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ABSTRACT

Introduction: Preclinical studies have indicated
insulin-like growth factor 1 (IGF1) as a novel
therapeutic target in the treatment of
migraines. We aimed to investigate the causal
effect of circulating IGF1 levels on migraine risk
using the two-sample Mendelian randomiza-
tion method.

Methods: A total of 431 independent variants
from 363,228 unrelated individuals in the UK
Biobank were used as genetic instruments for
circulating IGF1 levels. Summary-level data for
migraines were obtained from two independent
studies with 10,536 and 28,852 migraine cases,
respectively.
Results: Mendelian randomization using
inverse-variance weighting showed that
increased IGF1 levels were significantly associ-
ated with decreased risk of migraines in both
outcome datasets (odds ratio 0.905, 95% confi-
dence interval 0.842–0.972, p = 0.006; odds
ratio 0.929, 95% confidence interval
0.882–0.979, p = 0.006). Although some other
robust Mendelian randomization methods did
not demonstrate a significant association, no
unbalanced horizontal pleiotropy was found by
Mendelian randomization–Egger regression
(p values for horizontal pleiotropy 0.232 and
0.435). The effect was confirmed in additional
analyses including multivariable Mendelian
randomization analyses.
Conclusion: This two-sample Mendelian ran-
domization study showed that genetically
determined increased IGF1 levels are causally
associated with decreased migraine risk. Future
randomized controlled trials are warranted to
confirm the benefits of IGF1 administration on
migraines.
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Key Summary Points

Studies have shown that insulin-like
growth factor 1 (IGF1) might play a role in
the pathogenesis of several neurological
disorders, including migraine. However,
the association between IGF1 and
migraine is unclear.

In the present study, we investigate the
causal effect of circulating IGF1 levels on
migraine risk using the two-sample
Mendelian randomization method.

This two-sample Mendelian
randomization study showed that
genetically determined increased IGF1
levels are causally associated with
decreased migraine risk.

Future randomized controlled trials are
warranted to confirm the benefits of IGF1
administration on migraines.

INTRODUCTION

Insulin-like growth factor 1 (IGF1) is a pleio-
tropic polypeptide hormone, structurally simi-
lar to proinsulin. IGF1 is mainly produced by
the liver upon stimulation by growth hormone
[1]. In addition, the stimulatory effect of growth
hormone is greatly affected by nutritional status
and physical activity [2, 3]. Moreover, IGF1 has
key roles in regulating cellular proliferation,
differentiation, and apoptosis [1, 4], consistent
with epidemiological evidence that increased
circulating IGF1 is associated with the risk of
several cancers [5], as well as cardiometabolic
diseases [6, 7]. Similarly, studies have shown
that IGF1 might also play a role in the patho-
genesis of several neurological disorders,
including migraine [8–11]. Moreover, preclini-
cal studies have demonstrated that IGF1 could

be a novel therapeutic target in treating
spreading depression, which is widely accepted
as the pathophysiological event underlying
migraine aura [12]. However, no study has
provided epidemiological evidence regarding
the association between IGF1 and migraine.

With the increasing availability of summary
data from large, genome-wide association stud-
ies (GWASs), a new method of two-sample
Mendelian randomization (MR) has been widely
used to assess causality. Because genetic factors
are randomly assigned by nature, two-sample
MR can be used to simulate a randomized trial
design. Thus, unlike conventional observational
study design, this method is not generally sus-
ceptible to the reverse causality or confounding
[13]. Our study aims to investigate the causal
effect of circulating IGF1 levels on migraine risk
using the two-sample MR method (Fig. 1). The
present study can provide more evidence
regarding the potential clinical value of target-
ing IGF1 for treating migraine.

METHODS

We followed the STROBE-MR guidelines to
perform the present study [14]. Ethics approval
and informed consent were not required for the
present study, as they were obtained in the
original studies. The original studies were con-
ducted in compliance with the Declaration of
Helsinki.

