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ABSTRACT

Ventricular arrhythmias are the primary cause of sudden cardiac death and one of the leading causes of mortality worldwide. Whole-heart
computational modeling offers a unique approach for studying ventricular arrhythmias, offering vast potential for developing both a mecha-
nistic understanding of ventricular arrhythmias and clinical applications for treatment. In this review, the fundamentals of whole-heart ven-
tricular modeling and current methods of personalizing models using clinical data are presented. From this foundation, the authors
summarize recent advances in whole-heart ventricular arrhythmia modeling. Efforts in gaining mechanistic insights into ventricular arrhyth-
mias are discussed, in addition to other applications of models such as the assessment of novel therapeutics. The review emphasizes the
unique benefits of computational modeling that allow for insights that are not obtainable by contemporary experimental or clinical means.
Additionally, the clinical impact of modeling is explored, demonstrating how patient care is influenced by the information gained from ven-
tricular arrhythmia models. The authors conclude with future perspectives about the direction of whole-heart ventricular arrhythmia model-
ing, outlining how advances in neural network methodologies hold the potential to reduce computational expense and permit for efficient
whole-heart modeling.
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INTRODUCTION

Ventricular arrhythmias (VA), consisting of ventricular tachycar-
dia (VT) and ventricular fibrillation (VF), are life-threatening electrical
rhythm disorders that are the primary cause of sudden cardiac death
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(SCD).1 Understanding the mechanisms underlying VAs is important
both for the treatment and management of VAs and necessary for the
development of novel therapeutics. However, it remains challenging to
translate the empirical outcomes to clinical approaches because
insights derived from experimental conditions may not always be
applicable to in vivo conditions in the human heart. Clinical studies,
on the other hand, are limited in the mechanistic insights that can be
gleaned due to the lack of precision on controlling for experimental
conditions.

Computational heart modeling is an emergent technology that is
well-poised both to shed light on mechanisms underlying VAs and to
aid clinical decision making in the management of VAs. Biophysically
detailed ventricular models offer unique insights into the physiology of
ventricular arrhythmias which can then be used to inform clinicians in
treating VAs in various ways. These models have shown promising
results in determining VA risk, ablation targets, disease mechanisms,
and exploring novel therapies. Furthermore, computational technolo-
gies have great potential for being integrated into contemporary clini-
cal workflows.

In this article, we review recent studies of VA that use computa-
tional whole-heart models to elucidate VA mechanisms and advance-
ments in patient-specific clinical applications, including VA treatment
and risk stratification. The general workflow for ventricular whole-
heart modeling is shown in Fig. 1. We first discuss the fundamentals
of personalized, whole-heart modeling, highlighting the underlying
modeling principles and the contemporary approaches to creating
patient-specific models. We then proceed to summarize studies that
provide mechanistic insights into VA from the perspectives of arrhyth-
mia initiation, and scar-related and functional-type re-entries. We
then discuss recent studies using computational ventricular models for
investigating novel therapeutics in VAs and clinical applications of VA
modeling including arrhythmia risk stratification and catheter-
ablation planning of VT.

FUNDAMENTAL CONCEPTS OF WHOLE-HEART
VENTRICULAR ARRHYTHMIA MODELING

Whole-heart ventricular models integrate information from mul-
tiple scales ranging from cell-level ionic properties to whole-organ tis-
sue distributions. Here we review the fundamental concepts of
constructing whole-heart ventricular models, including methods of
model personalization using clinical data.

Biophysically detailed models of cellular
electrophysiology

Biophysically detailed models of ventricular myocyte electrophys-
iology typically follow Hodgkin–Huxley type formulations.2 Briefly,
the membrane dynamics are modeled as an RC circuit where the resis-
tances (more often represented as conductances) represent ion flux
through membrane channels, pumps, and transporters, and the capac-
itor represents the cell membrane phospholipid bilayer. From this rep-
resentation, a system of ordinary differential equations can be derived
to describe the change in membrane voltage over time. Among the
most common human ventricular myocyte models used in whole-
heart models are the Ten Tusscher–Panfilov3 and the O’Hara–Rudy4

that were calibrated to human experimental data.

Bidomain and monodomain equations

The bidomain equations are the most explicit mathematical
description of electrical wave propagation through cardiac tissues and
consider both intracellular and extracellular current.5 Changes in the
intracellular potential (ui) and extracellular potential (ue) are coupled
via membrane dynamics that involves ion channels, pumps, and other
transporters. The mathematical equations consist of a system of partial
differential equations with respect to space and time [Eqs. (1)–(3)],

FIG. 1. Overview of whole-heart ventricular arrhythmia modeling. Cell-level and tissue-level properties of ventricular myocyte electrophysiology are incorporated into whole-
organ level ventricular heart models. These ventricular heart models can also incorporate personalized information from clinical data modalities such as medical imaging, elec-
trocardiogram (ECG), and invasive electrical mapping. These models are then used to run simulations of ventricular arrhythmias (VA) which can be used to gain insights into
fundamental biophysical mechanisms, to predict results in novel therapeutic modalities, and to aid in clinical decision making in the management of VAs.
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r � rirui ¼ bIm; (1)

r � rerue ¼ �bIm; (2)

