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  The incidence of thyroid disease has gradually increased in recent years. Conventional ultrasound is one of 
the most critical thyroid imaging methods, but it still has certain limitations. The use of B-model ultrasound 
(BMUS) diagnosis of thyroid disease will be affected by a doctors’ clinical experience. The ultrasound radiomics 
is based on ultrasound images to delineate the region of interest (ROI), and then extract features to quantify 
the disease information contained in the image, which helps to analyze the correlation between the image and 
the clinical pathology of the disease. By building a powerful model, it can be used to diagnose benign and ma-
lignant thyroid nodules, predict lymph node status in thyroid cancer, analyze molecular biological characteris-
tics, and predict the survival of thyroid cancer patients. At present, the application of ultrasound radiomics in 
the thyroid is pervasive. These ultrasound radiomics studies have further promoted the progress of ultrason-
ic technology in the field of thyroid disease. Clinicians should be familiar with the workflow of ultrasound ra-
diomics and understand the application of this technology to the thyroid. In this article, we first describe the 
workflow of ultrasound radiomics, followed by an overview of the application of ultrasound radiomics to the 
thyroid. Finally, some current limitations of the technology and areas for future improvement are discussed. 
This article aims to review the role of ultrasound radiomics and its application and limitations in the investiga-
tion of thyroid disease.
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Background

Ultrasonography is the most common, beneficial, safe, and cost-
effective method of thyroid imaging [1]. Ultrasound screening 
methods play an important role in the management of thyroid 
nodules [2]. However, doctors are affected by experience when 
observing ultrasound imaging to diagnose thyroid nodules, and 
experienced doctors have higher diagnostic accuracy than young-
er doctors [3]. Ultrasound imaging is a type of medical imaging 
that contain features of a large amount of information. In early 
studies, the medical image characteristics of the thyroid were 
analyzed to observe the abnormal areas in the organization [4,5].

Radiomics is a new field of medical image research that further 
expands the quantitative analysis of medical images [6]. Unlike 
physicians who use machines to visually observe lesions, radiomics 
acquires various information in images that are difficult to quan-
tify clinical outcomes through visual observation [7]. Currently, 
radiomics involves extracting features from medical imaging that 
correlate with clinical outcomes and biological endpoints [8].

Radiomics is a powerful tool in the field of oncology and has 
high utility for individualized patient care [9]. Ultrasound ra-
diomics uses image segmentation to obtain ROIs to extract 
features. The ROI is not necessarily a thyroid nodule or tumor, 
but can also be surrounding normal tissue. Imaging information 
in the ROI is used to develop diagnostic, predictive, or prog-
nostic models. Currently, the application of ultrasound thyroid 
imaging mainly includes diagnosis of benign and malignant 
thyroid nodules, prediction of thyroid cancer aggressiveness 
to the tissue, analysis of tumor phenotype or the presence of 
genetic mutations, and prognostic analysis of thyroid cancer 
patients (Table 1). This article aims to review the workflow of 
ultrasound radiomics and studies on thyroid diseases.

Workflow of Ultrasound Radiomics

Imaging is a crucial technology for early cancer detection, and 
radiomics is used to mine the information contained in images 
to improve cancer screening and early detection by building a 

Reference Task
No.	of	

patients
Method Results

Liang et al, [36] Predicting malignancy in thyroid 
nodules

232 ML-based 
radiomics

External test set AUC: 0.931 

Luo et al,  [37] Discriminating benign and 
malignant thyroid nodules

394 ML-based 
radiomics and 
Logistic

Combined model in test set AUC: 
0.913

Wu et al, [40] Improve the differential diagnosis 
of thyroid nodules

1396 DL-based 
radiomics

AUCs: 0.904 on TR4; 0.845 on 
TR5; 0.829 on TR4&5

Zhao et al, [43] Diagnostic performance and 
unnecessary biopsy rate

822 ML-based 
radiomics

Combined with SWE model in 
external test set AUC: 0.953

Wang et al, [45] Evaluation of extrathyroidal 
extension in PTC

161 ML-based 
radiomics and 
Logistic

Test set AUC: 0.824

Xia et al, [46] Prediction of lymph node 
metastasis in patients with PTC

445 SVM and PNN Test score of SVM: 0.93;
Test score of PNN: 0.88

Jiang et al, [23] SWE radiomics improve 
preoperative cervical lymph node 
staging for PTC

