1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Semin Radiat Oncol. Author manuscript; available in PMC 2022 October 22.

-, HHS Public Access
«

Published in final edited form as:
Semin Radiat Oncol. 2022 October ; 32(4): 400-414. doi:10.1016/j.semradonc.2022.06.009.

Artificial Intelligence for Radiation Oncology Applications Using
Public Datasets

Kareem A. Wahid®, Enrico Glerean™#, Jaakko Sahlsten*, Joel Jaskari*, Kimmo Kaski*,
Mohamed A. Naser”, Renjie He", Abdallah S.R. Mohamed®, Clifton D. Fuller”

*Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center,
Houston, Texas, USA

TDepartment of Neuroscience and Biomedical Engineering, Aalto University School of Science,
Espoo, Finland

*Department of Computer Science, Aalto University School of Science, Espoo, Finland

Abstract

Artificial intelligence (Al) has exceptional potential to positively impact the field of radiation
oncology. However, large curated datasets - often involving imaging data and corresponding
annotations - are required to develop radiation oncology Al models. Importantly, the recent
establishment of Findable, Accessible, Interoperable, Reusable (FAIR) principles for scientific
data management have enabled an increasing number of radiation oncology related datasets

to be disseminated through data repositories, thereby acting as a rich source of data for Al

model building. This manuscript reviews the current and future state of radiation oncology data
dissemination, with a particular emphasis on published imaging datasets, Al data challenges, and
associated infrastructure. Moreover, we provide historical context of FAIR data dissemination
protocols, difficulties in the current distribution of radiation oncology data, and recommendations
regarding data dissemination for eventual utilization in Al models. Through FAIR principles and
standardized approaches to data dissemination, radiation oncology Al research has nothing to lose
and everything to gain.

Introduction

The rise of artificial intelligence (Al) and machine learning in recent years has seen an
explosion in technical approaches to statistical modeling, driven mostly by innovation on
large datasets in the computational science community. These groundbreaking efforts have
benefitted immensely from the availability of large-scale highly annotated datasets, such

as the ImageNet visual recognition task dataset,! or the Modified National Institute of
Standards and Technology (MNIST) handwriting dataset.2 These datasets have allowed
researchers to train and benchmark Al algorithms using transparent and comparable
methods through a known corpus with defined properties at large-scale, thereby substantially
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accelerating Al growth. In fact, some have purported that the modern Al age can be traced
to the convolutional neural network AlexNet winning the ImageNet challenge in 2012;3
clearly, this task could not have been accomplished without the careful construction and
curation of the ImageNet platform several years earlier.* During the same interval, the “Big
Cancer Data” era was arguably initiated by the availability of large-scale public cancer
databases. Specifically, The Cancer Genome Atlas (TCGA) has had a transformative effect
on oncologic research.® Crucial for the oncologic imaging community, and consequently the
radiation oncology community, a subsidiary effort, The Cancer Imaging Archive (TCIA),6
was originally developed as a repository for matched image data from TCGA cases;
however, TCIA has become a leader in its own right for distributing reliable and high-quality
datasets independent of TCGA. Subsequently, radiation oncology has now entered a new era
for Al applications due to an increasing deluge of data afforded by resources such as TCIA.
In the following sections, we review and discuss the role of data sharing in the radiation
oncology ecosystem, important regulatory and ethical considerations, and contemporary
databases available for public investigation.

FAIR Data Publication as a Normative Component of Modern Scientific
Dissemination and Knowledge Generation as a Coherent Process

Importantly, the availability of big data on its own does not ensure the development of
robust, reproducible, and clinically impactful datasets. This is particularly true in medical
domains such as radiation oncology, where data can be scarce, heterogeneous, and often
non-standardized.’ To ensure the usefulness of large datasets and foster data re-usability, it
is fundamental to follow the Findable, Accessible, Interoperable, Reusable (FAIR) principles
for scientific data management.8 These principles emphasize machine-actionability, that is,
the capacity of computational systems to find, access, interoperate, and reuse data with
minimal human intervention. To foster the widespread implementation of FAIR scientific
principles in day-to-day scientific workflows, several steps can and should be taken by
practitioners of open-science practices in the radiation oncology community. These practices
should include the utilization of study preregistration, manuscript preregistration, open-
access journals, and code/data sharing (Fig. 1). We briefly review these components here; an
in-depth discussion on these concepts can be found in greater detail in Fuller et al.?

Scientific research is often plagued by widespread biases, for example, “p-hacking” (repeat
measurements leading to significant findings),10 among others.1! Study preregistration
serves as a tool to potentially reduce these pitfalls.12 The concept of preregistration involves
specifying details of a research plan on a registry, such as through the Open Science
Framework,3 before performing the research study. Notably, the practice of preregistration
has been shown to increase analytical rigor and increase the publication of null findings.14

After study completion, the utilization of preprints, a manuscript that precedes formal peer
review, allows for rapid dissemination of study findings to the general public.1® Drawing
inspiration from the well-known physics preprint server arXiv, in 2019 a clinical medicine
preprint repository, medRxiv, was established.1 Since its inception, medRxiv has quickly
become a leading figure in medically related preprint dissemination.1’” The benefits of
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publishing preprints for radiation oncology are numerous, chief among which include
near-immediate distribution of scientific findings, ease of use, circumvention of journal
politics and dominant narratives, and complete access by the general public. Naturally,

the use of preprints raises the potential for faulty analysis. However, these concerns seem
minor compared to the relative benefit of rapid dissemination of information which could
then be verified through indicators of internal validity and wider scientific community
evaluation. Closely related to concepts regarding preprints is the use of open-access options
for scientific manuscripts. By allowing wider distribution of scientific findings, open-access
options may lead to a greater return on investment for scientific innovation.18 As of 2008,
the National Institutes of Health (NIH) has mandated publicly funded research be made
available through PubMed Central.1® Moreover, as of 2021, the Plan S initiative will
require that all EU-funded efforts be published through open access journals or platforms.20
These geopolitical pushes highlight the importance of open access models for manuscript
dissemination and will likely be a core staple of future radiation oncology research.

