
Evaluating the Antinociceptive Efficacy of Cannabidiol
Alone or in Combination with Morphine Using
the Formalin Test in Male and Female Mice
Diana E. Sepulveda,1,2 Daniel P. Morris,3 Wesley M. Raup-Konsavage,1

Dongxiao Sun,1 Kent E. Vrana,1 and Nicholas M. Graziane1,2,*

Abstract
Introduction: Phytocannabinoids have emerged as a potential alternative treatment option for individuals ex-
periencing persistent pain. However, evidence-based research regarding their clinical utility in both males and
females remains incomplete. In addition, it is unknown whether combining readily available cannabinoids
with opioids has a synergistic or subadditive effect on pain modulation. To begin to fill this knowledge gap,
we investigated the antinociceptive effects of the phytocannabinoid, CBD, either alone or in combination
with opioids in male and female C57BL/6J mice.
Results: Using the formalin test, our results show that CBD (10 mg/kg, i.p.) treatment evoked antinociception in
phase I, but not in phase II, of the formalin test in male mice. However, in female mice, CBD showed no significant
antinociceptive effect. In addition, a direct sex comparison showed that CBD evoked a significant increase in no-
ciceptive behaviors in female versus male mice during phase I of the formalin test. Furthermore, we show that
CBD (10 mg/kg, i.p.) in combination with low-dose morphine (1 mg/kg, i.p.) was ineffective at eliciting a syner-
gistic antinociceptive response in both male and female mice. Lastly, consistent with previous literature, we
showed that females treated with a relatively higher dose of morphine (10 mg/kg, i.p.) displayed a significant
increase in the variability of nociceptive behaviors compared to morphine-treated male mice.
Conclusion: Overall, our results suggest that CBD treatment may have beneficial antinociceptive effects during
the acute phase of persistent pain, but these effects are more beneficial to males than females. We provide fur-
ther pre-clinical support that treatments geared toward reducing nociceptive behaviors differentially affect males
and females.
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Introduction
Currently, opioids are considered the gold standard for
pain treatment.1 However, the side effects, including
sedation, respiratory depression, tolerance, and abuse
liability, reduce the effectiveness of opioids.1,2 In addi-
tion, it has been demonstrated in pre-clinical studies
that opioids are more effective in males than in females,
with females requiring higher doses of opioids for a
comparable therapeutic effect.3–8 This has the potential
to lead to an increased risk of negative side effects. Due

to the ongoing opioid epidemic, there is a need to iden-
tify opioid alternatives for pain management that take
into account sex-specific outcomes.

There is mixed evidence that activation of the endo-
cannabinoid system is effective in reducing pain, which
is based on clinical studies testing the effectiveness of
Cannabis sativa and its main active ingredient, D9-
THC.9–13 Unfortunately, the use of D9-THC comes
with cognitive risks, organ-specific toxicity, and high
abuse potential making it an ineffective substitute for
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opioids.14 Despite this, C. sativa contains numerous
other cannabinoids that are potentially effective in
treating pain due to their binding affinity to receptors
within the endocannabinoid system as well as the bind-
ing affinity to nociceptive receptors.15–17

In pre-clinical models, it has been shown that CBD
reduces pain alone or in combination with other can-
nabinoids.18–20 In addition, in clinical and pre-clinical
research, it has been shown that CBD has low abuse po-
tential.21,22 This has led to a growing market of pure
CBD available for over-the-counter use, but evidence-
based research regarding the clinical utility of pure
CBD remains incomplete. In addition, it is unknown
whether combining readily available cannabinoids with
opioids will have synergistic effects on pain modula-
tion, thus enabling CBD to act as a potential opioid
limiting therapeutic in both males and females.

To fill this knowledge gap and assess the effects of
CBD on pain, we used the formalin test. The formalin
test is a widely used model of persistent pain that evokes
two distinct phases of nociceptive behavior, with an ini-
tial acute phase (phase I) followed by an inflammatory
phase (phase II).23 Phase I occurs 0–15 min after forma-
lin injection into the rodent paw with pain behaviors as-
sociated predominantly with chemical stimulation of C
fiber nociceptors,24 which are involved in slow, poorly
localized pain perception.25 Phase II occurs 15–60 min
postformalin injection and is associated with peripheral
inflammatory processes produced by inflammatory me-
diators released following tissue injury.23

Here, using the formalin test, we assessed the antino-
ciceptive potential of pure CBD both alone and in com-
bination with morphine in male and female mice.