Selection of Genetic Instruments

We obtained genetic instruments from a GWAS
of 363,228 unrelated individuals in the UK
Biobank [15]. Most individuals were of Euro-
pean descent (94.3%). First, IGF1 measurements
were log-transformed. Then, linear regression
was performed by adjusting covariates includ-
ing the top 40 genotype principal components,
as well as age, sex, age 9 sex, ethnicity, eth-
nicity 9 sex, fasting time, assessment center,
genotyping batch, estimated sample dilution
factor (icosatiles), icosatiles of the time of sam-
pling throughout the day, and month of
assessment. The resulting residuals were used to
perform the GWAS analysis.
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First, the full summary statistics of all single
nucleotide polymorphisms (SNPs) were down-
loaded. We obtained all SNPs associated with
IGF1 at a genome-wide significance level of
p\5 9 10-8. Because effect allele frequency
was not reported in the summary statistics, we
first excluded palindromic SNPs. We then
excluded SNPs with multiple alleles and SNPs
located around the human leukocyte antigen
region (chr6:25–34 Mb) [16, 17, 18]. Finally, we
performed a clumping procedure to ensure that
the SNPs we used were independent of each
other (r2 = 0.01, 10,000 kb). The European 1000
Genome Project v3 reference panel was used as
a reference.

A total of 431 independent SNPs were
included as genetic instruments (Supplemen-
tary Table 1). The F statistic for each SNP was
calculated using the following formula: beta2/
SE2. The values of the F statistics ranged from 29
to 1478. The variance explained by these SNPs
was calculated to be 10.49%, using the follow-
ing formula: 2 9 beta2 9 MAF 9 (1 - MAF)

[19], where MAF denotes minor allele
frequency.

Outcome Datasets

We used two independent GWASs of migraine
to perform the MR study. The first GWAS sum-
mary statistics were obtained from the last
release (release 6) of the FinnGen study [20],
which included 10,536 migraine cases and
208,845 controls. A total of 8647 (82.07%)
patients were female. The mean age at first
migraine event was 40.27 years. Moreover, 4366
cases presented with aura and 3924 cases pre-
sented without aura. Migraine was defined by
codes from the 8th, 9th, and 10th versions of
the International Classification of Disease. In
the FinnGen study, mixed-model logistic
regression was performed by adjusting for age,
sex, the 10 principal components, and geno-
typing batch.

The second GWAS summary statistics were
obtained from a genetic study of 554,569

Fig. 1 Design of the present Mendelian randomization
study. The three core assumptions for two-sample MR
study are as follows: the genetic instrument is associated
with the exposure; the instrument genetic instrument does
not affect outcome via pathways other than the exposure;
and the genetic instrument is not associated with

confounders. GWAS genome wide association study,
IGF1 Insulin-like growth factor 1, MR Mendelian ran-
domization, SNP single nucleotide polymorphism
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individuals (28,852 migraine cases) from the
Genetic Epidemiology Research in Adult Health
and Aging cohort and the UK Biobank cohort
[21, 22, 23, 24]. Most individuals were of Euro-
pean descent (92.55%), and the mean age was
57.82 years. Additionally, there were 22,500
female cases and 279,762 female controls.
Migraine cases in the Genetic Epidemiology
Research in Adult Health and Aging cohort were
determined using a migraine probability algo-
rithm based on migraine-specific prescriptions
and codes from the 9th and 10th versions of the
International Classification of Disease. Mean-
while, most migraine cases in the UK biobank
were based on self-reported data. Logistic
regression was performed by adjusting for age,
sex, and ancestry principal components.
Although overlap occurred between this GWAS
and the IGF1 GWAS, a recent study showed that
two-sample MR can be utilized for a single large
dataset from large biobanks, such as the UK
biobank [25]. In addition, the calculated results
showed the bias due to sample overlap to be
negligible (0.68%) on the basis of a sample
overlap proportion up to 65.50% using a web
tool (https://sb452.shinyapps.io/overlap/) [26].

Harmonizing Exposure and Outcome SNP
Effects

Before performing the MR analysis, we harmo-
nized the alleles and effects to ensure each SNP’s
effect on the exposure and the outcome corre-
sponds to the same effect allele [27]. For wrong
effect alleles (e.g., G/T and T/G), the signs of the
SNP-outcome effect and the alleles for outcome
were both flipped. In addition, if one study
reported the effect on the forward strand and
the other on the reverse strand (e.g., G/T and
C/A), the outcome alleles were harmonized to
match those of the exposure alleles. SNPs with
incompatible alleles (e.g., A/G and A/C)
between the exposure and the outcome were
excluded.