237 ML-based 
radiomics and 
Logistic

Combined model in external test 
set AUC: 0.832 

Wang et al, [51] Predicting BRAF V600E mutations 
in PTC

138 ML-based 
radiomics

Elasticity and grayscale 
ultrasound radiomic model in 
test set AUC: 0.938

Park et al, [54] Association between radiomics 
signature and disease-free survival 
in PTC

768 ML-based 
radiomics and 
COX regression

C-index of the ultrasound 
radiomic model: 0.777;
C-index of the clinicopathologic 
model: 0.721

Table 1. Application of ultrasound radiomics in thyroid imaging.

ML – machine learning; DL – deep learning; AUC – area under curve; TR – thyroid imaging, reporting and data system; PTC – papillary 
thyroid carcinoma; SWE – shear wave elastography; SVM – support vector machines; PNN – probabilistic neural network.
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powerful classifier model [10]. Ultrasound radiomics is a branch 
of radiomics, which extracts and analyzes quantitative imaging 
features from ultrasound images, and can obtain features such 
as tumor shape, texture, and wavelet, providing clinicians with 
valuable diagnostic, prognostic, or predictive information [11]. 
The ultrasound radiomics workflow is summarized as extract-
ing information from ultrasound images, transforming them 
into feature data, and analyzing them. As shown in Figure 1, 
the main steps are data collection, target segmentation, fea-
ture extraction, selection, and modeling.

Data Collection

Ultrasound radiomics typically begins with image acquisition. 
Studying the correlation between clinical information and im-
ages requires extensive data. The medical images used for 
analysis generally come from different hospitals or public data 
centers. Physicians may perform a multi-center study or a sin-
gle-center study to obtain a certain type of image, and imag-
es acquired by different operators can have large variability, 
which significantly limits the reliability and robustness of ra-
diomics studies. Images from different sources will have dif-
ferent parameters, such as voxels or grayscale, and these dif-
ferences can affect the study’s results [12]. Shafiq-UI-Hassan 
et al suggest that image resampling can reduce the voxel size-
dependence of radiomics features [13]. In addition, studies 
have pointed out that using normalization in radiomics can 

improve the robustness of some features [14]. Ultrasound im-
age normalization methods help to obtain reproducible mea-
surements [15]. Researchers should pay attention to the differ-
ences in imaging and provide basic parameters of the images, 
such as machine name, image resolution, gray value, and gain, 
to achieve comparability and reproducibility among radiomics 
studies [16]. It is essential to eliminate unnecessary variabili-
ty using a standardized imaging protocol [17].

ROI Segmentation

ROI segmentation is a fundamental step in radiomics. The 
target area is the region of interest (ROI), which can be a tu-
mor lesion or normal tissue around the lesion, often deter-
mined by the research content. Commonly used segmenta-
tion methods include manual, automatic, and semi-automatic. 
Currently, there is no criterion standard for the target seg-
mentation method [18]. Each segmentation method has cer-
tain challenges. Manual segmentation is very time-consum-
ing. For CT radiomics, radiologists must observe each layer 
of images before segmenting the lesions, but some large le-
sions have dozens of tomographic images. Variability of fea-
tures among operators performing segmentation makes im-
age analysis-based machine learning (ML) nontransferable [19]. 
Automatic and semi-automatic segmentation methods are 
functions carried by some open-source software that can au-
tomatically identify and segment ROIs or partial regions. Some 

Ultrasound radiomics flowchart

Acquire
case and

ultrasound
images

Build
models and

evaluate

Original imaging Segmentation ROI

Feature selection
Feature extraction

Figure 1.  The picture uses an ultrasound image case of a thyroid nodule, showing the workflow of the ultrasound radiomics. Region of 
interest (ROI) segmentation was conducted on the largest diameter of the thyroid nodule. Radiomics features were extracted 
from ROI, including features such as shape, grayscale, texture, and wavelets. The feature selection process is shown with 
LASSO as an example.
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tumor edge contours may be poorly demarcated due to volu-
metric effects and may need to be refined by an experienced 
radiologist after using automatic or semi-automatic segmen-
tation methods. However, some studies have found that fea-
tures extracted by semi-automatic segmentation have higher 
repeatability and robustness than manual segmentation [20]. 
Heye et al compared manual and semi-automatic segmenta-
tion methods and showed that semi-automatic segmentation 
significantly reduced inter-observer variability [21]. Selecting 
an appropriate segmentation method can ensure the repeat-
ability and reliability of features, which has a significant ef-
fect on the subsequent feature extraction [22].