Finally, data and code accessibility, which are particularly germane to Al-driven analyses
in radiation oncology, form a more recently established central tenant for disseminating
scientific information. An in-depth discussion of data repositories is described in other
sections of this review (see “NCI Policy, Vision, and Supported Repositories” and “TCIA
as a Model for Effective FAIR Data in Oncology”). Moreover, the need for structured data
and corresponding annotations has prompted the rise of journals dedicated to publishing
data and/or corresponding records explaining dataset contents, termed “data descriptors”.2!
Examples of journals publishing data descriptors include Medical Physics and Nature
Scientific Data.22 Finally, code repositories, such as GitHub, have allowed for the rapid
and dynamic development of code related to scientific studies in the medical domain, and
fostered community engagement for future developments.23

While the current components of scientific dissemination remain relatively independent, in
the future, one could envision a modular framework where automated processes link these
components in an integrated fashion (Fig. 2). Corresponding checklists ensuring proper
completion of steps could allow for the routine integration of these components in scientific
workflows. Through these processes, the quality of scientific dissemination would increase,
which could have great potential for advances in radiation oncology research.

Annotation/Ontology Considerations for Public Datasets

Broadly, there are two main types of data relevant to Al model development using public
datasets in radiation oncology - image data formats and image annotation formats. The
majority of hospital picture archiving and communication system infrastructure stores
medical images in Digital Imaging and Communications in Medicine (DICOM) format,
which is the recognized international standard for image data storage.?* For ease of
distribution, DICOM data is often transformed into Neuroimaging Informatics Technology
Initiative format, which is increasingly seen as a standard for reproducible imaging
research.2> While image data is often standardized and distributed relatively easily due

to established nomenclature and customs, unfortunately, image annotations are not often
stored in a single common format.2% For example, image annotations can be stored in
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picture archiving and communication system and other systems as DICOM presentation
state objects which may vary from vendor to vendor. The recently developed DICOM
structured reporting (DICOM-SR) standard has allowed to somewhat combat this lack of
standardization in annotation but there still remains problems with intersite variability of
annotation templates.2” For non-graphic annotations, the annotation and image markup
format was recently developed and incorporated into DICOM-SR.28 Within radiation
oncology, the DICOM radiotherapy (DICOM-RT) standard has allowed for a systematic
characterization of radiotherapy-related data.29 However, DICOM-RT was not developed
with Al/machine-learning applications in mind, thus annotations derived from these files can
at times be challenging to incorporate directly into models; community-driven undertakings
have developed some solutions to these problems.39:31 Thus, ongoing efforts will be needed
to reach a consensus on the best practices to standardize image annotation data for radiation
oncology applications.

Outside of file objects and corresponding metadata standardization, there are additional
considerations for radiation oncology annotation data that are crucial for public

distribution. Specifically, nomenclature conventions can often vary across institutions. For
example, nomenclature for target/non-target structures is often highly variable (Table 1).
Subsequently, standardized nomenclatures applied to targets, normal tissue structures, and
treatment planning concepts and metrics would allow for the more facile integration of
radiation oncology data for standardized distribution and use in Al models. Therefore,

from 2015-2018, the American Association of Physicists in Medicine (AAPM) collated

a group of experts in imaging, radiation oncology, and machine learning (Task Group

263), to provide radiation oncology nomenclature guidelines for use in clinical trials,
data-pooling initiatives, population-based studies, and routine clinical care.32:33 Among the
many accomplishments of AAPM Task Group 263, the group was able to standardize:

(1) structure names across image processing and treatment planning system platforms, (2)
nomenclature for dosimetric data, (3) templates for clinical trial groups, and (4) formalisms
for nomenclature schema which could accommodate the addition of other structures defined
in the future. Through these guidelines, annotation processes for radiation oncology datasets
and corresponding public data deposition should be more easily standardized for use in
reproducible and robust research applications.

International Differences in Privacy Guidelines

In research integrity and ethics, it is accepted across public, health, and research institutions
around the world that the privacy of the study participants must always be respected and
never compromised to avoid concrete risks such as identity theft, blackmailing, or any other
possible adverse consequences that a subject might face if their identity is disclosed with
the data. Institutional review boards and ethical committees ensure that scientific research
follows the highest standards to protect the safety of human subjects. However, ethics is

not law, and while the ethical review process is comparable across countries, the legal
principles and interpretation of data protection vary considerably and even deter FAIR

data reuse. Currently in the USA, the Health Insurance Portability and Accountability Act
(HIPAA) advises the removal of 18 pieces of protected health information (PHI) when
sharing de-identified data3 (Table 2). By removing this PHI, human subject data in the
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USA can be considered “anonymous” or at least “anonymous enough” so that their data is
considered to not fall under HIPAA and can then be easily reused for scientific research.
However, concerns have been raised regarding the potential for intricate biomedical data
that could be used for re-identification purposes, for example, brain fingerprinting3® and
sophisticated algorithmic methods for re-identifying supposedly anonymous individuals.
With these concerns in mind, the European Commission has worked on the General Data
Protection Regulation (GDPR) which was unveiled in May 2018. GDPR’s main goal is to
protect data subjects by ensuring that organizations respect and protect the personal data
associated with an individual. While GDPR’s main goal is aligned with research ethics

to enable full data protection of the data subject, its strict guidelines have however been
perceived at times by the scientific community as an impediment to scientific progress.36:37
The current conundrum of having FAIR data that should also adhere to GDPR is potentially
solvable with improved techniques for de-identification as well as other approaches like
differential privacy and federated analysis.38