MR Analysis

The Wald ratio method was used to obtain the
estimated causal effect of IGF1 on migraine risk

based on each SNP [27]. A random-effects
inverse variance weighted (IVW) meta-analysis
of each Wald ratio estimate was performed to
obtain a pooled effect of all SNPs [27]. The
estimate from the IVW method was considered
as the main MR result. Each SNP was treated as a
valid natural experiment for this method. This
method allows each SNP to have different mean
effects and will return an unbiased estimate if
the net-horizontal pleiotropy across all SNPs is
balanced [27]. Moreover, horizontal pleiotropy
indicates that the instrument SNP can influence
the outcome through other pathways. Other
robust methods, including MR-Egger, weighted
median, and weighted mode analyses, were
used to perform sensitivity analyses. Addition-
ally, the MR-pleiotropy residual sum and outlier
(MR-PRESSO) method was performed to detect
outliers.

Meta-analysis was performed to assess the
pooled effects of IGF1 on migraine using IVW
estimates from the two outcome datasets [28].
We then performed a meta-analysis to combine
the effects (i.e., beta and SE) of genetic instru-
ments on migraine of the two migraine datasets
[29, 30]. The resulting effects of SNPs on
migraine were then used to perform a two-
sample MR analysis.

Previous two-sample MR analysis showed
that increased IGF1 levels were causally associ-
ated with increased risk of type 2 diabetes [31].
In addition, smoking, diastolic blood pressure,
insomnia, and serum calcium were found to be
positively associated with migraine risk
[32, 33, 34, 35]. Thus, we performed sensitivity
analysis by excluding SNPs associated with
these traits (p\ 5 9 10-8). SNPs associated with
body mass index, lipids, and physical activity
were also excluded in sensitivity analysis. In
addition, multivariable MR analysis was per-
formed by adjusting these traits. The effects of
the SNPs on these factors were obtained from
the largest GWASs publicly available. For SNPs
that were found in the corresponding GWAS,
we obtained the data from the OpenGWAS
database [27].

We also performed a reverse two-sample MR
analysis to assess the causal effects of migraine
on circulating IGF1 levels. Genetic instruments
for migraine were obtained from a large GWAS

1680 Neurol Ther (2022) 11:1677–1689

https://sb452.shinyapps.io/overlap/


including 102,084 migraine cases [36]. How-
ever, we did not include this migraine GWAS as
the outcome dataset because the full summary-
level data was not publicly available. In addi-
tion, the two migraine GWAS datasets included
in our study were independent of each other
and had enough power to detect a small effect.

We used the TwoSampleMR [27] and MR-
PRESSO [37] packages from R (version 3.6.1) to
perform all MR analyses. Data harmonizing was
performed using the ‘‘harmonise_data’’ function
in the TwoSampleMR package. A P value less
than 0.05 was considered statistically signifi-
cant. Meta-analysis of estimates from the IVW
method was performed using the meta package
from R. Meta-analysis of the two sources of SNP-
migraine effects was performed using the
METAL tool [38].

Power of MR Test

The power of MR test was calculated using a web
tool [39]. The proportion of variance explained
by the SNPs for exposure, total sample size of
the outcome, and proportion of cases of the
outcome were used to calculate the power. The
power was calculated on the basis of a type I
error rate of 0.05. Additionally, the proportion
of variance explained by the SNPs included in
the two migraine datasets was 10.40% and
9.96%, respectively. The detectable odds ratio
(OR) based on the FinnGen study with an 80%
power was less than 0.914 (or greater than
1.087), and that of another study was less than
0.946 (or greater than 1.054).

RESULTS

A total of 425 SNPs, including two proxy SNPs
(r2[0.8), were found in the migraine GWAS
from the FinnGen study (Supplementary
Table 2). MR analysis using the IVW method
showed that increased IGF1 levels were signifi-
cantly associated with decreased risk of
migraine [OR 0.905, 95% confidence interval
(CI) 0.842–0.972, p = 0.006] (Fig. 2 and Supple-
mentary Fig. 1). A significant association was
also observed on the basis of the weighted mode
method (OR 0.830, 95% CI 0.699–0.986,

p = 0.034). Although the MR-Egger and weigh-
ted median methods did not find a significant
association, no unbalanced horizontal pleio-
tropy was found by MR-Egger regression
(p = 0.232). In addition, the MR-PRESSO
method did not find outlier SNPs. Sensitivity
analysis by excluding SNPs associated with
other factors showed similar results (OR 0.901,
95% CI 0.826–0.982, p = 0.018).

