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RELA is required for CD271 
expression and stem‑like 
characteristics in hypopharyngeal 
cancer
Akira Nakazato1,3,8, Mai Mochizuki1, Rie Shibuya‑Takahashi1, Haruna Fujimori1, 
Keitaro Fujii3, Satoshi Saijoh3, Shinkichi Morita3, Tomoko Yamazaki4, Takayuki Imai3, 
Ikuro Sato5, Kennichi Satoh6, Kazunori Yamaguchi2, Kazuo Sugamura2, Jun Yasuda2, 
Kazuto Matsuura7, Hideo Shojaku8, Yukinori Asada3 & Keiichi Tamai1*

CD271 (also referred to as nerve growth factor receptor or p75NTR) is expressed on cancer stem cells 
in hypopharyngeal cancer (HPC) and regulates cell proliferation. Because elevated expression of 
CD271 increases cancer malignancy and correlates with poor prognosis, CD271 could be a promising 
therapeutic target; however, little is known about the induction of CD271 expression and especially 
its promoter activity. In this study, we screened transcription factors and found that RELA (p65), a 
subunit of nuclear factor kappaB (NF-κB), is critical for CD271 transcription in cancer cells. Specifically, 
we found that RELA promoted CD271 transcription in squamous cell carcinoma cell lines but not in 
normal epithelium and neuroblastoma cell lines. Within the CD271 promoter sequence, region + 957 
to + 1138 was important for RELA binding, and cells harboring deletions in proximity to the + 1045 
region decreased CD271 expression and sphere-formation activity. Additionally, we found that clinical 
tissue samples showing elevated CD271 expression were enriched in RELA-binding sites and that HPC 
tissues showed elevated levels of both CD271 and phosphorylated RELA. These data suggested that 
RELA increases CD271 expression and that inhibition of RELA binding to the CD271 promoter could be 
an effective therapeutic target.

CD271, also referred to as nerve growth factor receptor, functions at the molecular nexus of cell death, survival, 
and differentiation1. In addition to its contribution to the nervous system, recent studies have revealed that 
CD271 plays a role in cancer. In melanoma cells, CD271 is identified as a cancer stem cell marker2, but recent 
study suggested that high CD271 expression reduce tumor growth and metastasis3. In gastric cancer CD271 
inhibits invasion and metastasis by suppressing NFkB signaling4. Meanwhile, CD271 expression is positively 
correlated with malignancy in squamous cell carcinoma, including, lung squamous cell carcinoma5, esopha-
geal cancer6, and hypopharyngeal cancer (HPC)7. In HPC, elevated expression of CD271 correlates with poor 
prognosis, as well as high tumorigenicity and invasion capability7,8. Furthermore, CD271 expression has been 
identified at the invasive front of cancer cell7. These data suggest that regulation of CD271 expression might 
represent a therapeutic target.

The mechanisms of CD271 transcription have not been fully elucidated, and few studies have reported on 
the transcription factors involved in CD271 promoter activity. In neuroblastoma, transcription factor specific-
ity protein 1 (Sp1) is required for CD271 transcription following its binding near the transcription start site9. 
Additionally, in proximal tubular renal cells, the − 41 to + 100 region of the CD271 promoter is required for 

OPEN

1Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47‑1, Medeshima‑Shiote, Natori, 
Miyagi, Japan. 2Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, 47‑1, 
Medeshima‑Shiote, Natori, Miyagi, Japan. 3Department of Head and Neck Surgery, Miyagi Cancer Center, 
47‑1, Medeshima‑Shiote, Natori, Miyagi, Japan. 4Department of Head and Neck Medical Oncology, Miyagi 
Cancer Center, 47‑1, Medeshima‑Shiote, Natori, Miyagi, Japan. 5Department of Pathology, Miyagi Cancer 
Center, 47‑1, Medeshima‑Shiote, Natori, Miyagi, Japan. 6Division of Gastroenterology, Tohoku Medical and 
Pharmaceutical University, 1‑15‑1 Fukumuro, Miyaginoku, Sendai, Miyagi 983‑8536, Japan. 7Department of Head 
and Neck Surgery, National Cancer Center Hospital East, Kashiwanoha, Kashiwa, Chiba, Japan. 8Department of 
Otolaryngology, University of Toyama, Sugitani, Toyama, Japan. *email: tamaikeiichi@med.tohoku.ac.jp

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-22736-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:17751  | https://doi.org/10.1038/s41598-022-22736-6

www.nature.com/scientificreports/

rapamycin-induced CD271 transcription10. However, there are no reports of transcriptional regulation of CD271 
in head and neck squamous cell carcinoma (HNSC).