Considerations for Anonymization, De-identification and Privacy-

Enhancement (e.qg., “De-facing”) for Public Datasets

Chief among concerns for utilizing patient-derived medical data in public datasets is proper
anonymization and de-identification of PHI. The terms de-identification and anonymization,
when applied to medical data can encompass a wide array of definitions, and at times can
be vague, inconsistent, or even contradictory.3? Often, data are said to be anonymized when
PHI has been completely removed such that the data can no longer be associated with an
individual in any manner, while de-identification refers to the general removal of PHI.40
More technical definitions include de-identification referring to rule-based techniques to
remove PHI, with anonymization referring to statistical/probabilistic techniques to remove
PHI.39 For the purposes of this review, we will refer to the terms de-identification and
anonymization interchangeably.

For obvious pieces of medical information, such as patient name, medical record number,
date of birth, and other demographics, the anonymization process is often straightforward

in removing this data or meta-data from associated files. DICOM formatted files typically
contain metadata that links images to information regarding patient demographics and image
acquisition parameters, among other information.?! In cases where meta-data is available in
DICOM or similar files, these data can be stripped using commonly available tools, such as
the Radiological Society of North America Clinical Trial Processor,*2 though care should
still be taken to ensure all data has been properly modified. Moreover, PHI may be “burned”
into existing images, such as when considering radiographs directly scanned into electronic
medical records. These embedded pieces of information can often be removed using optical
character recognition techniques or similar methods; however, they can provide additional
challenges in ensuring the full removal of text-based PHI.43

Perhaps the subject of most controversy within the domain of publicly releasing patient
medical image data concerns imaging data that contains readily identifiable facial features.
HIPAA references “full-face photographs and any comparable images” as a part of PHI.
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This raises specific concerns for high-resolution images where the intricacies of facial
features can be reconstructed (i.e., CT scans, MR, etc.) to generate similar “comparable”
visualizations of a patient’s face with relative ease. Several studies have shown the potential
danger in releasing unaltered medical images containing facial features as they can often

be easily recognized by humans or machines.#4-46 For example, using facial recognition
software paired to MRI-derived facial reconstructions, 83% of research participants were
able to be identified from their MRI scan.6 Within the realm of radiation oncology, perhaps
the avenue where the greatest amount of concern for facial identification is in the generation
of public medical imaging datasets of head and neck cancer. While brain images are often
processed such that obvious facial features are removed (i.e., skull stripping), these crude
pre-processing techniques will likely remove important information for building predictive
models with head and neck cancer imaging data, prohibiting their use in data resharing
strategies. “De-facing” tools, where voxels that correspond to the areas of the patient’s
facial features are either removed or altered are one solution. However, they encounter the
problem of information loss in important areas needed for predictive modeling or treatment
planning. While several studies have investigated the effects of de-facing for applications

in neuroimaging,*’~>0 to our knowledge only one study has investigated the effects of de-
facing tools for radiation oncology applications in head and neck cancer.?1 As an example
use case, we demonstrate organs at risk are obscured with 4 state-of-the-art de-facing
tools#9:52-54 (Fig. 3), which would have obvious downstream consequences for analysis.
Importantly, Sahlsten et al. highlight that the specific selection of de-facing methods has

a significant impact on the radiotherapy organs at risk for Al algorithmic development, in
some cases rendering structures completely unusable.®! While existing tools are seemingly
unsatisfactory, future de-facing approaches based on deep learning may be a promising
solution.>®

NCI Policy, Vision, and Supported Repositories

Broadly, the sharing of biomedical data generated through research studies allows the
scientific community to expedite the translation of findings into knowledge, products, and
procedures to improve health.56 As of 2003, the NIH has implemented a Data Sharing
Policy which encourages data to “be made as widely and freely available as possible while
safeguarding the privacy of participants, and protecting con-fidential and proprietary data.”
Specifically, investigators were required to specify data sharing protocols within NIH grant
applications. These protocols for data sharing could be accomplished through the use of
data archives, data enclaves, or under the auspices of the principal investigator. Congruent
with the increasing ability to generate, store, share, and combine data, in 2015 the NIH
initiated a more comprehensive data sharing policy in tandem with efforts to modernize data
sharing infrastructure in its Plan for Increasing Access to Scientific Publications and Digital
Scientific Data from NIH Funded Scientific Research.>” Effective in 2023, the NIH has
issued a new Final NIH Policy for Data Management and Sharing which will require NIH
funded researchers to prospectively submit a plan detailing how scientific data and metadata
will be managed and shared taking into account potential restrictions or limitations®8;

this plan will replace the 2003 NIH Data Sharing Policy. These policies underscore the
importance of data stewardship and management for nationally-funded research, and have
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influenced data sharing practices to funders of radiation oncology research, particularly the
National Cancer Institute (NCI).