Im ¼ Cm
@Vm

@t
þ IionðVm; gÞ � Is: (3)

In the equations, Vm represents the transmembrane voltage and the
difference between ui and ue. ri and re are the intracellular and extra-
cellular conductivity tensors, respectively. b is the ratio between the
membrane surface area to the volume. Is represents an external stimu-
lus applied to the intracellular space. Cm is the membrane capacitance
per unit area, Iion is the transmembrane ionic current density, and g
represents the gating variables that govern the kinetics of the different
ionic currents,

r � rmrVm ¼ Cm
@Vm

@t
þ IionðVm; gÞ � Is: (4)

The monodomain equations are a simplification of the bidomain
equations and are derived by assuming a proportionality between ri
and re. With this assumption, the bidomain system above [Eqs.
(1)–(3)] is simplified into a single equation [Eq. (4)]. In the above for-
mulation, rm is the effective bulk conductivity that relates ri and re. In
electrophysiological simulation, monodomain equations are often
used in place of the bidomain system due to enormous savings in com-
putational costs.6

The Purkinje system, the component of the cardiac conduction
system responsible for fast synchronous activation of the ventricular
myocardium, can also be incorporated into whole-heart models. It can
be represented as a one-dimensional branching cable system with an
increased conduction velocity that couples with the ventricular myo-
cardium at Purkinje-myocardial junctions along the endocardial sur-
face.7 Due to the inherent difficulties in producing anatomically
correct or patient-specific Purkinje trees, most ventricular whole-heart
models do not include Purkinje fibers.

Using medical imaging to personalize ventricular
models

Computational heart models can be personalized by combining
information from medical imaging modalities. The biophysics of dif-
ferent imaging modalities allows for the characterization of different
pathological tissue types which can then be incorporated into heart
models to study VAs in the context of the diseased heart.8 Two major
imaging modalities that can be used for model personalization include
magnetic resonance imaging (MRI) and computed tomography (CT).

MRI can be combined with contrast agents such as gadolinium
to improve characterization of diseased tissue types. Such sequences,
called late gadolinium-enhanced MRIs (LGE-MRIs), are used in rou-
tine clinical workflows and are considered the gold standard in cardiac
imaging.8 With LGE-MRI, scar tissue arising from infarction can be
detected as regions of hyper-enhancement.9–12 The spatial pattern of
this scar distribution can then be readily incorporated into computa-
tional heart models and can be assigned various electrophysiological
properties based upon available experimental evidence. One inherent
limitation of LGE-MRI is image artifacts caused by implanted cardi-
overter defibrillators (ICDs), which are often present in patients at risk
of VAs. Protocols such as the wideband sequence are being optimized
to minimize artifact burden and have shown success in substrate

characterization.13 LGE has also been used in the assessment of vari-
ous nonischemic substrates.14,15 Unlike the post-infarct substrate,
which is localized to one myocardial region, nonischemic cardiomyop-
athy tends to involve diffuse fibrosis, and hence scar tissue can be
more difficult to identify. More reproducible, quantitative T1 mapping
which does not require contrast injection has emerged to help charac-
terize the myocardial substrate.16

CT is another imaging modality commonly acquired in clinical
workflows. Compared to LGE MRI, conventional CT has limitations
in differentiating the scar from healthy myocardium due to the limited
inherent soft-tissue contrast. Similar to LGE-MRI, contrast agents are
also used in conjunction with CT to improve delineation of myocar-
dial structures. Previous studies showed that successful scar quantifica-
tion could be achieved by delayed enhanced CT protocols, but such
images have poor signal-to-noise ratios and may be difficult to obtain
clinically.17 Despite the limited contrast within the myocardium,
contrast-enhanced (CE) CT offers a sharp contrast between blood and
the myocardium. This clear distinction between blood and cardiac tis-
sue allows for accurate assessment of wall thickness using CE-CT.18–21

Regions of wall thinning have been shown to correlate with regions of
scar and electrophysiological abnormalities.20,21 In addition to wall
thinning, infiltrating adiposity, an arrhythmogenic substrate involved
in certain myocardial diseases, can be quantified on CT.22–25

Infiltrating fat on CT appears as darker, hypoattenuated regions within
the myocardium. Similar to LGE-MRI, CE-CT can also be affected by
lead artifacts that can preclude visualization of parts of the ventricular
myocardium. However, the image quality of CE-CT tends to be more
consistent than LGE-MRI, and there are methods for reducing artifact
burden.26

