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Abstract

Background: Megavoltage computed tomography (MVCT) has been implemented on many 

radiotherapy treatment machines for on-board anatomical visualization, localization, and adaptive 

dose calculation. Implementing an MR-only workflow by synthesizing MVCT from MRI would 

offer numerous advantages for treatment planning and online adaptation.

Purpose: In this work, we sought to synthesize MVCT (sMVCT) datasets from MRI using deep 

learning to demonstrate the feasibility of MRI-MVCT only treatment planning.

Methods: MVCTs and T1-weighted MRIs for 120 patients treated for head-and-neck cancer 

were retrospectively acquired and co-registered. A deep neural network based on a fully-

convolutional 3D U-Net architecture was implemented to map MRI intensity to MVCT HU. Input 

to the model were volumetric patches generated from paired MRI and MVCT datasets. The U-Net 

was initialized with random parameters and trained on a mean absolute error (MAE) objective 

function. Model accuracy was evaluated on 18 withheld test exams. sMVCTs were compared 

to respective MVCTs. Intensity-modulated volumetric radiotherapy (IMRT) plans were generated 

on MVCTs of four different disease sites and compared to plans calculated onto corresponding 

sMVCTs using the gamma metric and dose-volume-histograms.

Results: MAE values between sMVCT and MVCT datasets were 93.3 ± 27.5, 78.2 ± 27.5, and 

138.0 ± 43.4 HU for whole body, soft tissue, and bone volumes, respectively. Overall, there was 

good agreement between sMVCT and MVCT, with bone and air posing the greatest challenges. 

The retrospective dataset introduced additional deviations due to sinus filling or tumor growth/
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shrinkage between scans, differences in external contours due to variability in patient positioning, 

or when immobilization devices were absent from diagnostic MRIs. Dose distributions of IMRT 

plans evaluated for four test cases showed close agreement between sMVCT and MVCT images 

when evaluated using DVHs and gamma dose metrics, which averaged to 98.9 ± 1.0% and 96.8 ± 

2.6% analyzed at 3%/3mm and 2%/2mm, respectively.

Conclusions: MVCT datasets can be generated from T1-weighted MRI using a 3D deep 

convolutional neural network with dose calculation on a sample sMVCT in close agreement with 

the MVCT. These results demonstrate the feasibility of using MRI-derived sMVCT in an MR-only 

treatment planning workflow.
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1. INTRODUCTION

Over the last decade there has been a substantial increase in the use of magnetic resonance 

imaging (MRI) in radiotherapy due to its superior soft tissue contrast relative to computed 

tomography (CT)1. A critical step in radiotherapy dose calculation relies on obtaining 

patient-specific maps of electron density, typically derived from the Hounsfield Units 

(HUs) of CT scans acquired for treatment planning. Therefore, it is common practice in 

radiation oncology to acquire both an MRI (for anatomical visualization) and a CT (for 

electron density mapping). However, eliminating the CT scan and implementing an MR-

only workflow would offer numerous advantages including streamlined clinical efficiency, 

removal of CT-to-MRI registration errors, and a reduction in the number of imaging 

procedures required for each patient2. Early in the roadmap to developing an MR-only 

workflow, many groups investigated deriving synthetic CT images from MRIs for mapping 

electron density using voxel-based, atlas-based, or hybrid techniques3–5. In recent years, 

machine learning algorithms such as deep convolutional neural networks (DCNNs) have 

demonstrated excellent results for medical image synthesis when translating between MRI 

and CT6–8.

Of the techniques used to generate synthetic CT from MRI, all have focused on the synthesis 

of CT images acquired in the kilovoltage (70–140kVp) energy range, which remain the 

standard imaging modality in radiotherapy9,10. kVCT scans exhibit high signal-to-noise 

(SNR) and contrast-to-noise (CNR) while providing sufficient electron density for photon 

radiotherapy. CT HU-to-electron density calibration curves are input into treatment planning 

systems for purposes of dose caculation11,12 and provide dose calculation accuracy to within 

2% even with large inaccuracies in calibration curves13. In addition to the conventional 

CT scan used for initial radiotherapy treatment planning, volumetric on-board imaging has 

been integrated into most linear accelerators (linacs) and proton therapy systems to provide 

image-guided radiotherapy (IGRT), allowing for pre-treatment localization, monitoring of 

anatomical changes, and online plan adaptation. On-board cone-beam CT (CBCT), for 

example, is routinely used for these purposes and has demonstrated utility for daily dose 

reconstruction14–16. While kV imaging systems are widely used in many systems, they 

can introduce several disadvantages for treatment planning and dose calculation. Onboard 
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kV CBCT imaging requires that additional hardware be integrated into the accelerator, 

resulting in different imaging and treatment isocenters. Additionally, kV imaging can be 

susceptible to artifacts caused by metallic material such as dental fillings or prosthetics17,18. 