Within the Final NIH Policy for Data Management and Sharing, detailed documentation

has been provided to help researchers select specific repositories for data deposition
(“Selecting a Repository for Data Resulting from NIH-Supported Research”). Ideally, where
applicable, data should be deposited in discipline or data-type specific repositories. The NIH
has provided a list of approved specific repositories at https://www.nIm.nih.gov/NIHbmic/
domain_specific_repositories.html; a subset of radiation oncology related repositories is
shown in Table 3. For an in-depth discussion on one specific NIH-approved data repository
particularly salient for radiation oncology applications, we refer the reader to the section

of our review titled “TCIA as a Model for Effective FAIR Data in Oncology”. When

no appropriate disciplinary or data-type specific repositories are available, the NIH
recommends the use of generalist or institutional repositories. For example, Figshare is

an appropriate and well-established generalist repository that can permanently store datasets
and assigns DOIs to all published research items.5®

Driven by improvements and innovations in cloud-computing paradigms for use in big data
research, the NCI has created the Cancer Research Data Commons (CRDC) as a component
of a national cancer data ecosystem.®0 The NCI CRDC includes cloud-based domain-
specific data repositories and analysis-focused cloud resources to facilitate collaborative

and standardized research practices using diverse data types. Within the CRDC, several data
repositories have been established, such as the Genomic Data Commons®! and the Imaging
Data Commons.®2 As opposed to previously described data repositories, the cloud-based
infrastructure of the CRDC allows researchers to utilize data in real-time without the need
for local downloading of data files. Moreover, through these data repositories, disparate data
sources (imaging, genomic, proteomic, clinical trial, etc.) can be combined and investigated
with compute resources provided by cloud environments, thereby providing researchers
with the ability to perform robust harmonized analysis. An example of the IDC user portal
interface is shown in Figure 4. The integrated analysis capabilities provided by infrastructure
such as CRDC will likely have a significant impact on radiation oncology research in
coming years.

Model for Effective FAIR Data in Oncology

TCIA is a recently developed service that de-identifies and hosts various medical imaging
datasets and supporting data for public distribution. Launched in 2011 with funding from
the NC1,6 this integrated database has offered the imaging community large volumes of
curated data for exploratory image analysis, computational model development, and model
validation.83 Provided human data originates from various sources, ranging from small-scale
calibration studies to large-scale clinical trials. These imaging data have been crucial to
developing contemporary medical Al models and catapulted TCIA as a de-facto leader of
medical image data dissemination (Fig. 5). It stands to reason that TCIA will continue to
provide much-needed high-quality datasets for clinical decision support tool development in
the coming years, particularly for radiation oncology.
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The overarching structure of the TCIA is stratified into individual collections defined by a
common disease (e.g., brain cancer, head-neck cancer, lung cancer), imaging modality (e.g.,
MRI, CT, PET, histopathology), and/or research focus. Collections are assigned persistent
digital object identifiers (DOIs), thereby allowing researchers to reference and acquire
datasets.* DOIs contain “Primary Data”, that is, radiological or pathological images,
which can be coupled to supporting data (demographics, clinical outcomes, annotations,
genomic information, etc.). Before publication, datasets are rigorously curated to ensure
acceptable image quality and data integrity. Currently, TCIA utilizes the Posda open-source
framework®° to aid in the curation process and remove any identifying information in
metadata. Collection contents are described through “wiki pages”, which also list relevant
publications and instructions for data use. Increasingly, focused “data descriptors,” in-depth
manuscripts detailing individual datasets, such as those published through Nature Scientific
Data, are also generated for TCIA collections to engender greater transparency in data
generation, collection protocols, and intended use-cases. For end-users, TCIA provides web
interfaces and software (National Biomedical Imaging Archive Data Retriever) to easily
retrieve and catalog collections on local computing infrastructure.

TCIA data is most often available through standardized imaging formats such as DICOM.2
Importantly, TCIA has formed a corpus for not only raw imaging data, but also
corresponding supporting data, such as region of interest segmentations through DICOM
radiotherapy structure set (RTSTRUCT) files and clinical outcome data. Therefore, TCIA
houses a rich stream of information for supervised machine learning segmentation and
classification models. For radiation oncology applications, DICOM radiotherapy plan
(RTPLAN) and DICOM radiotherapy dose (RTDOSE) are often also included in collections
which can be used for model development germane to radiation therapy planning. A list

of currently available TCIA collections that include RTPLAN and/or RTDOSE data is
shown in Table 4. Currently, most collections with corresponding radiotherapy planning
data correspond to head and neck cancer. Importantly, this subset of data comes with
additional important considerations for re-use (discussed more in the “Considerations

for Anonymization, De-identification and Privacy-Enhancement (e.g., “De-facing”) for
Public Datasets” section). As TCIA continues to engender straightforward integration of
community contributions, the number of collections that include radiotherapy-related data is
expected to continue to rapidly increase over time.

of Published “Challenges” Using Public Datasets

Data “challenges,” that is, competitions where datasets are publicly provided to interested
participants to solve a specific problem, have been a staple in developing modern-day
cutting-edge Al algorithms. For example, the ImageNet Large Scale Visual Recognition
Challenge, a competition where participants are tasked with classifying photographic images
of common objects, was the impetus for the rise of deep learning approaches for computer
vision applications.56 A similar trend has emerged in the medical domain, particularly

for medical imaging, where anonymized data is provided to challenge participants to

solve important healthcare problems.67:68 The field of radiation oncology, which is heavily
centered on image-based workflows, is no exception to this increasing trend, with several
radiotherapy-related data challenges emerging in recent years. Here, we summarize a
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few key data challenges that have been particularly impactful for radiation oncology
applications.

In 2016, inspired by the up-and-coming trend of radiomics, i.e., the use of quantitative
features derived from medical imaging,5° the University of Texas MD Anderson Cancer
Center and the Medical Image Computing and Computer Assisted Intervention Society
organized two public radiomics challenges in the head and neck radiation oncology
domain.”® Through the Kaggle InClass commercial educationally-oriented platform,’! the
organizers tasked participants to develop predictive models to: (1) classify patients based

on human papillomavirus (HPV) status, and (2) predict local tumor recurrence status.