Using electrical measurements to personalize
ventricular models

Personalization of electrophysiology requires electrical measure-
ments that can be obtained either noninvasively or invasively.
Electrocardiograms (ECGs) noninvasively measure cardiac electrical
activity and are frequently obtained clinically. This electrical informa-
tion reflects the heart’s conduction and repolarization properties
which can be used to calibrate model parameters to capture the
patient-specific electrophysiology.27–31 One specific technique called
electrocardiographic imaging (ECGI) reconstructs electrical informa-
tion on epicardial surface using electrical measurements obtained at
the body surface.32,33 This information is then used to noninvasively
assess cardiac conduction patterns to localize arrhythmias. These acti-
vation maps can then be used to tune computational models to better
represent the patient-specific electrophysiology.34,35 However, such
techniques are still in their infancy and require further development in
terms of accuracy, computational costs, and generalizability to larger
patient cohorts. Invasive electrical information can be obtained in the
form of intracardiac electrograms measured intraprocedurally.
Electrograms are measured locally at locations throughout the endo-
cardial or epicardial surface, providing a glimpse at cardiac conduction
patterns throughout the heart. This information can be used to adjust
parameters of computational models to better reflect patient-specific
electrophysiology.36–39 However, such invasive measurements are not
usually present pre-procedurally; it is also non-trivial to determine
which model parameters need to be changed to reflect the electrical
measurements, and overfitting a model reduces its generalizability.
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Nonetheless, even without patient-specific electrical data, whole-
heart ventricular models with non-calibrated electrophysiological
properties can still yield useful predictions that are consistent with
clinical data.40–42 One such sensitivity analysis reported that post-
infarct VT predictions were largely robust to a range of different con-
duction velocities and action potential durations.43 Further sensitivity
analyses and approaches to incorporate uncertainty30 into the electro-
physiological parameterization of these whole-heart models should be
investigated.

MECHANISTIC INSIGHTS INTO VENTRICULAR
ARRHYTHMIAS USING BIOPHYSICALLY DETAILED
VENTRICULAR MODELS

Biophysically detailed computational models can provide mecha-
nistic insights into arrhythmia pathophysiology that are not easily
assessed experimentally. Parameters can be changed and the resultant
effects quantified to establish mechanistic underpinnings of disease
processes. Here we discuss the use of whole-heart modeling in several
key subjects pertaining to VA.

Ventricular arrhythmia initiation

Computational modeling of ventricular electrophysiology has
been used to improve understanding about the mechanisms of
arrhythmia initiation. Re-entry, one of the dominant mechanisms of
arrhythmias, necessitates conduction slowing and unidirectional con-
duction block to be present.44 In the context of VA pathophysiology,
VA initiation depends on the interaction between correctly timed

ectopic beats with the local anatomical/functional heterogeneities pre-
sent in the diseased myocardium.

Failing hearts often undergo significant remodeling processes
that predispose patients to VAs. Remodeled substrates can often give
rise to early afterdepolarizations that create ectopic beats and can initi-
ate VAs. A recent combined computational and clinical study sought
to understand mechanisms between a clinically recognized phenome-
non called low-amplitude action potential voltage alternans and ven-
tricular arrhythmias.45 Figure 2(a) shows a representative graphic of
their study. Using multiscale computational models of failing human
ventricles, the authors were able to define a mechanism linking abnor-
mal calcium handling in heart failure to low-amplitude voltage alter-
nans which resulted in initiation of ventricular fibrillation. The models
demonstrated how increasing pacing frequency created a pro-
arrhythmogenic substrate, which combined with a correctly timed pre-
mature stimulus would initiate a re-entrant arrhythmia. Other studies
have also looked at the role of calcium in arrhythmia initiation. One
such study investigated the conditions in which calcium-mediated
ectopy could cause VT arrhythmogenesis in infarcted substrates.46

The authors utilized both 2D and 3D ventricular models incorporating
scar and infarct border zone tissue types. Infarct border zone tissue
types were modeled as having abnormal electrophysiological proper-
ties consistent with experimental evidence. Increasing fibrosis was
shown to be correlated with the probability of ectopic activity likely
due to alterations in the local electrotonic conditions.

Other pro-arrhythmic ionic mechanisms have also been exam-
ined. A recent study examined the effects of decreasing sodium con-
ductance and fibrosis density on re-entry formation.47 Using both 2D

FIG. 2. Insights into mechanisms of ventricular arrhythmia initiation. (a) Investigating mechanisms of arrhythmia initiation. Decreasing pacing stimulus cycle length results in
conduction slowing, increased alternans, and a steeper repolarization gradient, all of which creates an arrhythmogenic substrate for VA initiation. Reproduced with permission
from Bayer et al., Heart Rhythm 13, 1922 (2016). Copyright 2016 Elsevier.45 (b) Determining electrophysiological factors sufficient for VA initiation. In whole-heart swine mod-
els, VA could be initiated by infarct border zone model with fibrosis and decreased sodium conductance. Using an S1 and S2 pacing protocol, sustained re-entry was achieved.
Reproduced with permission from Campos et al., Biophys. J. 117, 2361 (2019). Copyright 2019 Author(s), licensed under a Creative Commons Attribution (CC BY) license.47
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and 3D ventricular models, they ascertained that decreases in sodium
conductance could interact synergistically with fibrosis to establish
conduction block and promote re-entry. Figure 2(b) shows an example
of re-entry being initiated in an animal-specific whole-heart model.
Using an S1–S2 stimulus protocol, sustained re-entry was induced due
to conduction block that was mediated only by decreased sodium con-
ductance and non-conducting fibrosis in the border zone [Fig. 2(b)].

The Purkinje system may also have an arrhythmogenic role in
certain VAs. Due to the electrotonic interactions present at Purkinje-
myocardial junctions, the Purkinje system can facilitate re-entry. One
such study investigated how ectopic beats originating from various
parts of the Purkinje system could initiate VAs.48 The authors con-
clude that ectopic beats originating in the distal rather than proximal
branches of the Purkinje tree were more likely to induce re-entry. In a
separate study, simulations were used to investigate the role of the
Purkinje system during post-shock VAs.49 Here, the Purkinje system
tended to be proarrhythmic by stabilizing re-entry and providing alter-
nate pathways for wave propagation through the Purkinje fibers.