Radiomics studies still use manual segmentation of ROIs. The 
intraclass correlation coefficient (ICC) is commonly used to eval-
uate radiomics features extracted by manual segmentation and 
to assess inter-observer and intra-observer agreement. Several 
ultrasound radiomics studies have used ICC-assessed radiomics 
features, ensuring the reproducibility of ultrasound radiomics 
work [23,24]. Although there are various selection methods for 
target segmentation, the manual segmentation method used in 
most studies is selected to ensure the accuracy of ROI results.

Feature Extraction

Radiomics was initially defined as the extraction of high-
throughput features from medical images. These features are 
usually associated with the patient’s disease state, which is 
difficult for physicians to express in words, but can be con-
verted into corresponding data information and become image 
features that can be quantitatively described. Most of the cur-
rently used features are obtained from segmented ROIs, which 
are mainly composed of voxel intensities, including morpho-
logical, first-, second-, and higher-order features [25].

Morphological features are often used to describe the surface 
area, volume, and diameter of ROIs. Common statistical values 
are available for first-order features, including maximum, min-
imum, entropy, and kurtosis. Second-order features are usually 
used to describe the texture features of images, including gray-
level co-occurrence matrices and gray-level run-length matri-
ces. The grayscale co-occurrence matrix provides pixels with 
the same signal intensity at adjacent frequencies as a matrix, 
describing the signal intensity density in a specific direction, 
thereby revealing differences in regional heterogeneity [26]. 
The grayscale run-length matrix can calculate the frequency 
at which the nearest neighbor pixels match in intensity, giving 
insight into the heterogeneity of signal intensities within the 
ROI [27]. Higher-order features are statistical features calcu-
lated by including multiple pixels in the matrix. Wavelet trans-
form features are also high-order features, and many studies 
have used them in radiomics and ultrasound [28,29]. Higher-
order feature elements are usually obtained from grayscale 

values by Fourier transform, which converts spatial information 
to frequency space and then back to the spatial domain [30].

Feature Selection

There are usually hundreds or thousands of omics features of 
ROIs. Not all of these features are useful, and it is often neces-
sary to select further features that contain critical information. 
At the same time, from the statistical point of view, some vari-
ables have collinearity, resulting in a significant overlap of vari-
able information. If all are included in the model, it can even-
tually lead to poor model performance. To simplify the model, 
researchers are also required to select as few model variables 
as possible. This requires deleting redundant features in many 
radiomics features to reduce dimensionality.

Currently, feature selection methods are mainly divided into 3 
categories: filtering, wrapping, and embedding methods [31]. 
Filtering refers to the use of univariate or multivariate meth-
ods to evaluate features and rank them. Univariate filtering 
methods can use the chi-square test or Mann-Whitney U test 
to rank the quality of features. Multivariate methods often rank 
features according to their relevance, consisting of a ranker 
and a subset selector. In many radiomics studies, the filtering 
method was used for preliminary feature screening [32,33]. The 
wrapping method evaluates the features in reverse through the 
model and then selects these multivariate features and sub-
set features. The embedding method continuously evaluates 
features through learning in building a model and using these 
filtered features to build a model. In other words, the embed-
ding method is a simultaneous feature selection and model 
learning process, such as least absolute shrinkage and selec-
tion operator (LASSO). LASSO is a method for feature screen-
ing and modeling used in many studies [34-37].