A large number of contrast-enhanced CT images of oropharyngeal cancer patients and
corresponding clinical data’? were provided to participants to build models to solve the 2
tasks through evaluation of independent test data (Fig. 6). The majority of participants used
pre-defined radiomic features extracted from images in combination with machine learning
models to solve the 2 challenges. Many participants also utilized the provided clinical data
in constructing their models. Interestingly, the winner of the HPV classification challenge
only utilized radiomic features, while the winner of the recurrence prediction challenge only
utilized clinical features. While the challenge has not been renewed for additional iterations,
these important results highlighted the difficulty of integrating imaging and clinical data not
only for designing data challenges in radiation oncology but also for eventual downstream
model implementation.

In 2019, the AAPM hosted a 2-part competition, titled the “RT-MAC” challenge, for auto-
segmentation of radiotherapy-related structures using MRI scans.”3 Participants were tasked
with developing algorithms to segment parotid glands, submandibular glands, and various
lymph node levels (Fig. 7). The challenge used a relatively limited number of training cases
(n = 35), but participants were still able to generate segmentation results of reasonable
quality on the independent pre-AAPM challenge test set (1= 10) and online challenge test
set (7= 10). These datasets have become publicly available in their entirety through TCIA,”3
allowing for the community to continue improving upon methods for radiotherapy planning
segmentation. Moreover, given the rapidly increasing interest in MRI-guided radiotherapy, "4
it is foreseeable that analogous datasets could be released in the near future to aid in adaptive
radiotherapy auto-segmentation applications.

More recently, the HEad and neCK TumOR (HECKTOR) challenge was established to
benchmark the utility of computational methods using PET/CT imaging for head and

neck cancer radiotherapy-related applications. Initiated in 2020 through the Medical Image
Computing and Computer Assisted Intervention Society, the first edition of the challenge
sought to develop automatic methods to segment primary gross tumor volumes in patients
with oropharyngeal cancer (Fig. 8).”® The challenge utilized data from multiple Canadian
and European medical institutions to provide participants with highly curated imaging and
segmentation data. Participants were able to develop Al models, predominantly based on
deep learning, to generate high-quality primary tumor segmentations on unseen test data.

In the 2021 edition of the challenge, additional imaging data from a greater number of
institutions were added to the training and testing datasets. Moreover, new tasks based on the
prediction of progression-free survival were integrated into the challenge. While the official
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post-challenge analysis for the 2021 edition has not been made public yet, participants

were shown to improve upon segmentation from the previous year’s challenge’® and
demonstrate encouraging results to predict prognosis.’’:’8 A new edition of the challenge
has been planned for 2022, which will include incorporating metastatic cervical lymph node
segmentations and additional datasets from more institutions. The HECKTOR challenge is
increasingly seen as a leader in current day radiation oncology related data challenges; we
anticipate it will lead to important clinical innovations for translational Al approaches in
coming years as its corresponding datasets continue to mature.

Health Equity Considerations related to Public Datasets

While Al holds immense promise in improving the radiation oncology workflow through
public medical imaging datasets, a thorough understanding of the current limitations

of existing Al approaches is crucial before their widespread implementation. One such
limitation is algorithmic bias/fairness, which if severe enough could further inequity and
disparities in patient care. Algorithmic bias is not unique to advanced machine learning
approaches. For example, a landmark paper by Obermeyer et al. demonstrated a widely
used commercial algorithmic risk score based on simple demographic factors severely
underestimated the health needs of the sickest marginalized groups (black patients) by
focusing on financial costs.”® Subsequently, it is crucial to capture the biases in Al systems
before they can be deployed in large-scale clinical settings. Unfortunately, most guiding
principles for machine learning in healthcare applications do not directly address model
fairness in detail.8% However, there is growing widespread interest in racial, gender, and
socioeconomic disparities of Al-based healthcare algorithms.

Radiation oncology is not immune to biases in patient care, both at the level of the
individuals,8! and systemically.82 It is well documented that marginalized racial groups
often receive inferior care compared to wealthy or white patients,83 so the potential
amplification of inequality caused by Al software in radiation oncology is a significant
concern. While racial disparities have been modestly investigated for healthcare in Al
generally, specific mechanisms for the existence of these disparities in imaging data/models
remains relatively unexplored. However, a recent study by Banerjee et al.?* demonstrated
that standard deep learning models could predict self-identified race from medical images
with high performance. Importantly, they showed that this ability was not due to imaging-
related surrogate covariates for race. Moreover, the performance of models persisted over

a wide spectrum of clinical applications and image modalities, suggesting a significant and
prevalent problem that warrants further investigation. These results are important since they
suggest Al can trivially predict race where clinical experts cannot, thereby limiting human
oversight and leading to potential downstream disparities, particularly for minorities.

In an ideal setting, machine learning models should be trained and evaluated on data that
accurately represent real-world data. In designing public data challenges, these concepts
should be considered in the curation of training and test sets. Since data-driven methods
inherently recognize patterns in training data, any bias already present in the data will

be propagated to downstream models. Naturally, all datasets at some level will contain
biases inherently tied to the sampling procedures. Importantly, biased sampling may lead
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to inaccurate predictions in unseen evaluation data, as illustrated in Figure 9. For example,
data from public access clinical repositories are often disproportionately represented by
Caucasian males. Ensuring representative sampling across time and data sources is an
important method to reduce bias inherent to training data.8®

Recommendations for operationalizing fairness for Al in medical data have been previously
suggested,8 and these approaches should be subsequently implemented in imaging data
for radiation oncology applications/data challenges. When curating datasets for data
challenges or public dissemination, regardless of the target application, data on race,
ethnicity, and socioeconomic status should also be collected and made available in order

to assess their relationship to the underlying models where appropriate. Methods to
circumvent algorithmic bias would include increases in model interpretability/explainability,
either through inherently interpretable models or post-hoc techniques.8® Moreover, when
developing and conceptualizing new Al models, it stands to reason that individuals with

a vested interest in combating inequalities should be included in discussions to address
potential sources and consequences of bias.87