Elucidating the relationship between scar remodeling
and the VT circuit

Image-based computational heart models have emerged as a
unique way to examine the remodeled scar distribution as it relates to
VT. Simulations provide insights beyond simple structural analyses
and allow for evaluation of the electrophysiological and functional
aspects of the VT circuit.

In a study examining animal-specific swine models, the authors
investigated the structural characteristics of the scar surrounding the
VT circuit.50 Heart models were reconstructed from high resolution ex
vivo MRIs, and the VT conduction pathway was characterized by
quantifying the distance from the surrounding scar. From this analysis,
the authors identified a distribution of channel widths that the VT cir-
cuit critical isthmus was most likely to be found in. A recent study
involving patient data examined the VT circuits induced in six LGE-
CMR-based digital heart models and their corresponding ablation
lesions.51 In this study, the authors characterized the various types of
conducting channel phenotypes and identified three distinct classes: I-
type, T-type, and functional-type channels. Figure 3 illustrates these
three types of channels and the corresponding whole-heart simulation
results. Each type of conducting channel was consistent with VT mor-
phologies that have been reported in the experimental and clinical lit-
erature. Furthermore, this study also validated the simulation results
by analyzing how clinical ablation lesions corresponded with virtual-
heart VT circuits (Fig. 3). These results highlight how computational
modeling can be used to develop greater mechanistic insights into how
the scar distribution gives rise to arrhythmias.

The infarct border zone also plays a critical role in VT arrhyth-
mogenesis. On MRI, the infarct border zone is identified as gray zone,
tissues with an intermediate signal intensity between scar and non-
injured myocardium. In patient-specific models with scar and gray
zone distributions, it was demonstrated how arrhythmia activity pri-
marily concentrated in regions of the gray zone and was largely depen-
dent on the morphology and size of these remodeled tissue regions.52

Variations in the structural heterogeneity of the gray zone did not
seem to have a major impact on arrhythmogenicity. A separate study
similarly found that the gray zone geometry had a large impact on
arrhythmia dynamics, and additionally increased amounts of gray

zone in fibrotic regions tend to destabilize the VT circuit.53 Another
study also investigated the effects of different fibrosis distribution on
arrhythmia vulnerability and identified several geometric configura-
tions that seem to be more arrhythmogenic.54 Finally, yet another
study examined what characteristics of the infarct border zone were
significant for arrhythmogenesis using simplistic 3D toy heart mod-
els.55 They applied arrhythmia induction protocols in two toy infarct
distributions: transmural and subendocardial. From the transmural
infarct geometry, they determined that the extent of scar and repolari-
zation properties of the border zone were heavily important for the ini-
tiation of VT. From the subendocardial infarct distribution, they
concluded that the re-entry propagation followed the predominant
fiber directions and the location of the premature stimulus.
Collectively, these studies implicate that the geometric structure of
gray zone plays a vital role in determining arrhythmogenesis.

New work has also explored the scar distribution in non-
ischemic cardiomyopathy. A novel methodology of modeling intersti-
tial fibrosis, a major hallmark of fibrosis development in non-ischemic
cardiomyopathy, was recently developed.56 LGE-MRI-based computa-
tional heart models were reconstructed, and the image intensity infor-
mation on LGE-MRI is used to derive the patient-specific fibrotic
regions. Mesh elements within the fibrotic regions are randomly dis-
connected as a function of the intensity values to create a heteroge-
neous tissue distribution, resembling the non-ischemic substrate. All
simulations with successful arrhythmia induction resulted from
micro-re-entry within the interstitial fibrosis region, offering possible
insight into the structure of non-ischemic VT circuits.

Ventricular arrhythmias with functional re-entrant
patterns

Functional re-entries arise as a result of electrical heterogeneities
and do not require the presence of anatomical obstacles to propagate.
Here, we discuss how whole-heart computational models have been
used to understand various VAs with functional re-entrant patterns.

Myocardial ischemia resulting from an acute infarct affects the
membrane dynamics via alterations, among others, in potassium con-
centrations. The resultant electrophysiological changes can give rise to
significant repolarization heterogeneities and form an arrhythmogenic
substrate that allows for functional re-entries to arise. The arrhythmo-
genic properties of this functional substrate following acute ischemia
were examined in whole-heart models.57 The authors first determined
that sodium channel availability was an important factor in regulating
the arrhythmogenicity of the ischemic zone. Decreased sodium chan-
nel availability increases arrhythmic risk and the probability of focal
ectopic beats from the right ventricle and ventricular base. Second, in a
separate study, the same authors modeled both subendocardial and
transmural ischemic distributions.58 The authors identified two dis-
tinct mechanisms in both ischemic region distributions: macro-re-
entry around the region for transmural ischemic and micro-re-entry
in the ischemic region border zone for subendocardial ischemia.