Methods
Animals
All experiments were performed in accordance with
procedures approved by the Pennsylvania State Uni-
versity College of Medicine Institutional Animal Care
and Use Committee. Mice used in this study included
male and female C57BL/6 wild-type mice age matched
(10–12 weeks; Jackson Laboratory, Bar Harbor, ME).
All mice were group housed on a 12-h light/dark cycle
with ad libitum food and water.

Drugs
(�)-morphine sulfate pentahydrate was provided by
the National Institute on Drug Abuse Drug Supply
Program. CBD was purchased from Cayman Chemical
(Ann Arbor, MI; Cat. # 90080). CBD-d3 (HPLC stan-

dard) was purchased from Sigma Aldrich (St. Louis,
MO). Formalin solution was prepared from 37% form-
aldehyde stock solution (Cat. # F79; Thermo Fisher Sci-
entific, Waltham, MA).

Formalin testing
Mice received injections of vehicle (DMSO, Tween 80,
saline [1:1:18], i.p.), CBD (10 mg/kg, i.p.), morphine
(1 mg/kg, i.p.) (low-dose morphine), or morphine
(10 mg/kg, i.p.) (high-dose morphine) 1 h before tests
by an experimenter blinded to treatment. High-dose
morphine (10 mg/kg) was used as a positive control
due to its antinociceptive effects in both male and fe-
male mice (Figs. 1 and 2), while low-dose morphine
(1 mg/kg) was used due to the lack of antinociceptive
effects observed in the formalin assay in both male
and female mice (Figs. 1 and 2). Mice were randomly
assigned to groups.

Mice were acclimated to a plexiglass observation
chamber (in cm: 13 · 13 · 13) on a transparent table
for 20 min. After the 20-min acclimation period, 2.5%
formalin solution (10 lL) was injected to the plantar
surface of the right hind paw. Mice were immediately
placed back into the plexiglass observation chamber.
Mouse behavior was recorded for 60 min using a GoPro
camera (San Mateo, CA), which was placed underneath
the observation chamber.

Four behavioral categories were observed by a trained
observer (blinded to condition), including (1) no behav-
ior, (2) little or no weight placed on the injected paw, (3)
the injected paw is raised, or (4) licking, shaking, biting,
or rapid lifting of the injected paw. These behaviors were
assessed during twelve 5-min (i.e., 300 sec) bins.

The time that the animal spent displaying each be-
havior was recorded and a weighted composite score
was calculated based on the following formula for
each 5-min bin, as previously published26–28:

aþ bð Þþ 2 x cð Þð Þ=d, where a refers to the time the
animal spent placing little or no weight on the injected
paw, b refers to the time the animal spent raising the
injected paw, c refers to the time the animal spent lick-
ing, shaking, biting, or rapid lifting of the injected paw,
and d refers to the total time (i.e., 300 sec). The weighted
composite score was selected based on the severity of pain
associated with c.

Based on this formula, the maximum composite
score would equal 2, signifying a maximum pain state.
The area under the curve was calculated for the acute
phase (phase I; 0–15 min) and the inflammatory phase
(phase II; 15–60 min) using GraphPad Prism (9.1.2).
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FIG. 1. CBD reduces nociceptive behaviors in
male mice, but in combination with low-dose
morphine, CBD does not evoke synergistic
antinociceptive effects. (A) Summary of the time
course corresponding to the composite pain
score from 0 to 60 min after formalin injection
(F(48,444) = 1.424, p = 0.0374; two-way repeated-
measures ANOVA with Tukey’s post-test)
(Vehicle: n = 12; CBD: n = 12; CBD + Mor: n = 6;
Mor [1 mg/kg]: n = 6; Mor [10 mg/kg]: n = 6).
Asterisks denote significant difference from
high-dose morphine (10 mg/kg). (B) Summary
graph showing the AUC during phase I of the
formalin assay (F(4,37) = 11.78, p < 0.0001; one-
way ANOVA with Tukey’s post-test).
(C) Summary graph showing the AUC during
phase II of the formalin assay (F(4,37) = 5.999,
p = 0.0008; one-way ANOVA with Tukey’s post-
test). *p < 0.05, **p < 0.01, ***p < 0.001. ANOVA,
analysis of variance; AUC, area under the curve.