Megavoltage (MV) images mitigate many of the disadvantages exhibited by kV images 

and have been used to for both image guidance19 and for generating electron density 

maps for dose calculation20–23 and adaptive radiotherapy planning24–27. By utilizing the 

same high-energy x-ray beam for both imaging and treatment, the MV imaging isocenter 

coincides perfectly with the treatment isocenter while also evading problems related to 

streaking artifacts and beam hardening due to its higher photon energy spectrum. Several 

commercially available options for on-board volumetric MV imaging include the MVCT 

platform integrated into the TomoTherapy system (Accuray, Sunnyvale, CA)28,29 and the 

MV-CBCT imaging platform integrated into the Halcyon system (Varian Medical Systems, 

Palo Alto, CA)30.

In addition to MV and kV imaging, MRI is also being used for IGRT, offering real-time, 

continuous soft tissue visualization immediately prior to and during treatment delivery31,32. 

Combined 0.35–1.5 T MRI-linacs have gained substantial popularity over the last several 

years33 with a number of commercial options currently available. In a typical MR-linac 

treatment planning workflow, a CT alone or both CT and MRI are acquired for target 

definition and electron density mapping for dose calculation 1–2 weeks prior to the 

beginning of treatment34. During online treatment adaptation, updated structure contours 

and HU values are acquired through deformable image registration of the pre-treatment 

MRI to the original treatment planning CT. Of note, some MR-linacs, such as the Elekta 

Unity system, come equipped with MV panels that can be used for portal imaging35 and 

it is conceivable that these panels may also be used for online volumetric MV image 

reconstruction in the future.

In light of the advantages provided by MV imaging for dose calculation and availability of 

MV hardware-equipped MRI-linacs, we propose a clinical pipeline in which MRI-derived 

sMVCT be used for initial treatment planning and the already present high-energy MV 

photon beam for online dose adaptation on the MRI-linac. This paradigm shift would offer a 

solution that eliminates the need for kV imaging systems for both initial treatment planning 

and online plan adaptation. Furthermore, undesirable characteristics of MV imaging, such 

as low SNR and CNR, are less important if the CT scan is being used purely for photon 

dose calculation rather than providing anatomical detail, as proposed in this workflow. This 

study is the first to demonstrate that synthetic MVCT images can be generated from MRIs 

using a 3D U-Net deep learning model and used for treatment planning of head and neck 

cancer, illustrating the feasibility of our proposed workflow whereby the MRI is utilized 

for anatomical delineation while the MRI-derived sMVCT is used for radiotherapy dose 

calculation.

2. MATERIALS AND METHODS

2.A. Image data and preprocessing

T1-weighted (non-contrast) MR and MVCT images for 120 head and neck (H&N) cancer 

patients treated on an Accuray TomoHD system were retrospectively analyzed in this 
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IRB-approved study. Diagnostic MRI scans were acquired in the head-first supine position 

approximately 0–6 weeks prior to treatment on 1.5 T scanners using a T1-weighted 3D 

sequence without contrast (repetition time 500–800ms, echo time 7–15ms, flip angle 

70–110°, voxel size 1×1×3mm3). MVCT images were acquired in the head-first supine 

treatment position using a 5-point head and shoulder thermoplastic mask and tongue stent 

immediately prior to treatment delivery for purposes of image alignment on an Accuray 

TomoHD system (3.5MV photon spectra) with in-plane resolution 1×1mm2 and slice 

thickness 3mm. For each patient, MVCT scans were rigidly co-registered to the space of 

their respective MRI scan in MIM (MIM Software Inc, v 6.8.3 Cleveland, OH) according 

to our institution’s clinical practice using automatic maximization of mutual information, 

followed by manual inspection and adjustment by a clinician with >8 years of experience in 

image fusion. MVCT images were cropped to match the MRI field-of-view and resampled 

to a uniform 512×512 matrix using nearest neighbor interpolation. All MR images were 

histogram-matched36 and normalized to standardize intensity values of images acquired 

across different scanners. The final dataset of 120 paired MRI-MVCT images was divided 

into an 80%−5%−15% train-validation-test split for the deep learning model with 18 test 

datasets.