Conclusion

In summary, we describe how radiation oncology has benefited from FAIR scientific data
distribution principles and will continue to benefit in the coming years. Given increasing
attention by governing institutions and collaborative efforts, dissemination of radiation
oncology data through structured repositories and public data challenges have led to
algorithmic development and advancement, particularly with respect to Al-driven clinical
decision support tools. A variety of concerns still plague the public dissemination of
radiation oncology data, namely proper protection of patient PHI, ensuring standardized data
objects and nomenclature, addressing health equity concerns, and consolidation of individual
components of scientific dissemination. However, the future of public data distribution
remains bright, and is certain to lead to continued innovation and clinical impact within the
radiation oncology community.
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Figure 3.
Comparison of MRI de-facing tools. We tested the performance of 4 state-of-the-art tools for

face de-identification. On the top row, the original T2-weighted MRI with tissue annotations
(lymph node levels, glands) are shown in blue. Masks that each tool automatically creates to
remove facial structures from the image volume are shown in green. These tools are popular
within the neuroimaging community and were designed for defacing MRIs while preserving
brain structures. In many cases, tissues of interest for radiation oncology applications are
obscured or removed through the use of these tools.
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Figure 7.
Contoured structure [left submandibular gland (red), right submandibular gland (green), left

parotid gland (yellow), right parotid gland (brown), left lymph node level 11 (blue), right
lymph node level 11 (pink), left lymph node level 111 (orange), right lymph node level 111
(light-blue)] for 2019 “RT-MAC” challenge. Reprinted from Cardenas et al.”3
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Training (n=201, 4 centers) « :anklng:D. . _ Highlights
Models Predictions iges e core (DSC) NS challenge on tumor

PET/CT  Ground Truth r » b W segmentation in PET/CT
= f ﬂ e Strong participation
——b‘ 4 Bl ® Best DSC of 0.759

(XL T0Liqi e Improvement over
el wreengg "‘\ baseline (DSC of 0.661)
Testing (n=53, 1 center) 93 unsSubmite ; = g R ﬂ © Human inter-observer
e 10 teams with a methodological — | agreement with DSC 0.61
paper - o Lk e Additional post-challenge
e Data available through Alcrowd e e analyses p -

V. Oreiller et al. 2021, Head and Neck Tumor Segmentation in PET/CT. The HECKTOR Challenge

Figure 8.
Overview of 2020 HEad and neCK TumOR (HECKTOR) challenge. Reprinted from

Oreiller et al.”™
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Al algorithm

Al development:

software ‘looks’
for patterns in
data

Figure.
Statistical biases associated with Al predictions. Adapted from Chua et al.8>

Page 24
All previous patients with cancer...
Treated with radiotherapy... All future
atients with
In a specific health system.. & cancer...
Data sample
used to Sample may not |
develop Al represent data from |
algorithm other patientsin |
other health |
i gystTns over time_

Predictions based on Al algorithm (for patients with available data)

Semin Radliat Oncol. Author manuscript; available in PMC 2022 October 22.




Page 25

Wahid et al.

mm.to%m €9z dnoJ9 ysel aUIdIPSIA Ul SISIDISAYd O UOIRIDOSSY URdLIBWY Woiy paidepe ereq

Teoeey I ovINTY

8 NO '8ND ‘A" U3 ‘IIIA ND

yrogBun7 ‘BunTrelig bunT 'SONNT 'ONNT ‘Bun|paulqwiod ‘fejoy Bunp “TvLOL ONNT 'SONNT ‘sbunT
BunT 7 ‘ONNTT Bun T T Bun] 7TONNT T Bun ‘BunT i

7 NO ‘anIeN
ondo 497 717 8AIBNONAO ‘D11dOT T 9MBNIRAO 1 AYN D1LdO ‘dAI8u o1do 1 ‘[ AU™2131do 1" AYNLdO T NOILDO ‘@AeN 21do 1]

4
L
[4)
43

1

AJaure dell [eusaixa by
aAlau [elueD Yig

sbun| ylog

Bun) ya

anJau ondo Yo

so|dwex3

SUOHNIISU| JO BOWINN

ainnis

suonmnsuj 97 Aq seimonung 186e] -UoN o) palioday S8INJejoUSWON PazIpJepurls ul suoleLeA Jo ajduwex3

T alqeL

Author Manuscript Author Manuscript Author Manuscript

Author Manuscript

Semin Radiat Oncol. Author manuscript; available in PMC 2022 October 22.



Page 26

Wahid et al.

lenpiAIpul 8y A1nuapi Ajanbiun pinoo eyl onsiIgIoeIRYD J8Y10 Auy
sabew ajqesedwos Aue pue sydeibojoyd aoey-|jn4
sjuLd -a210A pue -1abuly Buipnjou|

STdN gam ‘st jeyL

sJaquinu aye|d 8suaol| ‘st 1eyL

13p|0 10 0p abe Jo Alobared a)buls e ojul parebaibbe aq Aew siuawsala pue
sabe yons Jeys 1daoxe ‘abe yons Jo aAleaIpul (Jeak Buipnjoul) selep JO SJUBLWB|S |8 pue 68 190 Sabe |[e pue ‘a1ep yieap ‘alep abieydsip ‘arep UoISSIWPe ‘a1ep yuiq

OSIN

abew olydesboloyd

slaynuapl duBWolg

SSalppe [090104d 1aulau|
$10J220] 924N0SAI [BSIBAIUN
slaquinu [elias/sialynuapl 8d1neQ
Jaguinu [eLIas ad1Aap JaY10/3191YaA
Jaguwinu asuadl| 1o a1edlyIle)
Jaquinu JUno2dy