HPC is associated with the hypopharynx and accounts for 21.4% of all subsites related to HNSC in Japan11. 
The location of the hypopharynx results in the worst prognosis of HNSC among all subsites. Despite advances in 
chemotherapy, radiation, and reconstructive surgery options, there exists no clearly preferred treatment modal-
ity, and efforts to improve survival have been challenging and of limited efficacy12. Therefore, identification of a 
new therapeutic target is required.

In this study, we identified the promoter region and a responsible transcription factor of CD271 in HPC and 
investigated CD271-transcription-dependent effects on tumor malignancy.

Materials and methods
Ethics statements.  This study was conducted in accordance with the Declaration of Helsinki and approved 
by the Ethics Committees of the Miyagi Cancer Center (Natori, Japan). All procedures were approved by and 
executed in accordance with the Miyagi Cancer Center (permit No. 2018-010) and performed according to com-
mittee regulations. All patients provided written informed consent for inclusion in the study.

Cell lines.  We used HPC patient-derived xenograft cell lines (HPCM17,8 and HPCM27,8 cells), which were 
maintained in Roswell Park Memorial Institute (RPMI)-1640 medium (Wako, Osaka, Japan) supplemented with 
10% fetal bovine serum (FBS), 100 unit/mL penicillin, and 100 μg/mL streptomycin. MCC148c cells13, estab-
lished by patient-derived xenografts of cancer tissue from a lung squamous cell carcinoma patient5, were main-
tained in DMEM supplemented with 10% FBS, 0.4 mg/mL hydrocortisone, 2.5 mM Y-27632 (Focus Biomol-
ecules, Plymouth, PA, USA), and penicillin/streptomycin. DMEM supplemented with 10% FBS and penicillin/
streptomycin was used to maintain 293 T cells (RIKEN BioResource Center, Kyoto, Japan). Het-1A cells were 
purchased from the American Type Culture Collection (ATCC; Manassas, VA, USA) and maintained in airway 
epithelial cell basal medium from the airway epithelial cell growth medium supplement pack (PromoCell, Hei-
delberg, Germany) supplemented with 4% FBS and penicillin/streptomycin. IMR-32 cells were purchased from 
ATCC and maintained in DMEM supplemented with 10% FBS and 0.1 mM non-essential amino acids (Thermo 
Fisher Scientific, Waltham, MA, USA). HSC-3 cells were purchased from RIKEN (Saitama, Japan) and main-
tained in Eagle’s minimal essential medium supplemented with 10% FBS and penicillin/streptomycin.

Cell Sorting.  HPCM2 cells were stained with anti-CD271 antibody (ME20.4; BioLegend, San Diego, CA, 
USA) and sorted according to the CD271 expression (MA900, SONY, Tokyo, Japan). Five percent of low CD271-
expression population was collected and subsequently cultured for three days, and total RNA was extracted.

Establishment of CD271‑promoter‑deleted mutant cells.  We designed guide (g)RNA to delete the 
RELA-binding site using CRISPRdirect14. The gRNAs were inserted into the pSpCas9(BB)-2A-GFP (PX458) 
vector [a gift from Feng Zhang (Addgene plasmid #48138; Addgene, Watertown, MA, USA)]15. The gRNA 
sequences for deletion of site + 1045 were as follows: 5′-tggggctgcggatctaaggc-3′ and 5′-ggggagtgcccacttcgccg-3′. 
HPCM2 cells were seeded in two-dimentional culture system, and synchronized with 3 μM aphidicolin (011-
09811; Wako, Osaka, Japan) for 24 h prior to targeting16. Then both plasmids were transfected into HPCM2 cells 
using FuGeneHD (Promega, Madison, WI, USA), and for the control, a PX458 vector without gRNA was trans-
fected. Cells were released for 4 h prior to transfection by washing with complete medium, then transfected. At 
2-days post-transfection, GFP-positive cells were sorted using a cell sorter (MA900; Sony Biotechnology, Tokyo, 
Japan) to establish a stable transfectant.