2.B. Deep learning architecture and model

A deep neural network based on a fully convolutional 3D residual U-Net architecture 

was implemented to map MR images to sMVCT images as shown in Figure 1. Input 

to the model were approximately 200,000 volumetric patches (dimensions ~64×64×32) 

generated from 100 paired 3D T1-weighted MRI and MVCT datasets. The encoding path 

consisted of the repeated application of two 3×3×3 convolution kernels, rectified linear unit 

(ReLU), group normalization, and 2×2×2 max pooling. The decoding path consisted of the 

application of two upsampling 3×3×3 convolution kernels, ReLU, and group normalization. 

Skip connections were used to feed outputs of encoding layers to corresponding decoding 

layers to recover spatial information lost during downsampling. The single-channel model 

output was a 3D sMVCT.

Network and hyperparameter validation were performed on the validation dataset with the 

final U-Net initialized using random parameters and trained for 100 epochs using the Adam 

optimizer (initial learning rate 10−4) on an objective that minimizes the mean absolute error 

(MAE) between the measured 3D MVCT HU map and MRI-derived sMVCT HU map:

MAE = 1
N ∑i = 1

N MV CT i − sMV CT i (1)

In Equation 1, N is the total number of image voxels and MVCT(i) and sMVCT(i) are the ith 

voxels in the real and synthetic MVCTs, respectively. During validation, model optimization 

was run long enough to qualitatively produce realistic sMVCT images and minimize the 

MAE between real and synthetized MVCT images in the validation dataset. Model accuracy 

was evaluated on images in the test dataset that were withheld during model training. The 

U-Net was implemented in PyTorch and trained on a single NVIDIA Titan RTX 24GB 

GPU using a batch size of 60. Training the U-Net model took approximately 120 hours and 

reconstructing each 3D image dataset using the fully trained model took less than 1 minute. 
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Inference was performed by dividing 3D H&N volumes into smaller overlapping volumetric 

patches (dimension ~[64,64,32]) with 50% overlap prior to applying the 3D U-Net. Volumes 

were reassembled by taking the sample mean of the resulting outputs at each 3D grid 

position to ensure the sMVCT was processed at native resolution.

2.C. Qualitative and quantitative evaluation of sMVCT images

Qualitative differences were assessed through visual side-by-side inspection of sMVCT 

versus MVCT images. The qualitative factors evaluated included overall shape of the 

anatomy, similarity in tissue contrasts, and the ability to distinguish air from bone, which 

remains an ongoing challenge in MR-to-CT synthesis given that both manifest as signal 

voids in most MR images37. Quantitative differences were assessed in different tissue types 

by segmenting MVCT images into whole body, soft tissue, bone, and air-filled volumes. All 

images were masked to remove material outside of the patient external contour, including 

air and setup devices. The whole body was defined as all material within the mask, 

which covered tissues inside the head-and-neck field-of-view for each patient. MVCT HU 

threshold values for soft tissue and bone were determined by mapping typical kVCT HU to 

MVCT HU values through an electron density calibration curve. As such, within the whole 

body, the soft tissue volume was defined as voxels in the −120 to 100 HU range and the 

bone volume was defined as voxels with HU value greater than 100 HU. For each tissue 

type, MAE (mean and standard deviation) was calculated between sMVCT and MVCT 

images (Equation 1) and displayed as violin plots to visualize the error distribution for 

different tissue types in test patient datasets. Paired histograms for MVCT and sMVCT 

test datasets were generated to compare HU values at the voxel level. To quantify model 

performance in distinguishing bone versus air, dice coefficients were calculated between 

MVCTs and sMVCTs within the body, bone, and air-filled structures.