FIG. 2. CBD alone or in combination with low-
dose morphine does not reduce pain during
phase I or phase II of the formalin test in female
mice. (A) Summary of the time course
corresponding to the composite pain score from
0 to 60 min after formalin injection
(F(48,660) = 4.181, p < 0.0001; two-way repeated-
measures ANOVA with Tukey’s post-test)
(Vehicle: n = 12; CBD: n = 12; CBD + Mor: n = 12;
Mor [1 mg/kg]: n = 12; Mor [10 mg/kg]: n = 12).
Asterisks denote significant difference from
high-dose morphine (10 mg/kg). (B) Summary
graph showing the AUC during phase I of the
formalin assay (F(4,55) = 4.236, p = 0.0046; one-
way ANOVA with Tukey’s post-test).
(C) Summary graph showing the AUC during
phase II of the formalin assay (F(4,55) = 3.820,
p = 0.0082; one-way ANOVA with Tukey’s post-
test). *p < 0.05, **p < 0.01.
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Analysis of plasma drug levels
Two hours following CBD (10 mg/kg, i.p.) treatment,
mice were anesthetized with isoflurane and tail blood
was collected in a microtube coated with EDTA-K2
(Cat. # 041-TOM-14C; Milian Dutscher Group).
Whole blood was spun at 4�C–2000 RPM for 10 min
at which point serum (supernatant) was pipetted
off and placed in sterile tubes stored at �80�C until
analysis.

Plasma concentrations of CBD were determined
using mass spectrometry. Standard curves were con-
structed by plotting the ratio of the analyte peak area
to internal standard peak area versus analyte concen-
tration. The standard working solution (4 lL) and
internal standard (4 lL) were spiked into control
plasma (10 lL), and after vortexing, acetonitrile/
H2O/formic acid (90/10/0.1) (22 lL) was added to ex-
tract the analytes from plasma. Proteins were precipi-
tated by vortexing with subsequent centrifugation
at 8765 g for 10 min at 4�C. The supernatant was
taken and loaded to the high-performance liquid
chromatography/mass spectrometry/mass spectrome-
try (HPLC/MS/MS) system, with final concentrations
of 0.025 ng/mL to 1000 ng/mL for CBD.

Treated plasma was processed the same way as stan-
dards: after spiking internal standards (4 lL) into
plasma (10 lL), samples were vortexed and acetoni-
trile/H2O/formic acid (90/10/0.1) (26 lL) was added
for extraction. The calculated concentrations from the
standard curves were multiplied by 4 to reflect the
in vivo levels of CBD in plasma.

CBD in plasma was analyzed using a Sciex QTRAP
6500 + mass spectrometer coupled with a Sciex EXion
HPLC separation system. A 1.7 lm Acquity UPLC
BEH C18 analytical column (2.1 · 100 mm; Waters,
Ireland) was used to separate CBD with other iso-
mers as well as impurities. The gradient elution was
conducted using a flow rate of 0.4 mL/min with the fol-
lowing conditions: initial at 70% mobile phase B (ace-
tonitrile) and 30% mobile phase A (0.1% formic acid in
water), followed by a linear gradient to 90% mobile
phase B in 1 min, and kept at 90% mobile phase B
for three additional minutes to flush the column before
back to initial conditions to equilibrate the column.

The Sciex QTrap 6500 + mass spectrometer was
equipped with an electrospray ionization probe oper-
ated in positive active mode. The decluster potential
was 70 V for CBD; the entrance potential was 10 V,
the collision energy was 33 V, and the collision cell
exit potential was 12 V for CBD while the curtain gas

was 35 L/h, and the collision gas (CAD) was medium.
The ion spray voltage was 5500 V, the temperature
was 550�C, gas 1 was 15 L/h, and gas 2 was 15 L/h.

The multiple reaction monitoring mode was used to
analyze and quantify CBD as well as CBD-d3, with the
transitions of m/z 315 > 193 for CBD and 318 > 196 for
CBD-d3. All peaks were integrated and quantified by
Sciex OS 1.5 software.