Cloning of CD271 promoter sequence..  CD271 promoter region was cloned from HPCM2 genome 
using PCR-based method. Deletion mutants and point mutations of pNL1.1-neo-CD271promotor were gener-
ated using PrimeSTAR Mutagenesis Basal Kit (Takara, Osaka, Japan.). Summary of the point mutations are listed 
in Table 1.

Table 1.   Sequences of RELA binding sites of CD271 promoter region.

Name Wild type Mutant

959 m tGGA​CAT​TTCcag tGAA​CAT​GTccag

1062 m acttcgccGGG​GCG​AACCcg acttcgccGGA​GCG​AAACcg

1045 m ggctgggagGGG​AGT​GCCCac ggctgggagGGG​CGT​GCCAAc

1079 m tcccGGG​GTT​CCCCcacggc tcccGGA​GTG​CCCCcacggc

463 m gagGGG​TCT​TTCAagagggggcatgggg gagGGA​TCT​GTCAagagggggcatgggg

484 m catGGG​GCT​CTCCgatgcccaggttcttc catGGA​GCT​ATCCgatgcccaggttcttc

541 m cgaaGGG​ACT​TTCCcctcagcatctcggtctct cgaaGAG​ACT​GTCCcctcagcatctcggtctct

657 m gcGGG​GAG​CCCGggacgacg gcGGA​GAG​CACgggacgacg
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Prediction of transcription factors.  HPCM2 cells were sorted according to CD271 expression using a 
MA900 (SONY, Tokyo, Japan), and a CD271-low fraction was obtained (day 0). The sorted cells were cultured 
with RPMI-1640 containing 10% FBS, and cells were obtained after 1, 2, and 3 days in duplicate. The cells were 
lysed, and total RNA was obtained using an RNeasy micro kit (Qiagen, Hilden, Germany). Microarray analysis 
(8 × 60 k; Agilent Technologies, Santa Clara, CA, USA) was performed according to manufacturer instructions, 
and significantly enriched gene sets were determined using Gene Set Enrichment Analysis (GSEA)17 by compar-
ing day 0/1 and day 2/3 samples.GSEA was performed by using GSEA software (Broad Institute, https://​www.​
gsea-​msigdb.​org/​gsea/). Enrichment score (ES) reflects the degree to which a gene set is overrepresented at the 
top or bottom of a ranked list of genes. A positive ES indicates gene set enrichment at the top of the ranked list; 
a negative ES indicates gene set enrichment at the bottom of the ranked list.

Prediction of RELA‑binding sites.  RELA-binding sites in CD271 promoter were predicted using 
TFBIND18. CD271 promoter sequence between 432 and 1138 was analyzed in the website (https://​tfbind.​hgc.​
jp/), and RELA binding sites were identified.

siRNA.  Negative control siRNA, RELA siRNA#1 (s535313), and #2 (s11914) were purchased from Ther-
mofisher Science. The siRNA transfections were performed using Lipofectamine RNAiMAX Reagent (Life Tech-
nologies, CA, USA) as described previously19.

Plasmid.  RELA, NFKB1, and NFKB2 genes was cloned from HPCM2 genome using a PCR method. A SP1 
gene was obtained from RIKEN DNA Bank (IRAL050J02, Tsukuba, Japan). SP1 and NFKB2 genes were inserted 
into 3xFLAG-CMV10 vector, and NFKB1 and RELA were 3xFLAG-CMV14, respectively (Sigma Aldrich, St. 
Louis, MO, USA).

3‑(4,5‑Dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay.  MTT assay was 
performed as described previously19. In brief, MTT (5 mg/mL, 1:10) was added to the medium and after 2 h, 
equal volume of 10% SDS in 0.01 M HCl was added and further incubate for overnight, and the absorbance value 
of 550 nm was measured.

Luciferase assay.  The CD271 promoter region was amplified from the genome of HPCM2 cells using poly-
merase chain reaction and cloned into the pNL1.1-Nluc-Neo vector (Promega). 293 T cells were transfected with 
the plasmids using FugeneHD (Promega) according to manufacturer instructions, and 2 days after transfection, 
cells were lysed with Nanoglo (Promega), and luminescence was measured using a Synergy H1 system (Agilent 
Technologies). The pGL4.10[luc2] vector (Promega) was also transfected along with pNL1.1-Nluc-Neo for nor-
malization.