2.D. Radiotherapy treatment planning

Of the 18 test datasets, four representing a diversity of H&N sites including base-of-tongue, 

thyroid, neck, and nasal cavity were used to generate radiotherapy treatment plans to 

assess dosimetric impacts of using sMVCT images. Treatment planning was performed 

in RayStation (v.7.0 RayStation Laboratories, Stockholm, Sweden) using 6MV photon 

coplanar volumetric modulated arc therapy and an MVCT HU-to-electron density CT 

calibration curve for dose calculation. CT calibration curves were generated using CT data 

of a commercial tissue surrogate phantom acquired within 6 months of image acquisition 

as previously described by our group38 to avoid instabilities in the calibration curve caused 

by target degradation39. A collapsed cone convolution superposition algorithm was used 

for dose calculation. Contours were copied from the original CT planning dataset to the co-

registered MVCT and sMVCT datasets. In cases where the MRI field-of-view was limited, 

contours were edited to be fully covered within the external contour. Planned dose, organ-

at-risk (OAR) constraints, and planning target volume (PTV) coverage were reproduced 

based on the treatment plans used clinically for each patient. Dose was normalized to 95% 

of the PTV receiving 100% of the prescription. Plans generated on the MVCT datasets 

were recalculated onto sMVCT datasets using fixed plan parameters. Dose distributions 

for MVCT and sMVCT were compared by assessing several different clinically relevant 
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dose-volume-histogram (DVH) endpoints and the gamma index40 calculated at 3%/3mm and 

2%/2mm locally at a 10% dose threshold.

3. RESULTS

3.A. Qualitative and quantitative evaluation of sMVCT images

Figure 2 shows T1-weighted MRI, MR-derived synthetic MVCT, real MVCT, and HU 

difference maps for four example test datasets. Qualitatively, synthetic MVCT images have 

similar contrast to real MVCT images with structural details including interfaces between 

air, bone, and tissue appearing well preserved in the synthetic images. For example, bony 

regions between synthetic and real images were generally well correlated in the mandible 

(Figure 2a), skull (Figure 2b,c), and vertebral bodies (Figure 2a,d). Structures containing air, 

such as the trachea (Figure 2a,d), also appeared well preserved.

Across the 18 test patients, the MAE (mean ± standard deviation) between sMVCT and 

MVCT averaged over all voxels in the whole body, soft tissue, and bone volumes was 93.3 

± 27.5, 78.2 ± 27.5, and 138.0 ± 43.4 HU, respectively. Dice coefficients (mean ± standard 

deviation) between sMVCT and MVCT whole body, bone, and air-filled structures were 

0.97 ± 0.01, 0.66 ± 0.09, and 0.60 ± 0.11, respectively. Mean error between sMVCT and 

MVCT images are displayed in Figure 3 for the four test patients used for radiotherapy 

treatment planning analysis (four left-most columns), as well as the average error over all 18 

test patients (right-most column). As expected, error in soft tissue volumes was the lowest 

while error in bone was highest for all test datasets. Patient 4 appears to be an example in 

which bone and soft tissue were both underestimated in the sMVCT versus MVCT, which 

we suspect was caused by missing tumor volume and underestimation of bone near the 

auditory canal in the MR-generated sMVCT, which can be seen in Figure 6. At the time the 

MRI was acquired (about three weeks prior to the MVCT) the tumor was smaller, therefore, 

the MRI-predicted sMVCT exhibited less tissue within the sinus versus the MVCT.

Differences between sMVCT and MVCT images could occasionally be seen when the tissue 

positioning or patient anatomy were different between the MRI and MVCT in our dataset, 

as shown in Figure 4. For example, the top panel of Figure 4 shows changes in the nasal 

cavity filling while the bottom example highlights differences caused by immobilization 

devices such as oral stents and thermoplastic head-and-neck masks which are often used in 

radiotherapy but not in diagnostic MRI.

Joint histogram plots of sMVCT HU and MVCT HU for all 18 test patients are shown in 

Figure 5. Some sMVCT datasets demonstrated lower intensity HU distributions versus the 

corresponding MVCT (for example, patients 4 and 8). This was typically seen in patients 

who had less soft tissue in the MRI (and thus, sMVCT) versus the MVCT. In most of these 

cases, the tumor increased in size between MRI acquisition and treatment commencement 

(when the MVCT was acquired).