Statistical analysis
All results are shown as mean – SEM. Each experimental
group consisted of at least six mice. No data points were ex-
cluded. Statistical significance was assessed in GraphPad
Prism software (9.1.2) using a one-way analysis of variance
(ANOVA), two-way ANOVA, or a two-way repeated-
measures ANOVA with Tukey’s correction for multiple
comparisons to identify differences as specified. F-values
for two-way ANOVA statistical comparisons represent in-
teractions between variables unless otherwise stated. Two-
tail tests were performed for all studies.

Results
Male and female mice respond differently to CBD
administration during phase I of the formalin test
We investigated how male and female mice responded
to CBD treatment (10 mg/kg, i.p.) during phase I
and phase II of the formalin test. The CBD dose of
10 mg/kg was selected based on our observation that
systemic injections of CBD (10 mg/kg, i.p.) in female
mice produced blood plasma concentrations that were
within the range observed in humans after smoking
CBD-containing cigarettes (152.2 – 15.5 ng/mL, 483.99 –
49.28 nM; Table 1).29 In addition, the CBD blood plasma
concentrations observed were within the range shown to
reduce pain and decrease depressive-like behaviors in
rats and male mice, respectively (Table 1).30,31

Furthermore, it has been previously shown that this
dose of CBD is effective at reducing mechanical allo-
dynia in female neuropathic mice,32,33 and is below
the plasma concentrations known to produce adverse ef-
fects in mammals.34,35 Using this dose, we found that
CBD was effective at reducing nociceptive behaviors in

Table 1. Plasma Concentrations of CBD in Females
at 2 h After i.p. Injection

Plasma level

Drug Dose (mg/kg) Steady state (ng/mL)

CBD (n = 8) 10 152.2 – 15.5

Mean – SEM.
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male mice during phase I (vehicle- vs. CBD-treated male
mice: p = 0.0105, Tukey’s post-test), but not phase II
(vehicle- vs. CBD-treated male mice: p = 0.9429, Tukey’s
post-test), of the formalin test (Fig. 1A–C).

In contrast, we found that CBD was ineffective at
preventing nociceptive behaviors in female mice during
both phase I (vehicle- vs. CBD-treated female mice:
p = 0.8473, Tukey’s post-test) and phase II (vehicle-
vs. CBD-treated female mice: p = 0.9802, Tukey’s
post-test) of the formalin test (Fig. 2A–C). These data
demonstrate that males and females respond differ-
ently to CBD treatment.

Based on this finding, we next performed analyses
to directly compare sex differences between males
and females treated with CBD using the data shown
in Figures 1 and 2. First, we found that there were
no significant sex differences in nocifensive behaviors
between vehicle control groups during phase I ( p =
0.9553, Tukey’s post-test) (Fig. 3A, B) or II of the for-
malin test ( p = 0.7849, Tukey’s post-test) (Fig. 3A, C),
suggesting that male and female mice express similar
nociceptive responses to formalin injection.

We next performed a pairwise comparison to statis-
tically compare the effects of CBD treatment between
male and female mice. We observed that CBD-treated
female mice displayed a significant increase in nocicep-
tive behaviors compared to CBD-treated male mice
during phase I of the formalin test ( p = 0.0011, Tukey’s
post-test) (Fig. 3B). In contrast, during phase II of the
formalin test, no sex differences were observed between
CBD-treated mice ( p = 0.1651, Tukey’s post-test) (Fig. 3C).

CBD in combination with low-dose morphine has
no effect on formalin-induced nociception
in male or female mice
To investigate whether a synergistic antinociceptive effect
exists when coadministering CBD (10 mg/kg) with low-
dose morphine (1 mg/kg), we measured nocifensive be-
haviors in male and female mice using the formalin test.

In male mice, we found that CBD (10 mg/kg, i.p.) in
combination with low-dose morphine (1 mg/kg, i.p.),
which does not evoke antinociception in the formalin
assay (Figs. 1 and 2), did not further reduce formalin-
induced nociception (Fig. 1A–C). In contrast, mor-
phine, at the higher dose of 10 mg/kg, abolished
formalin-induced nociception during both phase I
and phase II of the formalin test (Fig. 1A–C).