Ventricular fibrillation (VF) is another type of VA that is often
believed to involve functional-type re-entrant patterns. However, due
to its complexity and lethality, it is difficult to characterize VF dynam-
ics experimentally or clinically. Multiple-wavelet and/or mother-rotor
have been hypothesized to be the main mechanisms of VF. These
dynamics are in turn governed by the shape of the action potential
duration (APD) restitution (APDR) and conduction velocity (CV)
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restitution (CVR) curves. In one such computational study, a nonionic
“rule-based” (Wei–Harumi whole-heart model) whole-heart model
was used to examine the effects of varying APDR and CVR curves on
VF organization and conversion.59 The results show how having a flat-
tened APDR tends to cause multiple-wavelet VF to organize into VT
whereas VT degenerates into VF due to spatial heterogeneity of APDR.
This study shows how the synergy between APDR and CVR contrib-
utes to the transition between multiple-wavelet and mother-rotor
mechanisms in VF. A separate study demonstrated how in a 3D heart
model with the patient-specific scar distribution represented functional
re-entry rotors preferentially anchored to regions with fibrosis, empha-
sizing the importance of fibrosis in sustaining re-entries.60

Polymorphic VTs represent another type of VAs. Unlike mono-
morphic VTs, polymorphic VTs tend to have more functional-type re-
entrant patterns and do not typically possess a fixed rotor. Torsades de
pointes (TdP) is an example of a clinically recognized polymorphic
VT that arises from increased repolarization dispersion.

Computational models can reveal deeper insights into the mechanisms
of how TdP manifests.61 In this study, the authors induced repolariza-
tion heterogeneities in the whole-heart models and examined the
resultant arrhythmia dynamics. From these experiments, they identi-
fied two potential mechanisms of TdP genesis: initiation via multiple
ectopic foci or early afterdepolarizations, inducing block and subse-
quent re-entry. In a combined experimental and computational study,
it was demonstrated how phase singularities of the TdP re-entrant
wave initiated in areas of regional repolarization gradients and
anchored to areas with the greatest difference in local repolarization
properties.62 Collectively, these studies demonstrate the advantages of
computational modeling over experimental or clinical approaches in
elucidating complex arrhythmia mechanisms.

INSIGHTS INTO NOVEL THERAPIES

Novel emergent cardiac therapies hold significant promise but
are difficult to assess in vivo and in vitro. Carefully designed, numerical

FIG. 3. Relationship between scar remodeling and ventricular tachycardia circuits. Three types of conducting channels arising from scar remodeling were characterized and
identified in patient-specific virtual-heart models. I-type channels involve non-conducting scar surrounding a central isthmus gray zone, resulting in a figure-of-eight VT morphol-
ogy. T-type channels involve a more complex structure with multiple exit and entrance sites. Finally, the functional-type channel involves a combination of functional and ana-
tomical block. Model predictions were validated by comparing virtual-heart ablation targets with clinical ablation lesions. These results suggest that if the type of conducting
channel can be identified, corresponding optimal ablation strategies can be applied to effectively terminate VT. Reproduced with permission from Deng et al., Biophys. J. 117,
2361 (2019). Copyright 2019 Cell Press.51
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studies built upon basic biophysical principles can offer predictions
beyond what is currently capable of being assessed experimentally.
These predictions can help direct further research and offer a roadmap
for future experimental designs as technologies become available.

Assessing arrhythmogenicity of cell-based
regenerative therapies

Cell-based cardiac regenerative therapies, a promising treatment
to reverse cardiac remodeling in the post-infarct heart, have been
found to be arrhythmogenic. However, why these newly engrafted cells
can be arrhythmogenic is poorly understood. In a novel study to better
elucidate these mechanisms, the authors devised a computational
multi-scale whole-heart modeling framework to simulate the conse-
quences of different cell-based therapy modalities.63 Figure 4 high-
lights how patch engraftment can be simulated in whole-heart models,
and the subsequent arrhythmogenicity can be evaluated. Several
unprecedented arrhythmogenic mechanisms of stem cell engraftment
were revealed by the simulation results. First, for pluripotent stem cell-
derived cardiomyocytes (PSC-CMs) injection, parameters such as
injection location, cell dosage, and engraftment spatial distribution are
decisive in the occurrence of ectopic propagations. Finally, In PSC-
CM cell sheet transplantation, computational models using various

parameter settings showed that the engraftment location and its
impact on substrate heterogeneity primarily determines VT inducibil-
ity (Fig. 4). A recent study assessed the arrhythmogenic effects of stem
cell-derived cardiomyocyte engraftment in models with patient-
specific fibrotic distributions.64 They determined that arrhythmias
arising from engraftment were likely to be from re-entrant, not focal,
mechanisms, and that the location of the patch engraftment relative to
the patient-specific fibrotic distribution was important in determining
arrhythmogenicity.