Sphere‑formation assay.  1 × 10^3 cells were cultured with DMEM/F12 supplemented with B27 (1:50; 
Thermo Fisher Scientific), epidermal growth factor (20 ng/mL; Peprotech, Cranbury, NJ, USA), and fibroblast 
growth factor-2 (20  ng/mL; Peprotech) on a 96-well Nunclon Sphera plate (Thermo Fisher Scientific). After 
7 days, MTT assay was performed as described previously with minor modifications20. A 1/10 volume of MTT 
assay reagent (5 mg/mL; Fujifilm Wako Pure Chemical Corp.) was added to each well and incubated in a humid-
ified 5% CO2 incubator. After 2 h, 10% SDS in 0.01 M HCl was added to each well and incubated overnight at 
37 °C. The absorbance at 575 nm and 650 nm (background measurement) was determined using a VersaMax 
ELISA Microplate Reader (Molecular Devices, Sunnyvale, CA, USA).

Flow cytometry.  Flow cytometry was performed as previously described8. Fluorescence data were collected 
using a FACSCanto II system (BD Biosciences), a SA3800 cell analyzer (Sony Biotechnology, Tokyo, Japan), or a 
MA900 cell sorter (Sony Biotechnology) according to staining using an anti-CD271 antibody (ME20.4; BioLe-
gend, San Diego, CA, USA). Data were analyzed using FlowJo software (v10, FlowJo LLC, Ashland, OR, USA) 
and the CytoExploreR package in R software21.

Western blot.  Western blot was performed as previously described8 using the following antibodies: anti-
CD271 (1:1000; D4B3; Cell Signaling Technology, Danvers, MA, USA), anti-RELA (1:1000; D14E12; Cell Sign-
aling Technology), horseradish peroxidase (HRP)-conjugated anti-β-actin (1:1000: Medical and Biological 
Laboratories Co., Ltd., Nagoya, Japan), anti-α-tubulin (1:1000; Medical and Biological Laboratories Co., Ltd.), 
HRP-conjugated anti-mouse IgG (1:1000; Cell Signaling Technology), and HRP-conjugated anti-rabbit IgG 
(1:1000; Cell Signaling Technology). The samples were separated by sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (Bio-Rad, Hercules, CA, USA) and transferred onto polyvinylidene fluoride membranes (Bio-
Rad).

Immunohistochemistry.  Tumor specimens were obtained from 38 consecutive cases from 2013 to 2017 
of hypopharyngeal cancer at Miyagi Cancer Center (Natori, Japan), in which patients underwent biopsy before 
treatment. All of the cases were pathologically diagnosed as squamous cell carcinoma. Immunostaining of 
formalin-fixed paraffin-embedded tissue was performed as previously described8 using the following antibod-
ies: anti-CD271 (1:2500; C40-1457; BD Biosciences), anti-phosphorylated (p)-RELA (1:1500; ab86299; Abcam, 
Cambridge, UK), and EnVision + Dual Link System-HRP (anti-mouse and anti-rabbit; Dako, Glostrup, Den-
mark). Heat-induced epitope retrieval was performed by microwaving the sections in target retrieval solution 

https://www.gsea-msigdb.org/gsea/
https://www.gsea-msigdb.org/gsea/
https://tfbind.hgc.jp/
https://tfbind.hgc.jp/
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for CD271 staining (pH 9.0; Dako) or Immunosaver (Fujifilm Wako Pure Chemical Corp., Osaka, Japan) for 
p-RELA staining.

Analysis of the cancer genome atlas (TCGA) data.  An RNA-seq dataset (normalized using fragments 
per kilobase of transcript per million mapped reads) for HNSC was downloaded from TCGA (https://​portal.​gdc.​
cancer.​gov/). After excluding normal tissue samples, a total of 500 cases were enrolled. The cases were divided 
into CD271-high and -low groups by median expression value, and gene set enrichment analysis (GSEA) was 
performed17.

Statistical analysis.  Significant differences between experimental groups were determined by Student’s t 
test using GraphPad Prism software (v9.0; GraphPad Software, San Diego, CA, USA) or R software (v4.1.0)22, 
with a p < 0.05 considered significant.