In female mice, we found that CBD in combination
with low-dose morphine (1 mg/kg, i.p.) did not reduce
nociceptive behaviors during either phase I or phase II

FIG. 3. CBD differentially alters nociception
during phase I, but not phase II, of the formalin
test in male versus female mice. (A) Summary of
the time course corresponding to the composite
pain score from 0 to 60 min after formalin
injection (F(36,528) = 2.905, p < 0.0001; two-way
repeated-measures ANOVA with Tukey’s post-
test) (Vehicle [male (M)]: n = 12; CBD [M]: n = 12;
Vehicle [female (F)]: n = 12; CBD [F]: n = 12).
Asterisks denote significant difference from
males treated with CBD (10 mg/kg).
(B) Summary graph showing the AUC during
phase I of the formalin assay (F(1,44) = 6.284,
p = 0.0160; two-way ANOVA with Tukey’s post-
test). (C) Summary graph showing the AUC
during phase II of the formalin assay
(F(1,44) = 0.6902, p = 0.4106; two-way ANOVA with
Tukey’s post-test). Male/female vehicle and CBD
group data were the same data shown in
Figures 1 and 2, but reanalyzed to directly
investigate sex differences using a two-way
ANOVA. *p < 0.05, **p < 0.01.
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of the formalin test (Fig. 2A–C). However, we did ob-
serve that high-dose morphine (10 mg/kg, i.p.) signifi-
cantly reduced formalin-induced nociception during
phase I and phase II of the formalin test in female
mice (Fig. 2A–C).

Lastly, we found that, in comparison with fe-
males, males displayed significantly less variability in
their antinociceptive response to high-dose morphine
(10 mg/kg) treatment during both phases of the forma-
lin test (Phase I: F(11,5) = 159.4, p < 0.0001; Phase II:
F(11,5) = 70.01, p = 0.0002; F test to compare variances).

Discussion
In this study, first, we found that CBD was effective at
reducing nociceptive behaviors in male mice, but only
during phase I of the formalin test. Second, we observed
that CBD treatment did not reduce nociceptive behav-
iors in female mice during phase I or II of the formalin
test. Third, we found that CBD-treated females showed
a significant increase in nociceptive behaviors com-
pared to CBD-treated male mice, but only during
phase I of the formalin test. Fourth, we found that
CBD (10 mg/kg) in combination with low-dose mor-
phine (1 mg/kg) was ineffective at producing synergistic
antinociception responses in both male and female mice.

Lastly, we showed that female mice responded to the
high-dose morphine (10 mg/kg, i.p.) treatment with a
significantly greater variability than male mice during
both phases of the formalin test.

CBD effects on nociception in the formalin test
Here, we show that CBD, in male mice, is effective at
attenuating acute pain (i.e., phase I) in the formalin
test. Our results partly align with another study that
demonstrated that CBD (5 and 50 mg/kg, i.p.) did
not reduce nociceptive behaviors in the formalin test
in male rats.36 The reason that we observed a signifi-
cant antinociceptive effect in CBD-treated male mice
during phase I of the formalin assay may be due to
the species used (rat vs. mouse) or the dose of CBD,
as evidence suggests that the dose/effect curve of CBD
in relation to behavioral effects follows a U shape rather
than a sigmoidal curve.37

An important feature of the formalin test is that
it includes two distinct nociceptive phases. The first
phase, which represents acute pain, begins immediately
after injection, likely through formalin-induced C fiber ac-
tivation.23,24 The second phase of the formalin test is me-
diated by inflammatory factors, including substance P,
bradykinin, histamine, serotonin, and prostaglandins,38

which activate, in part, transient receptor potential vanil-
loid (TRPV) and transient receptor potential subfamily
A (TRPA) channels directly or indirectly through the ac-
tivation of downstream signaling pathways.25,39

Importantly, the representative acute and inflam-
matory pain states of the formalin test do not actually
represent disease-specific acute or inflammatory pain.
Clinically, acute pain is mediated by nociceptor activa-
tion following exposure to a mechanical, thermal, or
chemical stimulus, while inflammatory pain is medi-
ated by the release of endogenous signaling molecules
(i.e., inflammatory soup) that sensitize primary afferent
nerve fibers.25