A total of 417 SNPs, including four proxy
SNPs (r2[ 0.8), were found in the second
migraine GWAS (Supplementary Table 2). MR
analysis using the IVW method also showed
that increased IGF1 levels were significantly
associated with a decreased risk of migraine (OR
0.929, 95% CI 0.882–0.979, p = 0.006) (Fig. 2
and Supplementary Fig. 1). The MR-PRESSO
method after excluding two outlier SNPs
showed a similar association. Although all other
methods did not result in a significant associa-
tion, no unbalanced horizontal pleiotropy was
found by MR-Egger regression (p = 0.435).
Additionally, sensitivity analysis by excluding
the SNPs associated with other factors showed
that the effect decreased (OR 0.944, 95% CI
0.887–1.005, p = 0.069).

The pooled OR and corresponding 95% CI of
the two IVW estimates from the outcome
GWASs were 0.921 and 0.883–0.960
(p = 0.0001, heterogeneity I2 = 0%). Using the
pooled estimates of SNP effects on migraine, MR
analysis showed a similar effect of IGF1 on
migraine (OR 0.923, 95% CI 0.881–0.967,
p = 6.57 9 10-4) (Fig. 3 and Supplementary
Fig. 2). Sensitivity analysis by excluding the 129
SNPs associated with other factors showed that
the effect decreased, but remained significant
(OR 0.932, 95% CI 0.883–0.985, p = 0.012). We
also performed sensitivity analysis by excluding
the SNPs found in only one migraine dataset
and those with evidence of heterogeneity
(I2[50%) between the two datasets. The effect
remained unchanged by using the remaining
SNPs (OR 0.917, 95% CI 0.871–0.965,
p = 9.39 9 10-4).

Multivariable MR IVW analysis was per-
formed using the pooled migraine dataset by
adjusting each other factor alone or all factors
together. The results were similar to the effects
from the conventional IVW method (Fig. 4).
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MR analysis using GWAS data of migraines
with an aura in the FinnGen study showed that
IGF1 was not associated with migraine risk (OR
0.967, 95% CI 0.873–1.070, p = 0.512) (Fig. 5
and Supplementary Fig. 3). However, MR anal-
ysis using the GWAS data of migraines without
an aura in the FinnGen study showed that
increased IGF1 levels were significantly associ-
ated with a decreased risk of migraine (OR
0.896, 95% CI 0.805–0.998, p = 0.047).

Reverse MR IVW analysis showed that
migraine was not associated with IGF1 levels
(beta - 0.004, 95% CI - 0.033 to 0.025,
p = 0.765) (Supplementary Fig. 4). Although the
weighted median and weighted mode methods
showed that migraine was associated with
increased IGF1 levels, no unbalanced horizontal
pleiotropy was found by MR-Egger regression
(p = 0.378).

DISCUSSION

Using two-sample MR, this study showed that
genetically determined increased IGF1 levels
might be causally associated with a decreased
risk of migraine. The effect was confirmed in
two independent large migraine datasets and in
additional analyses, including multivariable MR
analysis. Although the effect was not confirmed
in migraines with an aura, the sample size of
this subset was relatively small.

Previous studies have shown that IGF1 may
have neuroprotective effects on neurological
conditions, such as brain trauma and neurode-
generative diseases, by stimulating protein
synthesis in neurons, glia, oligodendrocytes,
and Schwann cells; improving neuronal sur-
vival; and inhibiting apoptosis [3, 40, 41, 42].

Fig. 2 MR analyses of IGF1 on migraine risk. CI confidence interval, IGF1 Insulin-like growth factor 1, MR Mendelian
randomization, MR-PRESSO MR-pleiotropy residual sum and outlier, OR odds ratio, SNP single nucleotide polymorphism
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Furthermore, preclinical studies have demon-
strated that IGF1 might be a novel therapeutic
target against migraine [11]. Preclinical in vitro
studies have shown that IGF1 could mitigate
spreading depression by increasing endogenous
antioxidants and decreasing oxidative stress
[43, 44]. This idea is partially supported by a
finding from another study that the accumula-
tion of reactive oxygen species may be a key
mechanism of cortical spreading depression
initiation [45]. Cortical spreading depression
may in turn induce oxidative stress in the
trigeminal nociceptive system [46]. Together,
these findings suggest that IGF1 may be able to
inhibit oxidative stress and cortical spreading
depression [11]. The effect of IGF1 on spreading

depression and oxidative stress has been further
confirmed by in vivo studies [47, 48].

