’s challenge76 and 

demonstrate encouraging results to predict prognosis.77,78 A new edition of the challenge 

has been planned for 2022, which will include incorporating metastatic cervical lymph node 

segmentations and additional datasets from more institutions. The HECKTOR challenge is 

increasingly seen as a leader in current day radiation oncology related data challenges; we 

anticipate it will lead to important clinical innovations for translational AI approaches in 

coming years as its corresponding datasets continue to mature.

Health Equity Considerations related to Public Datasets

While AI holds immense promise in improving the radiation oncology workflow through 

public medical imaging datasets, a thorough understanding of the current limitations 

of existing AI approaches is crucial before their widespread implementation. One such 

limitation is algorithmic bias/fairness, which if severe enough could further inequity and 

disparities in patient care. Algorithmic bias is not unique to advanced machine learning 

approaches. For example, a landmark paper by Obermeyer et al. demonstrated a widely 

used commercial algorithmic risk score based on simple demographic factors severely 

underestimated the health needs of the sickest marginalized groups (black patients) by 

focusing on financial costs.79 Subsequently, it is crucial to capture the biases in AI systems 

before they can be deployed in large-scale clinical settings. Unfortunately, most guiding 

principles for machine learning in healthcare applications do not directly address model 

fairness in detail.80 However, there is growing widespread interest in racial, gender, and 

socioeconomic disparities of AI-based healthcare algorithms.

Radiation oncology is not immune to biases in patient care, both at the level of the 

individuals,81 and systemically.82 It is well documented that marginalized racial groups 

often receive inferior care compared to wealthy or white patients,83 so the potential 

amplification of inequality caused by AI software in radiation oncology is a significant 

concern. While racial disparities have been modestly investigated for healthcare in AI 

generally, specific mechanisms for the existence of these disparities in imaging data/models 

remains relatively unexplored. However, a recent study by Banerjee et al.84 demonstrated 

that standard deep learning models could predict self-identified race from medical images 

with high performance. Importantly, they showed that this ability was not due to imaging-

related surrogate covariates for race. Moreover, the performance of models persisted over 

a wide spectrum of clinical applications and image modalities, suggesting a significant and 

prevalent problem that warrants further investigation. These results are important since they 

suggest AI can trivially predict race where clinical experts cannot, thereby limiting human 

oversight and leading to potential downstream disparities, particularly for minorities.

In an ideal setting, machine learning models should be trained and evaluated on data that 

accurately represent real-world data. In designing public data challenges, these concepts 

should be considered in the curation of training and test sets. Since data-driven methods 

inherently recognize patterns in training data, any bias already present in the data will 

be propagated to downstream models. Naturally, all datasets at some level will contain 

biases inherently tied to the sampling procedures. Importantly, biased sampling may lead 
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to inaccurate predictions in unseen evaluation data, as illustrated in Figure 9. For example, 

data from public access clinical repositories are often disproportionately represented by 

Caucasian males. Ensuring representative sampling across time and data sources is an 

important method to reduce bias inherent to training data.85

Recommendations for operationalizing fairness for AI in medical data have been previously 

suggested,80 and these approaches should be subsequently implemented in imaging data 

for radiation oncology applications/data challenges. When curating datasets for data 

challenges or public dissemination, regardless of the target application, data on race, 

ethnicity, and socioeconomic status should also be collected and made available in order 

to assess their relationship to the underlying models where appropriate. Methods to 

circumvent algorithmic bias would include increases in model interpretability/explainability, 

either through inherently interpretable models or post-hoc techniques.86 Moreover, when 

developing and conceptualizing new AI models, it stands to reason that individuals with 

a vested interest in combating inequalities should be included in discussions to address 

potential sources and consequences of bias.87

Conclusion

In summary, we describe how radiation oncology has benefited from FAIR scientific data 

distribution principles and will continue to benefit in the coming years. Given increasing 

attention by governing institutions and collaborative efforts, dissemination of radiation 

oncology data through structured repositories and public data challenges have led to 

algorithmic development and advancement, particularly with respect to AI-driven clinical 

decision support tools. A variety of concerns still plague the public dissemination of 

radiation oncology data, namely proper protection of patient PHI, ensuring standardized data 

objects and nomenclature, addressing health equity concerns, and consolidation of individual 

components of scientific dissemination. However, the future of public data distribution 

remains bright, and is certain to lead to continued innovation and clinical impact within the 

radiation oncology community.
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Figure 1. 
Graphical representation of current independent steps in scientific dissemination process. 

Reprinted from Fuller et al.9
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Figure 2. 
Proposed transparent modular scientific dissemination process, using metadata or digital 

object identifier (DOI) to link individual processes. Reprinted from Fuller et al.9
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Figure 3. 
Comparison of MRI de-facing tools. We tested the performance of 4 state-of-the-art tools for 

face de-identification. On the top row, the original T2-weighted MRI with tissue annotations 

(lymph node levels, glands) are shown in blue. Masks that each tool automatically creates to 

remove facial structures from the image volume are shown in green. These tools are popular 

within the neuroimaging community and were designed for defacing MRIs while preserving 

brain structures. In many cases, tissues of interest for radiation oncology applications are 

obscured or removed through the use of these tools.
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Figure 4. 
Example of imaging data commons (IDC) portal user interface. Reprinted from Fedorov et 

al.62
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Figure 5. 
Publications over time related to the cancer imaging archive (TCIA) databases. Graph 

generated from TCIA website (https://www.cancerimagingarchive.net/publications/) on 

February 18, 2022.
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Figure 6. 
Overview of 2016 oropharynx cancer (OPC) radiomics challenge. Reprinted from 

Elhalawani et al.70
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Figure 7. 
Contoured structure [left submandibular gland (red), right submandibular gland (green), left 

parotid gland (yellow), right parotid gland (brown), left lymph node level II (blue), right 

lymph node level II (pink), left lymph node level III (orange), right lymph node level III 

(light-blue)] for 2019 “RT-MAC” challenge. Reprinted from Cardenas et al.73
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Figure 8. 
Overview of 2020 HEad and neCK TumOR (HECKTOR) challenge. Reprinted from 

Oreiller et al.75
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Figure 9. 
Statistical biases associated with AI predictions. Adapted from Chua et al.85
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