Modeling

Building a model is the ultimate goal of many radiomics proj-
ects, often with finalized features, including supervised learn-
ing, unsupervised learning, and semi-supervised learning. 
Supervised learning refers to training a model with clinical clas-
sification labels. The most commonly used supervised learn-
ing models in ultrasound radiomics are built through logistic 
regression models [23,24], and other learning models such 
as support vector machines (SVM) and random forests [38]. 
Unsupervised learning does not require clinical classification 
labels; it continuously trains and optimizes through machine 
learning, and then builds the model. Commonly used model 
algorithms include cluster analysis [39]. Semi-supervised learn-
ing is often used to construct a semi-supervised deep learning 
framework to conduct related model training research, such as 
research on deep learning of ultrasound images in the identi-
fication of benign and malignant thyroid nodules [40].
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After the model is established, the performance of the mod-
el needs to be verified or tested. It is generally believed that 
the independent external validation model is more accurate 
and reliable than the internal validation model, which is also 
a large-sample, multi-center study advocated by many ra-
diomics research institutes. The performance of the model is 
often evaluated by the receiver operating characteristic curve 
(ROC), which includes indicators such as the area under the 
curve (AUC), sensitivity, and specificity. Calibration curves are 
often used to evaluate the agreement between model predic-
tions and clinical outcomes [41]. In addition, the clinical de-
cision curve (DCA) is also commonly used to evaluate the ef-
fectiveness of the model in clinical application.

Application of Ultrasound Radiomics in 
Thyroid Imaging

Diagnosis	of	Benign	and	Malignant	Thyroid	Nodules	by	
Ultrasound Radiomics

The American Society of Imaging (ACR) published a white pa-
per in 2017 on the Thyroid Imaging Reporting and Data System 
(TI-RADS), which proposed risk grading methods for classify-
ing thyroid nodules. The report is helpful for sonographers to 
standardize the description of lesions. At the same time, thy-
roid lesions were graded [42] by adding 5 ultrasound charac-
teristics: composition, shape, echo, margin, and calcification 
scores. Ultrasonography in the diagnosis of thyroid nodules is 
often compared with or combined with ACR TI-RADS to eval-
uate the diagnostic value or utility of ultrasonography [37].

Several studies have compared the diagnostic performance of 
ultrasound radiomics and TI-RADS for thyroid nodules [36,40,43]. 
Liang et al [36] concluded that ultrasound radiomics was supe-
rior to performance of primary physicians using ACR TI-RADS 
for diagnosing thyroid nodules. Radiomics score was developed 
using the ultrasound images of the training cohort, and 19 fea-
tures were screened from 1044 radiomics features using the 
LASSO regression model to construct an ultrasound radiomics 
scoring formula. Five predictive models were constructed based 
on the above radiomics and TI-RADS scores, respectively. The 
ultrasound radiomics score showed good discrimination, sig-
nificantly better than the discrimination obtained by primary 
radiologists using the TI-RADS score in both cohorts.

Luo et al [37] extracted 286 radiomics features from ultra-
sound images by retrospectively collecting images of thyroid 
nodules. Four features were finally selected to establish the ra-
diomics score. The Delong test and DCA showed that the meth-
od combining radiomics scoring and ACR TI-RADS had the best 
performance. The results indicated that the combined ultra-
sound radiomics score and ACR TI-RADS model was better at 

distinguishing benign and malignant thyroid nodules than ei-
ther ACR TI-RADS or radiomics score alone. Radiomics score can 
improve the identification of benign and malignant thyroid nod-
ules by ACR TI-RADS. Zhao et al [43] retrospectively collected 
two-dimensional ultrasound images and shear wave elastogra-
phy (SWE) of patients’ thyroid nodules, and extracted features 
of the 2 kinds of ultrasound images. Radiomics features in im-
ages are combined with machine learning methods to estab-
lish machine learning-assisted visualization methods. The re-
sults showed that the diagnostic performance of the machine 
learning-assisted vision method was superior to that of ultra-
sound radiomics alone and ACR TI-RADS. After adding SWE im-
age features of machine learning auxiliary visual methods, the 
performance of the model was further improved, and the rate of 
unnecessary fine-needle aspiration (FNA) was also significant-
ly reduced. The above studies show that ultrasound radiomics 
can establish the correlation between ultrasound image fea-
tures and malignant nodules, which will help clinicians to im-
prove the accuracy of diagnosis based on use of ACR TI-RADS.