Results
Identification of transcription factors targeting the CD271 promoter.  To identify transcription 
factors targeting the CD271 promoter, we compared sorted CD271-low HPCM2 cells with those showing pro-
liferation after sorting according to the cell surface CD271 expression (Fig. 1A). Sorting of HPCM2 according 
to low CD271 expression resulted in recovery of CD271 protein (Fig. 1A) and mRNA (Fig. 1B) expression after 
3 days (Fig. 1B), which is consistent with our previous data7, enabling comparison of transcriptomes between 
CD271-low and CD271-recovered fractions in order to identify changes in CD271-specific transcription factor 
activity. We obtained comprehensive gene expression and compared between day-0, 1 and 2, 3 samples using 
Gene Set Enrichment Analysis (GSEA)17, and found that the NFKAPPAB_01 gene set, which contains genes 
having the motif of RELA and NFKB transcription factor binding sites, was significantly enriched in day 2 and 3 
samples (Fig. 1C). To validate this result, we cloned the CD271 promoter region and examined promoter activity 
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Figure 1.   Screening transcription factors potentially involved in CD271 expression. (A) Representative data of 
CD271 expression in HPCM2 cells. HPCM2 cells were sorted into a CD271-low fraction and cultured for 3 days, 
followed by determination of CD271 expression using flow cytometry. (B) Real-time PCR of CD271 mRNA. 
The sorted cells (day-0) and subsequently cultured cells (day-1, 2, and 3) were harvested and total RNA was 
purified. (C) Gene Set Enrichment Analysis. Comprehensive gene expressions were obtained using microarray 
and compared day-2, 3 versus 0, 1. Target genes of NFKB and RELA were upregulated in day-2, 3 cells. ES, 
enrichment score. (D) Luciferase assay. 293 T cells were transfected with vectors harboring the indicated genes 
and the CD271 promoter region containing a luciferase reporter. Luciferase activity was measured 2-days post-
transfection.
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using 293 T cells overexpressing each transcription factor. Although we observed no enhanced luciferase activ-
ity in NFκB1 and NFκB2-overexpressing cells, RELA-overexpressing cells showed prominent luciferase activity 
(Fig. 1D). Additionally, we confirmed that Sp1, previously reported as a transcription factor of CD271 in neuro-
blastoma cells8, did not initiate luciferase activity.

RELA induces CD271 expression in squamous cell carcinoma cells.  We then validated RELA-spe-
cific promotion of CD271 expression in HNSC cells. In HPC cell lines (HPCM1 and HPCM2; both squamous 
cell carcinoma), we observed significant decreases in CD271 expression following transfection with small-inter-
fering (si)RNA targeting RELA (Fig. 2A,B, and Supplemental Fig. 1), with similar results observed in HSC3 cells 
(tongue squamous cell carcinoma). We previously reported that CD271 plays a critical role in lung squamous 
cell carcinoma 5; therefore, we performed this assay using MCC148c cells (lung squamous cell carcinoma) and 
observed the same results. However, in normal esophageal epithelium (Het-1A) and a neuroblastoma cell line 
(IMR-32), RELA knockdown did not affect CD271 expression, despite confirmation of decreased RELA levels 
(Fig. 2 and Supplemental Fig. 1). These data indicated that RELA-dependent CD271 expression might be specific 
to squamous cell carcinoma.

We then investigated RELA functions using RELA-overexpressing 293 T cells based on their low expression 
of CD271 and ease of transfection using the p3xFLAG-CMV14-RELA vector. Following transfection, western 
blot and flow cytometric analyses confirmed a significantly higher CD271-positive population in RELA-FLAG-
overexpressing cells relative to control cells in both experiments (Fig. 3A and B).

Identification of RELA‑binding sites in the CD271 promoter region.  To investigate the specific 
region in the CD271 promoter responsible RELA-induced transcription, we introduced mutations into the 
CD271 promoter region and performed luciferase assays (Fig. 4A). The results identified decreased luciferase 
activity in cells harboring regions + 957 to + 1519 and + 1138 to + 1519 (Fig. 4B), with similar results observed 
in HPCM2 cells (Fig. 4C). A search for RELA-binding sites from site + 432 to + 1138 revealed seven potential 
binding sites; therefore, we created clones harboring mutations in these specific regions and the luciferase assays. 
Although luciferase activity was modestly altered in clones harboring mutations between + 432 and + 957, no 
difference was observed between single mutations and multiple mutations (Fig. 4D). We observed decreased 
luciferase activity for deletions in the region + 957 to + 1519, with significant decreases in activity observed with 
mutation at sites + 959, + 1045, + 1062, respectively, and more pronounced decrease of all three sites in combina-
tion in 293 T and HPCM2 cells (Fig. 4E).