Jagquinu Arelolyauaq ueld yjeaH
Jaquinu pJodai [ealpain

Jaquinu A314n2as [e1o0s

ssalppe |rew-3

slaquinu xeo

s1aquinu auoydaaL

[enpiAlpul 0] parejal sareq

‘000 01 pabueyd si ajdoad Jamay 1o 000‘0z Bulureluod syun a1ydelboah yans |e 10y apod diZ © Jo subip € jeniul ay 4
pue ‘ajdoad 0000z Ueyl 210w surejuod sybBIp [erlul € awes ay) YIMm sapod d|Z |1e Buiuiquiod Aq pawioy un o1ydelBoab ay T
:SNSUaD 8y} JO Neaing 8y wody elep ajgejrene Aja1gnd jualind ayi o} Buipiodde ‘41 8pod diZ a8y Jo subip
€ [eniul ay} 1oy 1daoxa ‘sap020ab Juafeainba J1ayy pue ‘apod diz ‘1outdald ‘Alunod ‘Ao ‘ssauppe 19a.1s Bulpnjoul ‘alels e eyl Jajews suoisiaipgns olydelboab |1y ssalppy
- awreN
uondiiosaqg Juswe |3 ered

POUISIAl ,.0GBH 8JeS,, a4} ssedwiodud Jey L suswal3 eleqd VVdIH

¢ dlqeL

Author Manuscript Author Manuscript Author Manuscript

Author Manuscript

PMC 2022 October 22.

in

available

1

Semin Radiat Oncol. Author manuscript



Page 27

Wahid et al.

'220Z ‘0z Areniga4 uo (juiysa1io11sodai 214198ds ™ UreLop/a1WgH | N/ACB YU wjummm//:sdny) sbed surjuo sauionsodsy Bulieys ereq HIN Wo.j paaLIsp aiem suondiiosap pue satiolsoday

‘pldom 3y} punose paonpuod siuedionued uewny Jo saipnis [ealuljd payuoddns Ajareaud pue Ajo1ignd Jo aseqelep synsal pue Ansibal e si AoB s[el] [eaiul|d

'$90IN0Sal 1ay10 pue (]\YOH) adepalu] sisAjeuy awouas uewnH ‘(NQD0) uolrewloelN pue uawdojansq |eidejoluel) Jo ABojojuQ ay) pue
Sase|1e [eIuaWdojansp ‘SWION [eloe4 AE JO aseqelep ay se [|am se ‘sanbiuyda) jeuolreindwod pue Buibewn ‘feaiboloiqg ‘rejnasjow ‘anauab indybnoiyi-ybiy sybijpods Jayo
Blep 8y | ‘suewiny pue swsiuefio [apow Buisn yoreasas [e1oejoluRId pue ‘[eJo ‘[ewuap ybnoiy) paresauab exep Jo AlaLieA s1soy eyl gny eiep papuni-y4OdiN e SI asegade

*Aunwwod yateasal ayy Aq pansodsp

SI UoITewIo4ul Mau e payepdn Ajjenunuod aq |jim Boferes |a9d ay.L “uonearjdde-ioingliuod/ipbdpabieyswelfold/aobaoued foo//:sdny e uonedrddy Joingriuod 1a9d
ay1 ybnoay) JUNOIIE JSNIWCNS 3INIBS B 8)e3II 0} PadU SIBYIILasal ‘|dDd aY} 01 BJep aInNqLiu0d 0] "elepeiall sduaiaysl pue S|1elap d1seq awos yym Buofe ‘sariunod Jaylo
pue SaJelS PaiuN ay) Wolj SsLoyod Jaaued aLirelpad Jo syoaloid uoneziigoeseyd Jejnosjow paiajdwod pue Buiobuo Sisi] 821n0sal SIYL “UaJIP|IYd 4IIS 104 S|090304d JuaWIeal)
1818 dojansp pue s18aued pooyp|iyd Jo Buipuelsiapun ay} Jayung 0} pasn ag ued Jey) saserep dlwouah Buireso| pue BulAynuapl Joj 831N0sal ssaa3e-uado ue SI [d9d

'SUOWIWOY BIe( Y2seasay Jaoue) ay} 40 Sapou Jaylo Ul ajqe|rene
eyep Buibew Jo/pue o1wousb Bulpuodsallod aney syaserep Auely ‘sjuswiliadxa o1woa104d Jadurd Wody erep ssadold pue es1oads ssew SISOy SUOWWoD ereq 91Wo0810.d ayl

"swiesBoud (21easal Jaourd [2JaASS WO BIep JeINd3JoW pue ‘UsWIoadsolq ‘[eluld sureod Ddo ayL auloIpaw uoisioaid
Jo uoddns u1 sa1pnis 21Woual J8oued ssosoe Bulieys erep sajqeus Jey) A10)1sodas eIep PalyIuN B Y ANUNWWOD Yyo1easal Jadued ay) apiacid 01 s DA 8y} JO UOISSIW 8y |

‘uolysey 21ndas e ui sjooojold ABojouydsiouru pajeIdosse pue suoiieziialoereyd asayl 4o BuLieys ay) pue sAesse OAIA
U1 pue ‘0J}IA Ul ‘[ealwiayd-021sAyd wouy Bunjnsal suoleziIslorIeyd YiM S[elJayellouey O uoljelouue ay Joj Loddns sapinoid gqejoueNed “auldipaw-oiq ul ABojouydsioueu
10 SN 8y} a1epljeA pue a)ipadxa 01 Alunwwod Yyoseasal ABojouydsjoueu [edlpawolq ay} ul Buiteys uorrewlogul aye|ioe) o) paubisap [enod Bulieys exep e i gejoueNed