Ultrasound Radiomics Assessment of Thyroid Cancer 
Aggressiveness	and	Lymph	Node	Metastasis

Papillary thyroid carcinoma (PTC) accounts for about 90% 
of thyroid cancers and generally has a good prognosis [44]. 
However, some PTC subtypes are often more aggressive, with 
extrathyroidal invasion and lymph node metastasis. The pres-
ence or absence of extrathyroidal invasion and lymph node 
metastasis is often an essential factor to be considered in sur-
gery. Therefore, the non-invasive diagnosis of invasiveness of 
thyroid cancer to surrounding tissues and lymph nodes is the 
focus of many studies.

Wang et al. [45] extracted image features of lesions in the ul-
trasound images of PTC patients, using LASSO and multivari-
ate logistic regression analysis to screen out the factors relat-
ed to PTC invasion of surrounding tissues, and established an 
ultrasound radiomics diagnostic model. The results indicated 
that ultrasound radiomics has excellent diagnostic utility for 
assessing the tissue invasiveness of PTC.

Xia et al [46] retrospectively collected data on PTC patients 
whose cervical lymph nodes were prophylactically dissect-
ed, and predicted PTC lymph node metastasis using SVM and 
probabilistic neural network (PNN) models on clinicopatholog-
ical factors and ultrasound characteristics. The results of the 2 
models indicated that the combination of artificial intelligence 
algorithms and clinicopathological data can effectively predict 
thyroid cancer preoperative lymph node metastasis. In addi-
tion, Jiang et al [23] extracted ultrasound radiomics features 
from B-mode ultrasound and SWE images to construct 2 mod-
els of ultrasound radiomics scores, and then used multivari-
ate logistic regression analysis together with clinical data to 
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construct a nomogram. The results showed that ultrasound-
reported lymph node status, multifocality, and SWE radiomics 
scores were independent risk factors associated with lymph 
node status in patients with PTC. The studies mentioned above 
demonstrate that ultrasound radiomics can noninvasively pre-
dict the invasiveness of thyroid cancer to surrounding tissues 
and lymph nodes.

Ultrasound Radiomics Predicts Associations Between 
Thyroid Cancer and Molecular Biological Properties

Early and correct diagnosis of malignant thyroid nodules is 
essential for treatment. Histopathological results are gener-
ally considered to be the most accurate and reliable criterion 
standard for diagnosing thyroid nodules. Some early patho-
logical examinations found that the BRAF gene of PTC patients 
was often accompanied by mutations [47]. Detection of these 
mutated genes can only be obtained using invasive testing. 
Later, some researchers found that some manifestations on 
ultrasound images may be associated with gene mutation 
[48]. However, the visual representation of images alone may 
lack objectivity, so some researchers have used ultrasound ra-
diomics to analyze the relationship between imaging features 
and molecular biological features of thyroid cancer patients.

Yoon et al. [49] assessed whether ultrasound-based radiomics 
could predict BRAFV600E mutation in PTC patients. They used pre-
operative ultrasound images of 527 patients for feature extrac-
tion and generated a radiomics score by LASSO. Multivariate 
analysis revealed that the radiomics score was a single risk factor 
for BRAFV600E mutation. This suggests that radiomics features ex-
tracted from ultrasound images have value in predicting BRAFV600E 
mutations in PTC patients. In addition, Kwon et al. [50] extracted 
86 radiomics features from ultrasound images and used 3 clas-
sifier models to evaluate whether ultrasound radiomics could 
predict BRAF mutation in PTC patients. The classifiers are lo-
gistic regression, SVM, and Random Forest. The results showed 
that in PTC, all classifier models had moderate performance in 
predicting BRAF gene mutations. Wang et al. [51] retrospec-
tively collected preoperative grayscale and elastography imag-
es of 138 patients with PTC and selected ultrasound radiomics 
features related to BRAFV600E mutation. Finally, 8 radiomics fea-
tures were extracted from grayscale ultrasound images, and 5 
radiomics features were extracted from elastic ultrasound im-
ages. The results of the study showed that the radiomics mod-
el based on grayscale and elastic ultrasound has an excellent 
predictive value for BRAFV600E mutations in PTC patients.