Deletion of RELA‑binding site decrease sphere forming capacity.  To investigate whether these 
RELA-binding sites play critical roles in CD271 function and cancer malignancy (especially cancer stem cell-
related phenotypes), we performed a sphere-forming assay using cells harboring mutations of RELA-binding 
sites in the CD271 promoter. Although we attempted to establish cells harboring each RELA-binding-site muta-
tion using the CRISPR/Cas9 system, mutation at site + 959 and + 1062 inhibited cell proliferation (data not 
shown). We successfully established cells harboring deletion of site + 1045 (Fig. 5A), and we subsequently con-
firmed decreases in CD271 expression in these cells (Fig. 5B). Additionally, sphere-formation assays showed a 
significant decrease in the number of spheroids formed by the mutant cells relative to controls (Fig. 5C). Moreo-
ver, assessment of the proliferative capacity of the mutant cells in two-dimensional culture indicated slightly 
decreased proliferation by the mutant cells relative to that observed in controls (Fig. 5D). Furthermore, gene-
expression analysis revealed enrichment of a gene set named KERATINIZATION, generally known as a differ-
entiation status23, in the mutant cells (Fig. 5E). Furthermore, SOX224, SOX1225, ALDH1A126, and KRT1327 genes 
were downregulated in CD271 promoter knock-out cells (Fig. 5F), suggesting loss of stemness by depletion of 
CD271.

Relationships between CD271 and RELA in clinical specimens.  To elucidate a relationship between 
RELA and CD271 in clinical specimens, we searched TCGA and performed RNA-seq analysis. Because RELA 
phosphorylation is required for its transcriptional activity28, we investigated correlations between CD271 tran-
script levels and those of other RELA-targeted genes. The results identified significant enrichment of a gene 
set (NFKAPPAB_01) containing genes harboring NF-κB- and RELA-binding sites, among CD271-high cases 
(Fig. 6A). Subsequent immunohistochemistry analysis of CD271 and RELA expression in clinical specimens 
revealed that CD271 and p-RELA staining were significantly correlated and pp65-high cases tended to be 
CD271-high (Fig. 6B and Table 2).

Discussion
In this study, we identified RELA as a transcription factor of CD271, as well as the target region for RELA binding 
in the CD271 promoter. Additionally, we confirmed that deletion of this region reduced spheroid formation, a 
model of cancer stem cell enrichment29, although the proliferative capacity of the cells in 2D culture was only 
slightly decreased, suggesting that CD271 affect stemness rather than cell proliferation. Moreover, GSEA results 
identified enrichment of a gene set related to KERATINIZATION, which is related to differentiation in squamous 
cell carcinoma. We previously reported that CD271 plays critical roles in cancer stem cells7. The present data 
suggest that CD271 expression induced by RELA binding at the + 1045 site in the CD271 promoter is involved in 
cancer stemness, as well as cell proliferation. Furthermore, we confirmed these findings using several squamous 
cell carcinoma cell lines. In addition, we verified that RELA was not involved in CD271 expression in neuroblas-
toma or normal epithelial cell lines, which differed from a previous study suggesting that Sp1 is important for 
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CD271 transcription in neuroblastoma cells9. In the present study, we showed that RELA-specific transcription 
of CD271 is cell-type-dependent.

Although harboring deletion of site + 1045 resulted in reduced sphere-formation activity, we were unable to 
establish cultures of cells harboring deletion of site + 959 and + 1062. We previously showed that the proliferative 
capacity of CD271 knockdown cells is dramatically reduced in HPCM2 cells8. Therefore, it is possible that RELA 
binding at sites + 959 and + 1062 are more critical than + 1045 for cell proliferation.

NF-κB is a member of a family of transcription factors involved in regulating a wide variety of biological 
responses30. In HNSC, the NF-κB pathway is often activated along with cancer development and progression31. 
In HPC cell lines, previous report demonstrated increased RELA phosphorylation following stimulation with 
bile acid, which is a risk factor for upper aerodigestive tract malignancies32. Moreover, in the present study, we 
identified RELA as a transcription factor for CD271 and that deletion of RELA-binding sites reduced spheroid-
forming activity. These data are compatible with previous studies and suggest that inhibiting RELA binding to 
the CD271 promoter could represent a promising therapeutic target.
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Data availability
The microarray datasets generated and analyzed during the current study are available in Gene Expression 
Omnibus (https://​www.​ncbi.​nlm.​nih.​gov/​geo/, GSE212399).
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