Calcitonin gene-related peptide, a mediator
of migraine pain, plays an important role in
migraine pathophysiology. Drugs that target
the ligands and receptors of calcitonin gene-re-
lated peptide have been shown to be effective
and safe for those with migraines [49, 50].
Moreover, in vivo studies have demonstrated
that nasal administration of IGF1 could miti-
gate spreading depression and reduce trigemi-
nal ganglion oxidative stress and calcitonin
gene-related peptide levels [48, 51]. In addition,
intranasal treatment with IGF1 showed no
aberrant effects on blood glucose levels, nasal
mucosa, or serum markers of toxicity [47].

Fig. 3 MR analyses of IGF1 on migraine risk using pooled
migraine dataset. CI confidence interval, IGF1 Insulin-like
growth factor 1, MR Mendelian randomization, MR-

PRESSO MR-pleiotropy residual sum and outlier, OR
odds ratio, SNP single nucleotide polymorphism
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IGF1 plays a major part in the regulation of
body composition and glucose metabolism
[52, 53]. On the other hand, insulin resistance
and its comorbidities of obesity might have a
biological association with migraine headache
[54, 55]. Therefore, low IGF1 levels in migrai-
neurs might be a marker or a consequence of
abnormal glucose metabolism and obesity.
Although our MR analyses showed the effect of
IGF1 on migraine was independent of type 2
diabetes and body mass index, the role of
abnormal glucose metabolism and obesity
should be considered in future studies when
investigating the effect of IGF1 on migraine.

Increased circulating IGF1 levels have been
shown to be associated with harmful effects on
non-neurological diseases. A two-sample MR
study investigated the associations between
genetically predicted circulating IGF1 levels and
glycemic traits, lipids, blood pressure, body
composition, and cardiometabolic diseases,
including cardiovascular disease [31]. The
results showed that increased IGF1 levels may
be causally associated with an increased risk of
type 2 diabetes. This association was supported
by a randomized trial including 330 patients
with amyotrophic lateral sclerosis [56]. The trial
showed that a 2-year treatment period with
subcutaneously administered IGF1 was

Fig. 4 Effects of IGF1 on migraine risk with confounders
adjusted. ORs indicate the effect of IGF1 on migraine risk
when each/all confounders were adjusted using multivari-
able MR method. HDL-C high-density lipoprotein choles-
terol, LDL-C low-density lipoprotein cholesterol, CI

confidence interval, MR Mendelian randomization, OR
odds ratio
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associated with an increased risk of presumed or
documented hypoglycemia (12.6% vs. 5.5%,
p = 0.034). Additionally, recent MR studies
showed that IGF1 levels were positively associ-
ated with colorectal cancer risk and negatively
associated with renal cell carcinoma and blad-
der cancer risk [57, 58, 59]. Because migraine is a
long-term condition, the long-term adverse
effects of IGF1 treatment, especially those on
cancer development, should be considered.
Thus, intranasal treatment might be a more
promising administration method than subcu-
taneous injection.

This study had several limitations. First, the
sample sizes for the migraine subtypes were
relatively small. Thus, the migraine subtypes
should be interpreted cautiously because of the
insufficient power and the possibility of bias.
Second, women experienced a higher preva-
lence of migraine than men, and the efficacy of
IGF1 therapy may be related to the plasma level
of sex hormones [3]. However, sex-stratified
analysis was not performed in the present study
because the individual-level data were not
available. Third, most migraine cases in the UK
biobank were based on self-reported data, which

Fig. 5 MR analyses of IGF1 on risk of migraine subtypes.
CI confidence interval, IGF1 Insulin-like growth factor 1,
MR Mendelian randomization, MR-PRESSO MR-

pleiotropy residual sum and outlier, OR odds ratio, SNP
single nucleotide polymorphism
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may lead to migraine misclassification.
Although migraine misclassification might bias
the MR analyses results, the effect of IGF1 on
migraine shows consistently across two
migraine datasets. Finally, nearly all of the
included individuals were of European descent,
and the effects may not be generalizable to
other populations.

CONCLUSIONS

This two-sample MR study showed that geneti-
cally determined increased IGF1 levels might be
causally associated with decreased risk of
migraine. This effect was confirmed in two
large, independent migraine datasets and in
additional analyses including multivariable MR.
Future randomized controlled trials are war-
ranted to confirm the benefits of IGF1 admin-
istration for migraines. In addition, future
studies should be performed to determine IGF1
levels during and between migraine attacks, its
association with oxidative stress markers and
calcitonin gene-related peptide levels, and the
role of IGF1 in migraine pathogenesis.
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