Although the formalin test encompasses many sim-
ilar underlying mechanisms of acute and inflammatory
pain as those manifested clinically (e.g., activation of
nociceptive C fibers during the acute phase and periph-
eral inflammatory processes during phase II23), the re-
sults may not translate to the human condition due to
the engagement of highly plastic molecules and circuits
that are unique to each individual’s response to a given
pain condition. Even in animal models of disease, anti-
nociceptive responses will vary to treatments that target
the endocannabinoid system.40

For example, a systematic review and meta-analysis
of modulators of the endocannabinoid system found
variability in treatment outcomes based on the pain
model implemented with the largest attenuation of
pain-associated behavior reported in models of burn
injury and the smallest significant attenuation reported
in models of inflammation.40 Furthermore, it was
found that CBD significantly attenuated nocifensive
behaviors in neuropathic pain models with mixed re-
sults in inflammatory pain models.40 These findings
suggest that treatment options targeting the endocan-
nabinoid system may be more effective for some forms
of pain rather than others.

Another interesting aspect to our findings was that
attenuation of the first phase of the formalin test in
males was not sufficient to prevent the transition to
the second phase of persistent pain. Given that persis-
tent pain is a consequence of the initial acute response
to a nociceptive stimulus, it would be expected that
attenuating the nociceptive response to phase I of the
formalin test would mitigate the nociceptive response
to phase II.

It has been previously shown that local anesthesia at
the site of the formalin injection or spinal cord anesthe-
sia given during the first phase is sufficient to prevent
or reduce the second nociceptive phase of the formalin

CANNABIDIOL ANTINOCICEPTIVE EFFECTS BETWEEN SEXES 653



test.41–43 Future studies will need to address the mech-
anisms mediating CBD-induced reduction in phase I of
the formalin test to help understand the lack of effect as
acute pain transitions to persistent pain.

Despite our findings that show a partial effect of
CBD treatment on persistent pain, other clinical and
pre-clinical studies have found CBD to be a promising
antinociceptive agent for the reduction of inflamma-
tory and neuropathic pain.17,19,30,44–48 Therefore, it is
plausible that the formalin test initiates a cascade of
nociceptive-related signals that require the simulta-
neous activation and/or inhibition of multiple receptor
targets. Because of this, CBD in combination with other
drugs may be required to reduce persistent tonic pain.

CBD as an opioid sparing therapeutic
In addition to investigating the effects of CBD alone,
we investigated whether CBD in combination with
low-dose morphine had synergistic effects on reversing
formalin-induced nociceptive behaviors. Evidence sup-
ports the opioid-sparing potential of CBD, but these
observations are not consistent across multiple pre-
clinical pain models.49,50

Our results show that CBD in combination with
low-dose morphine produces neither synergistic nor
subadditive effects on formalin-induced nociception.
This observed lack of effect is unlikely due to metabolic
drug/drug interactions as CBD is metabolized by cyto-
chrome P450 enzymes, while morphine is metabolized
exclusively by glucuronidation via UGT2B7.51,52 In ad-
dition, CBD has a long half-life.31,53 Therefore, we ex-
pect that the physiological effects of CBD were active
throughout the entirety of our experiments, which is
supported by our observed plasma CBD concentrations
(Table 1).

Sex differences following CBD treatment
in the formalin test
We identified a significant difference between male and
female mice treated with CBD during phase I, but not
phase II, of the formalin assay, suggesting that CBD
(10 mg/kg) differentially alters the pain response in male
versus female mice during formalin-induced acute pain.

Importantly, we did not perform a dose response to
find an optimal dose of CBD for both males and fe-
males undergoing the formalin test. Instead, our inten-
tion was to investigate a dose of CBD that is known to
produce (1) blood plasma concentrations that are
similar to those observed in humans 2 h after CBD ad-
ministration54,55 and (2) antinociceptive behaviors in

arthritic male rodents and neuropathic female ro-
dents.30,32,33 Therefore, these investigations highlight
that one dose may not be optimal for all individuals
or all pain states as many clinical and pre-clinical stud-
ies have shown that females respond differently com-
pared to males following pain treatment.56–61