Determining feasibility of optogenetics for arrhythmia
treatment

Optogenetics-based defibrillation has been proposed as a novel
potential alternative to ICD therapy in ventricular fibrillation (VF) due
to its noninvasive and less distressing therapeutic delivery.65 However,
the feasibility of using light stimuli to pace or intervene in arrhythmic
activity on human-scale clinical applications and the ideal opsin prop-
erties for terminating VF in humans remains unclear.66 To address
these unanswered questions, a recent computational simulation study
modeled optogenetic therapy in the context of the whole human ven-
tricle.67 Four parameters (opsin variants, optrode grid densities, light
pulse duration, and light pulse timings) were manipulated to construct

FIG. 4. Examining arrhythmogenic mechanisms in post-infarct hearts with pluripotent stem cell-derived cardiomyocyte (PSC-CM) transplantation. Colors indicate the sequence
of activation (ms). Pacing to induce arrhythmia was delivered from sites marked with the white star. Transplantation of stem-cell-derived cardiomyocytes resulted in re-entrant
arrhythmias (pathway traced with the white arrow), suggesting that the location of this cell therapy could be arrhythmogenic. Reproduced with permission from Yu et al., Sci.
Rep. 9, 9238 (2019). Copyright 2019 Author(s), licensed under a Creative Commons Attribution (CC BY) license.63
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96 different configurations of ventricular simulations. The therapeutic
efficacy depended on the extent of the propagating wavefront, which
was equivalently quantified as the volume of tissue excited by the light
source. In these numerical experiments, red light successfully termi-
nated VF, while blue light was not able to do so in any combination.
Opsin red light sensitivity primarily determined the successfulness of
VF termination, LED array density and longer pulse duration being
the subsidiary factors of defibrillation efficacy.

CLINICAL APPLICATIONS

Computational heart models can be used for personalized and
noninvasive arrhythmia prognosis for post-infarct patients. The main
steps in personalized virtual heart model construction are the acquisi-
tion of images, segmentation and labeling of diseased tissues from
imaging, construction of a 3D heart geometry, incorporation of fiber
orientation, and assignment of electrophysiological property in each
region.41–43,68,69 Pacing protocols adapted from clinical procedures are
then applied to induce VT in the virtual heart. The outcome of these
virtual electrophysiological studies is then used to establish a patient’s
arrhythmic risk or to determine ablation targets.

Assessment of patient arrhythmic risk

Accurate scar segmentation relies on cardiac MR image acquisi-
tion protocol as well as the image post-processing techniques. This
variability was studied by building personalized computational heart
models using imaging protocol-based variations and examining the
corresponding differences in the image-based virtual heart model out-
comes (n¼ 25).69 The sensitivity and specificity of virtual models were
over 66% for the clinical outcomes based on VT inducibility regardless
of the imaging sequence. Multi-contrast late enhancement (MCLE), a
quantitative T1 mapping technique, had higher specificity (>80%)
and sensitivity (>80%) for the clinical outcomes. This result suggests
that quantitative imaging protocols, which are sensitive to the native
tissue contrast, might overcome the current issues with LGE-MRI,
including manual scar segmentation and thresholding errors.

In a retrospective computational study consisting of 41 post-
infarct patients with reduced ejection fraction, the authors demon-
strated that virtual heart inducibility was more predictive for re-
entrant arrhythmia than the multiple standard clinical metrics.42

Patients with inducible virtual hearts were more likely to correspond
to those who suffered arrhythmic outcomes than patients with non-
inducible virtual hearts. This study highlighted how the virtual-heart
approach could be used to noninvasively determine a patient’s
arrhythmia risk. In a separate proof-of-concept study, the authors
investigated VT risk in a small cohort of myocardial infarction (MI)
patients (n¼ 4) with preserved ejection fraction.70 Even though the
patients in this cohort were not candidates for ICD placement, one
patient had a VT history, and the personalized simulation results
matched the clinical result, indicating the generalizability of using
virtual electrophysiological studies to assess VA risk.

Virtual-heart arrhythmia risk stratification has also been adapted
for non-infarct related arrhythmias. In a pediatric cohort, virtual-heart
technology was used to investigate the VT induction propensity for
patients with acute myocarditis (n¼ 12).71 Models successfully deter-
mined the VT inducibility for all patients and outperformed the clini-
cal metrics. However, LGE MRI cannot distinguish acute (edema) and
chronic states (scar or fibrosis) of myocardial injury from myocarditis.

This study showed that modeling both conditions with altered con-
ductivity and action potential duration yields highly predictive person-
alized heart models. In a separate non-ischemic disease process,
patients with tetralogy of Fallot (rTOF) who underwent surgical inter-
vention in their childhood are at higher risk of VT after the procedure
due to fibrotic remodeling. A recent study applied virtual-heart tech-
nology to arrhythmia risk assessment in rTOF patients.72 In this
cohort, the authors examined VT inducibility for seven patients who
were deemed to be at low risk according to the clinical guidelines (pro-
longed QRS duration). Virtual pacing in both ventricles resulted in the
re-entrant VTs for patients with clinically detected VT (n¼ 2), while
clinically VT-negative patient models were not inducible. These stud-
ies illustrate the vast generalizability of using virtual-heart technology
for risk stratification.