3.B. Dosimetric evaluation of treatment plans

Figure 6 shows example dose distributions calculated on real and synthetic MVCT test 

image sets across four different H&N sites. Dose volume histograms for the PTV and 
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relevant OARs are shown. Dose distributions are visually very similar between real and 

synthetic CT images. The majority of DVHs directly overlay each other, indicating close 

agreement in dose distributions between structures. Notable exceptions were the PTV and 

eye structures of test patient #4, who was treated to a tumor volume within the nasal 

cavity. We believe dose distribution disagreements in the PTV were driven by tumor growth 

within the sinus cavity that occurred between MRI and MVCT image acquisition. Small 

dose distribution disagreements were also seen in the eye structures for this patient because 

the eyes were relatively small structures directly abutting the PTV, therefore their DVHs 

were particularly sensitive to small deviations in dose distributions between the MVCT and 

sMVCT.

Table 1 shows dosimetric differences between the four treatment plans for PTVs and 

relevant OARs. Doses to 1% volume (D1), 95% volume (D95), 99% volume (D99), and 

mean dose are provided. Dose differences to all structures were within 1Gy (relative to 

66–70Gy total prescription dose) except for the PTV, brain (D1), and cochlea for patient 

#4, which demonstrated maximum dose differences within 2Gy. In this case, sMVCT DVHs 

were systematically lower than MVCT DVHs due to significant changes in sinus filling 

between the datasets.

Table 2 shows results of gamma values calculated to compare sMVCT and MVCT dose 

distributions using metrics of 3%/3mm and 2%/2mm at 10% local dose threshold criteria. 

Patients #1, #3, and #4 were within the 95% (2%/2mm) threshold typically used clinically 

for comparing two calculated dose distributions. The lowest gamma values were seen in 

patients #2 and #4. In the case of patient #2, minor dose disagreement was attributed to 

small differences in the tissue surface due to the immobilization used for the MVCT but not 

MRI, which impacted this plan more than others due to the location of the target volume 

being at the patient surface. Discrepancies in patient #4 were due to changes in sinus filling 

as previously described.

4. DISCUSSION

Our results suggest that synthetic MVCT images can be generated from T1-weighted MRIs 

using a 3D U-Net for H&N photon radiotherapy treatment planning. Synthetic MVCT 

images predicted by the model exhibited similar qualitative features to real MVCT images. 

MAE values measured between sMVCTs and MVCTs across whole body, soft tissue, and 

bone volumes were 93.3 ± 27.5, 78.2 ± 27.5, and 138.0 ± 43.4 HU, respectively, which is 

similar to deep learning approaches previously reported for synthetic kVCT. For example, 

Gupta et al reported MAE values of 81.0 ± 14.6, 17.6 ± 3.4, and 193.1 ± 38.3 HU for all 

whole body, tissue, and bone regions, respectively, when learning the relationship between 

T1 MR and kVCT41. For H&N-based MR-derived sCT, specifically, Wang et al reported 

MAE values of 97 ± 13, 131 ± 24, and 357 ± 44 HU for soft tissue, whole body, and bone, 

respectively, for T2 MR to kVCT learning42. In a systematic literature review of synthetic 

CT generation for MRI-only radiotherapy planning, voxel-based techniques using standard 

MRI sequences yielded MAE results between 11–135 HU and 91–99.9% gamma passing 

rate depending on MR technique, body site, and gamma criteria4. Of note, all previous 

studies in this realm investigated kV imaging, whereas our study investigated MV imaging. 
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CT scans acquired at kV and MV energies yield different HU values for higher density 

materials such as bone, where the bilinear kV and linear MV CT calibration curves deviate 

from one another43. For example, typical bony tissue with relative electron density of 1.2 

will have HU values of ~400 in a kVCT and ~150 in an MVCT, which contributed to 

why our MV approach yielded comparable or lower MAE values in bone relative to prior 

kV approaches. In our work, dose distributions computed on synthetic images were very 

similar to those computed on real MVCT images, with gamma metrics >97% and >93% 

when computed at thresholds of 3%/3mm and 2%/2mm, respectively. Our dosimetric results 

are similar to those previously described in real versus synthetic CT comparisons, with 