In line with this, we observed a significant sex dif-
ference between male and female responses to high-
dose morphine (10 mg/kg), with females displaying
greater variability compared to males. This is consistent
with other studies showing that females require a higher
dose of morphine to reach analgesic effects that are
equivalent to males.3–7,62

We cannot definitively conclude from our investiga-
tion that CBD is ineffective for females in a model of
persistent pain as sex-specific differences may be attrib-
uted to the dosing schedule, pain model used, dose ad-
ministered, and/or localization of the injection site. For
example, in models of neuropathic pain, it has been
shown that CBD (10 mg/kg, i.p.) was effective at reduc-
ing paclitaxel-induced cold and mechanical allodynia
in female mice.32

However, CBD was not administered acutely, as in
our study, but rather CBD was repeatedly administered
once a day for 14 consecutive days before paclitaxel in-
jections.32 Yet, in a similar dosing schedule through
which naive rodents received repeated CBD treatment,
it was observed that CBD (10 mg/kg, i.p.) administered
twice a day for four days was only effective at increas-
ing tail withdrawal latencies in males, with no effect
observed in females.63 These results suggest that the
antinociceptive effects of CBD (10 mg/kg, i.p.) are de-
pendent upon the dosing schedule or pain state.

Interestingly, in contrast to the sex differences
observed in our study, others have found comparable
outcomes between males and females following CBD
treatment. For example, following acute CBD treat-
ment (10 or 30 mg/kg, i.p.), in naive rodents, a previous
report found no change in response latency to paw
pressure or tail withdrawal tests in both male and
female rodents.64 In another study implementing a
model of Parkinson’s-induced myofascial pain, the au-
thors discovered that localized injection of CBD into
the masseter muscle (the site of formalin injection)
evoked antinociceptive behaviors in both phases of the
formalin test as well as increased mechanical allodynia
in both male and female rodents.65

Taking these previous findings into account, our
observations that an acute systemic injection of CBD
(10 mg/kg) was more effective at reducing nociception
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in phase I of the formalin test in males rather than in
females may not hold true when varying the dosing
schedule, dose used, or placement of injection (i.e., lo-
calized to the site of injury versus systemic).

In addition to only using one dose of CBD in our as-
sessments, another limitation to our study is that we
did not monitor the estrus phase of the female mice,
which may explain the variability observed following
treatment with either CBD or morphine. It is known
that the estrus phase is accompanied by shifts in hor-
mones, which regulate receptor expression/function,66–72

drug metabolism,73–75 and neuroimmune function,76–78

all factors that contribute to a pain response.79–81 There-
fore, future studies addressing the mechanisms of CBD
action and how the estrus cycle may influence CBD’s
effects are required.

Despite these sex differences in response to pain
treatment, we observed that both males and females
displayed comparable nocifensive behaviors to forma-
lin injection, as demonstrated by a lack of significant
difference between vehicle-treated male and female
mice. Our results are consistent with studies in mice,
showing that male nociceptive responses to formalin
injection during phase I and II of the formalin test
were no different than female mice across all stages
of the estrus cycle.82

Conclusion
In conclusion, we interpret our results to indicate that
CBD (10 mg/kg) in combination with low-dose mor-
phine (1 mg/kg) is ineffective at reducing nociception
in the formalin test and that CBD may have sex-specific
effects on nociceptive severity. Importantly, our results,
in combination with other published findings, suggest
that CBD has the potential to be an effective antinoci-
ceptive therapeutic for some, but not all, forms of pain.

In addition, caution should be implemented in self-
medicating with CBD, as CBD when combined with
morphine has shown to evoke subadditive effects in
distinct forms of pain.49 This subadditive behavioral
phenotype is supported by a pharmacological study,
which showed that CBD decreased in vitro binding of
morphine to opioid receptors, which would reduce
morphine-induced opioid receptor activation and likely
diminish morphine-induced analgesia.83,84 Moreover,
given its metabolism by CYP3A4 and CYP2C19, self-
medication may interfere with the metabolism of many
prescription drugs.85

Given the inconsistent effects of CBD on reducing pain
across multiple pain models, it is clear that future work, in

addition to the important contributions already made,86

is required to understand the mechanisms by which
CBD evokes antinociceptive responses in both males
and females. This will help clinicians effectively imple-
ment CBD-based modalities for pain management.
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