"alow pue ‘Buiurely ‘sferioiny ‘sjodoioid ‘splepuels aiijogelsl 0} SS8d0e pue S|oo} SisAjeue
apIA0Id ||IM pUe elepelsw pue ejep SOIWOojoge1sw J0) A1031S0dal [eUOIIBUISBIUL PUE [BUOITRU B SB 8AJSS ||IM GANIBIA "YIUSGMIOAA SI1W0]0geIsIA 8y padojanap sey ‘obaig
ues ‘eluiodifed Jo Alsianiun ‘(9sas) Jeua) Jamndwoasadng obaig ues ays Je pasnoy ‘(D2¥A) J8wa) Buneuiploo) pue Aloysoday ereq s, weibold So1WojogqeIsiN ayL

"3|qe|rene
uaym papinoid osje ate sasAjeue Ladxa pue ‘ABojoyred ‘sorwoush ‘sjrelap Juswieal) ‘sawo2ino Juaired se yons sabews ayy 01 parejas elep Burioddng “abeiols abew Joy
V101 Aq pasn yew.oy aji4 Arewid ayl sI INODIQ 'Sha0y Yyaseasal 4o (*018 ‘1D ‘1HIN) Aiepow abew ‘(1aoued Bunj ““BHa) aseasip uowiwod e Aq pare|as syuaijed AjjeardAy

* SU0I193||0D,, Se paziueblo aJe e1ep ay | “peojumop d1jgnd Joy 3]qissadde Jaoued Jo sabewi [ealpawl Jo aAlydJe able| e SISOy pue SalyiuspI-ap YdIym a2IAISS B SI V[D L

AoB'sfeli] eaiud

asegaoe

(1a9d) Aiowusnur
elep o1wouab ouyelpad ay |

(0ad)
SUOWIWOJ Blep dlwosl0ld

(0a9o)
SUOWWIOJ Blep dlwous

(gejoueNed) Aloeloqe|
ABojouydsiouru Jaoue)

(amian)
Youag-XI0Mm SIIWOJ0geI8IN

(v1o1)
anlyase Buibewi Jaoued ay

uondiiosaqg

A1o1sodey

yateasay ABojoouQ uoneipey 01 pare|ay saliolisoday eleq oi1oads-urewoq pauoddns-(HIN) YijeaH 40 a1ninsuj [euoiieN uaingd

€ 9lqeL

Author Manuscript Author Manuscript Author Manuscript

Author Manuscript

PMC 2022 October 22.

in

available

1

Semin Radiat Oncol. Author manuscript


https://ocg.cancer.gov/programs/target/pgdi/contributor-application
http://ClinicalTrials.gov
http://ClinicalTrials.gov
https://www.nlm.nih.gov/NIHbmic/domain_specific_repositories.html

Page 28

Wahid et al.

'220Z ‘8T Aleniga4 uo ensio Burisliy se N 1d.1d 10 3SOaLy Buisn (/suoinos)jodasuaaiyosehulbewisoueommmy/:sdiy) sfied suoios)jod iDL Wwoly parelausl alam ejeq

sosAjeuy abew| 3S0d1Y ‘NV1dLY 'LONYLS1Y '1d ‘LD TIT  93N-pesH (2250 OOLYH) qewIxniv) 30oN-peaH

sasAjeuy abew 3S0ALY ‘NV1dLY 'LONYLSLY ‘1D 41 Bun (80€T D0OLY) 80ET-OUN

8p0D 82IN0S/218MYOS ‘sasAfeuy abew] ‘[ealuld 3S0A1Y ‘NV1dLY 'LONYLS1IY ‘1D ‘1d 86¢  X99N-pesH 10-13d-%199N-pesH
sosAjeuy abew| 3S0ALY ‘LONYLS1Y ‘1D TE  X93N-pesH 14-10d€-00SNH

sojwoudn ‘reaiu)y  ABojoyred ‘3SOALY ‘NV1dLH ‘LONYLS1Y ‘Id “dIN ‘1D 12C  YO8N-pesH OSNH-V9OOL

[ea1ulo NV1d1Y ‘ISOALY ‘LONYLS1Y ‘1D 06¥ fun (£790-9014) qewixnzd-010SN

sosAleuy abew ‘feaund 3SOALY ‘NV1dLY 'LONYLSIY "HN ‘1d ‘LD 129  YO8N-pesH O0SNH

sesAjeuy abew| 3S0ALY ‘NVIdLY 'LONYL1S1Y ‘HIN ve Je3 O3 S-ewouuemyds-re|ngnssA

ereq bunioddng sadA| afew| s10IONS uo11es0 uo1199|10D

suonealjddy ABojoouQ uoneipey 01 palejay (VIDL) aAlyaly Buibew| Jaaue) ayl uo suoids||od ered paysljand Apuain)

Author Manuscript

Author Manuscript

¥ alqeL

Author Manuscript

Author Manuscript

Semin Radiat Oncol. Author manuscript; available in PMC 2022 October 22.


https://www.cancerimagingarchive.net/collections/

	Abstract
	Introduction
	FAIR Data Publication as a Normative Component of Modern Scientific Dissemination and Knowledge Generation as a Coherent Process
	Annotation/Ontology Considerations for Public Datasets
	International Differences in Privacy Guidelines
	Considerations for Anonymization, De-identification and Privacy-Enhancement (e.g., “De-facing”) for Public Datasets
	NCI Policy, Vision, and Supported Repositories
	TCIA as a Model for Effective FAIR Data in Oncology
	Examples of Published “Challenges” Using Public Datasets
	Health Equity Considerations related to Public Datasets
	Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8.
	Figure 9.
	Table 1
	Table 2
	Table 3
	Table 4