Ultrasound Radiomics to Assess Survival in Patients with 
PTC

Although PTC is a histological type with a good prognosis in thy-
roid cancer, a small proportion of PTC cases are still aggressive. 

About 9.1-13.3% of patients have recurrence, and 1.4-5.2% die 
from thyroid cancer [52,53]. Park et al [54] developed a mod-
el based on radiomics features of ultrasound images to as-
sess disease-free survival in PTC patients. The radiomics scor-
ing model was constructed in COX regression, and the results 
showed that the ultrasound radiomics model performed bet-
ter in assessing disease-free survival than the clinicopatholog-
ical model (C- index: 0.777 vs 0.721).

Discussion

The characteristic of many tumors is often determined by bi-
opsy, but some tumors are heterogeneous, and biopsy sam-
ples are not representative of the entire lesion. Ultrasound ra-
diomics, which analyzes the overall image of the lesion, can 
visualize tumor heterogeneity and can serve as an intermedi-
ate step between imaging and biosy [16]. Ultrasound radiomics 
has yielded many achievements in the screening, diagnosis, 
and evaluation of thyroid tumors and can be used as an eval-
uation tool for clinicians to assess the pathophysiological sta-
tus of various aspects of the thyroid.

As a machine learning method, the ultrasound radiomics, most 
studies by retrospect the clinical pathological information of 
patients, and use pathological diagnosis as the criterion stan-
dard, analyze the characteristics of the image, and establish 
a predictive model to improve the diagnosis accuracy of early 
thyroid nodules. ACR TI-ARDS is one of the most popular mod-
els, in which 5 risk factors related to malignant thyroid nod-
ules can be distinguished by radiologists with human vision, 
which plays a significant role in clinical application. However, 
ultrasound radiomics often considers other meaningful risk 
factors based on ACR TI-RADS and has improves TI-RADS. At 
present, radiomics no longer only pays attention to the image 
features of patients, but also considers other clinical factors 
so that the diagnosis and treatment of patients are more in-
dividualized and comprehensive, and it is used to solve clin-
ical problems [55].

Ultrasound radiomics also suffers from the limitations of all 
machine learning algorithms. First, most studies have insuf-
ficient sample sizes. Adequate sample size is key to building 
an excellent radiomics model. If the sample size is too small, 
the image features extracted may not be representative and 
not convincing enough. It is often manifested as overfitting 
or overly good results on the model. Second, most ultrasound 
imaging groups are influenced by clinician experience. For ex-
ample, the data acquisition and target segmentation process-
es in the workflow are uncontrollable, and these 2 steps are 
the biggest challenges concerning reproducibility in radiomics 
research. The case data collected in most current radiomics 
studies are not derived from public databases, and research 

e937738-6
Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System]  
[ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica]  
[Chemical Abstracts/CAS]

Lu W.-W. et al: 
Ultrasound radiomics of thyroid disease

© Med Sci Monit, 2022; 28: e937738
REVIEW ARTICLES

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



results are usually not transferable to applications. Therefore, 
most studies advocate using multi-center data to develop ra-
diomics models, which can enhance the persuasiveness of the 
study and the generalizability of the model [56]. In addition, 
manual segmentation methods are still essential segmentation 
methods. This creates unavoidable errors and subjectivity. Last 
but not least, most ultrasound radiomics-based thyroid studies 
have used retrospectively collected data [23,24,36-38,43,45]. 
Although some prospective studies have evaluated diagnos-
tic models for thyroid diseases and demonstrated good diag-
nostic performance [57,58], there have been few prospective 
studies on ultrasound radiomics models, and more prospec-
tive studies are needed in the future to confirm the clinical 
feasibility of ultrasound radiomics, not just for the thyroid.

Conclusions

In conclusion, ultrasound radiomics, as a technique for extract-
ing image data, plays an important role in the evaluation of 
medical images of related diseases. However, there are some 
deficiencies, and more efforts are needed to standardize the 
discipline of ultrasound radiomics and to apply ultrasound ra-
diomics to clinical work.
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