More recently, machine learning (ML) techniques have been
combined with image-based virtual heart simulations to understand
disease mechanisms and improve VT risk stratification. One study
integrated medical images with ECG data to group hypertrophic car-
diomyopathy (HCM) patients into different phenotypes.73 The aim of
the study was to understand the mechanisms underlying abnormal
ECG patterns and evaluate the risk associated with each phenotype.
An unsupervised clustering algorithm assigned patients into four
groups based on their ECG characteristics. Various hypotheses were
tested to virtually reproduce the phenotypic ECG characteristics with
the LGE MRI image-based simulations. The authors found two dis-
tinct mechanisms underlying ECG abnormalities in HCM, associated
with ionic remodeling and abnormal conduction, respectively, and the
subgroup with ionic remodeling expression had the highest SCD risk
score. These findings led to a better HCM patient stratification and
benefit the clinical therapy selection. Although not directly pertaining
to VTs, a new study developed a novel ML based-approach for
arrhythmia risk stratification by combining simulation and raw-image
(LGE-MRI) based features.74 An ML classifier had high specificity and
sensitivity (>80%) for arrhythmia recurrence risk with features from
simulations with a minimal contribution from raw image-based fea-
tures. The methodology from this study could be readily adopted for
VT risk stratification in the future.

Guiding VT ablation therapy

Catheter ablation is a major adjunct in the contemporary man-
agement of VTs. This minimally invasive procedure involves the use
of catheters that are maneuvered and placed into the cardiac cham-
bers. Radiofrequency energy is then delivered to specific diseased areas
of the myocardium to terminate the source of the VA. Identification of
these specific locations is difficult and requires careful characterization
of the arrhythmogenic substrate through a laborious process called
electroanatomic mapping (EAM). Ablation lesions are then delivered
at sites of abnormal electrical signals according to the EAM. This pro-
cedure is time-consuming and does not guarantee VT termination.
Consequently, ablation targets can be inaccurate and may lead to VA
recurrence. Patient-specific computational heart modeling can aid in
improving ablation precision by proposing ablation targets, providing
noninvasive localization of abnormal electrical signals, and/or identify-
ing VT exit sites.

Virtual-heart technology has seen great success in identifying
optimal ablation targets to terminate VT. A retrospective feasibility
study with 13 patients who underwent ablation showed that ablation
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targets from image-based simulations were consistent with the clinical
targets.75 These results highlight how in silico mapping strategies can
achieve similar results noninvasively and provide more mechanistic
insights into the disease. The authors concluded that in addition to the
slow conducting border zone, the infarct core rim was also part of the
VT re-entry circuit. Recently, this work was extended into the first
prospective study that used cardiac electrophysiological whole-heart
modeling to affect patient care.41 The authors successfully pinpointed
ablation targets with virtual hearts in the first virtual-heart prospective
study with five patients, along with 21 retrospective human and animal
studies. Figure 5 depicts the simulation results and clinical outcomes
of two of the prospective patients who underwent VT ablation.
Although these models were by design not calibrated to the patient’s
electrophysiology, the predicted ablation lesions still successfully ter-
minated VT in these prospective patients. Further sensitivity analyses
demonstrated that these ablation targets were largely robust to various
changes in electrophysiological properties.43 This landmark work
highlights the vast potential for virtual-heart technology to impact the
clinical management of VAs. In addition, the virtual heart approach
can also be used to assess the efficacy of emerging technologies that
may not be ready for clinical use. A recent study evaluated the VT ter-
mination success of an augmented reality-based catheter navigation
system using a virtual heart approach.76 Using virtual-heart modeling,
this study demonstrated how the augmented reality system could
improve ablation targeting.

Subsequent studies have also demonstrated the potential for
patient-specific computational heart models to delineate the VT circuit
and help determine ablation targets. In a study consisting of seven

MRI-based patient-specific heart models, the authors gained mecha-
nistic insights into the VT circuit physiology.77 They estimated the re-
entry circuits with simulations and validated these estimations with
electroanatomical mapping data. VT inducibility was accurately simu-
lated for all patients, and VT entry and exit sites were associated with
the heterogeneous distribution of action potential duration restitution
and conductivity. A separate study extensively personalized a single 3D
ventricular model to accurately reproduce the patient-specific VT cir-
cuit.78 Using clinical data, they manually fine-tuned their model
parameters until the simulated VTmorphology was consistent with the
clinically induced VT morphology. They investigated the border zone
electrical properties with varying fibrosis constituents (from 10% to
30%). A combination of the border zone with 30% replacement fibro-
sis, heterogeneity in action potential durations, and reduced conduc-
tion velocity resulted in the most realistic representation of the patient-
specific VT. This study highlights how computational heart models can
help elucidate the VT circuit which in turn could aid pre-procedural
ablation planning. Finally, a recent study compared automated ECG-
based localization algorithmwith image-based virtual-heart predictions
of VT circuits in four post-infarct patients.79 Overall, the authors found
reasonable spatial concordance between VT exit sites predicted by the
ECG-based algorithm and the image-based virtual heart approach,
demonstrating a synergistic nature between the two methodologies.
This study highlights the utility of using virtual-heart modeling to
delineate the VT circuit and hence determine ablation targets.

Patient-specific, computational models can also provide noninva-
sive characterization of the electrical substrate to aid in pre-procedural
ablation planning. Pace mapping is a clinical electrophysiological

FIG. 5. Virtual-heart technology for guiding ventricular tachycardia ablation. Patient-specific computational models reconstructed from clinical images. Electrophysiological prop-
erties are assigned to both non-diseased and diseased tissue. From these models, ventricular tachycardia is simulated and corresponding ablation targets that terminate re-entry
are determined. These ablation targets can then be incorporated into electroanatomic mapping systems where they can be used to guide VT ablation therapy. Reproduced with
permission from Prakosa et al., Nat. Biomed. Eng. 2, 732 (2018). Copyright 2018 Author(s), licensed under a Creative Commons Attribution (CC BY) license.41
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technique used during substrate mapping to localize the VT exit site,
which in some cases can represent good targets for ablation. A new
study offered a framework for how simulations of pace mapping in
whole-heart models could be compared with clinically recorded elec-
trograms to aid in pre-procedural planning.80 The noninvasive meth-
odology that they outlined involved first simulating VT in human
whole-heart models that included porcine infarct geometries. Then,
pseudo-ECGs were then computed from these VT morphologies as
well as pseudo electrograms from an implantable cardioverter defibril-
lator (ICD). They showed that the simulated pace mapping could the-
oretically be used to identify the VT exit sites and slow conducting
isthmuses, potentially offering a valuable noninvasive tool to aid
pre-procedural ablation planning. Efforts have also been taken to
reproduce intracardiac electrograms that would be recorded during
substrate mapping. In one such study, patient-specific heart models
successfully reproduced the abnormal patterns in intracardiac electro-
grams which could represent targets for ablation.81 The goal of this
study was to explore the biophysical mechanisms that lead to the frac-
tioned border zone electrograms. For each electrogram, several statis-
tics were computed to summarize each signal. These statistics were
then compared between normal and abnormal cases of both the clini-
cal and simulated electrograms. The difference between normal and
abnormal pseudo-electrograms showed resemblance to the clinical
counterparts. Similar to previous studies, this simulation technique
could potentially be used to identify ablation targets noninvasively.
The authors further advanced this methodology by combining this
biophysical modeling approach with ML.82 The authors sought to
develop an ML classifier that could accurately distinguish between
normal and abnormal electrogram signals. The classifier, trained with
image-based and simulation-based features, is able to accurately iden-
tify abnormal intracardiac electrograms. Although not all regions with
abnormal electrograms need to be ablated, this study represents a stark
advancement in computational heart modeling approaches.

In addition to LGE-CMR, CT has also been used in the pre-
procedural assessment of arrhythmogenic substrate. A recent study
outlined a different approach for virtual-heart reconstruction than pre-
vious studies, using CT images and assuming regions of wall thinning
to be scar.83 The scar was modeled with reduced conduction speed as
a function of myocardial wall thickness. This study included five
patients with chronic infarct and thinning myocardial wall. This com-
putational workflow was designed to be computationally efficient and
integrated into clinical workflows as a noninvasive, intra-operative
mapping tool for ablation therapy. Infiltrating adipose tissue on CT
has been identified as substrates based on intensity values on CT and
combined with virtual heart technology to predict VT ablation tar-
gets.40 Rapid pacing was then used to induce VTs. Each VT was ana-
lyzed, and corresponding ablation targets were determined to
terminate each VT pathway. The authors further validated this
approach in a retrospective study consisting of 29 post-infarct patients
who underwent VT ablation. Overall, the predicted ablation targets by
virtual-heart were concordant with the clinical ablation targets and
required overall less ablation volumes. Moreover, since CT is more
accessible across a broad range of clinical centers, such technologies
could be readily deployed prospectively to improve VT ablation
strategies.

Previous computational studies have evaluated heterogeneity in
action potential duration as a VT susceptibility metric. A recent study

examined the interaction between activation and repolarization wave-
fronts into in silicomapping experiments.84 A novel technique called re-
entry vulnerability index (RVI) pinpointed the slow conducting and
abnormal repolarized sites without needing the induced VT. The authors
evaluated the RVI algorithm’s performance at different electrophysio-
logical measurement conditions and showed the potential use of RVI to
target re-entrant circuits in the clinical setting. The same authors later
simulated substrate mapping using a porcine heart model and attempted
to identify the ablation targets using RVI and endocardial electrogram
features without inducing VT.85 Activation time (AT) gradients com-
bined with voltage cutoffs successfully identified the VT exit sites, while
RVI based maps determined the region near the VT exit sites.

FUTURE PERSPECTIVES

In this review, we have summarized recent achievements and
advancements of whole-heart computational modeling in uncovering
mechanisms of VA, predicting results of novel therapeutics not cur-
rently attainable by experimental means, and improving clinical VA
management. These applications highlight the transformative nature
of computational whole-heart modeling in VA and its role in precision
cardiovascular medicine. As high-performance computing and
machine learning become increasingly sophisticated, newer advance-
ments will likely develop in whole-heart modeling. Machine-learning
based approaches are becoming more and more commonplace in the
field of cardiac electrophysiology.86 Such tools are well-designed to
tackle several of the deficiencies in cardiac modeling. For instance,
physics-based deep neural network methodologies are being developed
to bypass the computationally expensive nature of executing bidomain
and monodomain simulations and may eventually be extended to
whole-heart modeling.87 Having such tools would allow for greater
flexibility in assessing a multitude of model parameters which would
allow for fine-tuned, personalized simulations of the patient’s electro-
physiology to inform clinical providers in real-time. With the advent
of such improvements, computational whole-heart modeling is well-
poised to become an integral part in both mechanistic understanding
and clinical care of VAs.
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