Gupta et al41 and Wang et al42 also demonstrating overlapping DVH curves for treatment 

plans calculated on real versus synthetic images. While the four cases evaluated in this 

study help provide proof-of-concept of the MRI-to-MVCT model, clinical implementation 

of this technology would require evaluation and quality assurance across a larger number 

of datasets to quantify and mitigate any systematic under- or overestimations caused by the 

model used to generate synthetic images. In this work, we utilized the same rigid registration 

protocol that is implemented in our institution’s routine clinical practice. This leads to 

some observed ambiguity in distinguishing whether differences in real versus synthetic 

images were caused by anatomical misalignment or model performance. We expect that 

misalignment would be the most significant around the neck and jaw, which could be 

positioned differently between the MRI and MVCT images. This could potentially be 

alleviated through deformable image registration (DIR), but we chose not to use DIR in 

this study as its widespread clinical implementation in radiotherapy has been limited due 

to the large number of different algorithms and lack of quantitative quality control metrics 

for defining adequate registration44. In examining images in the neck and jaw regions, 

we observed relatively good alignment with the rigid registration used for this study. We 

predict that improved anatomical alignment through DIR, MRI simulation using identical 

patient set-up, and/or a shorter time duration between MRI and MVCT acquisition will only 

increase model performance.

Despite the increased utilization of MRI in radiation oncology over the past decade, 

limitations remain for MR-only planning workflows. Geometric distortions, for instance, can 

compromise the spatial integrity of MRI images when used for radiation therapy planning45. 

Comprehensive reviews of MRI distortions are available in the literature, but broadly 

speaking can be attributed to either the MRI system or to the patient anatomy. MRI system-

level distortions are produced by phenomenon such as gradient nonlinearities, non-uniform 

main magnetic field, and eddy currents produced during sequences requiring rapidly pulsed 

gradients, such as diffusion weighted or echo planar imaging. These distortions become 

more pronounced further away from the magnet isocenter but can be largely mitigated 

through modern 3D distortion correction algorithms, increased gradient amplitude, increased 

bandwidth, and adequate shielding. For example, mean geometric distortions over a 40cm 

diameter volume-of-interest have been reported at <1 mm and <1.2mm for 1.5T and 3T 

diagnostic MRI scanners, respectively46,47 while maximum geometric displacements of <1–

2mm have been reported for both the Elekta Unity48,49 and ViewRay MRIdian50 systems. 

Patient-level distortions are typically caused by phenomena such as material magnetic 

susceptibility differences and chemical shifts. Susceptibility artifacts are most prevalent at 
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air-tissue interfaces (for example, in the sinuses) and can be partially mitigated through 

patient-specific field map corrections. Without correction, distortions in the head can be as 

high as 0.3–0.6mm at 0.5T, 2–2.5mm at 1.5T, and 2–3.5mm at 3Tesla51,52. Applying these 

corrections in the brain can decrease susceptibility-induced displacements from 4mm to 

0.2mm53. Despite these technical limitations, advantages of MRI-based planning can include 

more reliable anatomical definition and reduction in CT-MRI co-registration errors. CT-

based contouring has been demonstrated as the most significant contributor to inaccuracies 

in radiotherapy with errors as high as 1–2cm reported in the literature54–57. On the other 

hand, significant reductions in inter- and intra-observer variability have been reported with 

MRI-based treatment planning in disease sites such as the brain, prostate, and female 

pelvis58–61. Furthermore, an MRI-only workflow would remove CT-to-MRI co-registration 

errors, which have been reported at 1–2mm depending on anatomical site62,63. Overall, the 

benefits and limitations of CT-only, MRI-only, or combined CT-MRI workflows must be 

well understood by the clinical team and appropriate choice of imaging modality should be 

carefully considered in the context of a patients’ disease, anatomy, and other circumstances.

Many studies have been performed to investigate the translation between MRIs and 

traditional kVCT images for purposes of MR-only radiotherapy planning, but this work 

is the first to synthesize MVCT images from MRI. While advantages of MVCT include 

HU linearity with respect to material electron density and resistance to beam hardening 

effects39,64–67, some disadvantages remain including lower image contrast and greater noise 

due to increased Compton scatter relative to the photoelectric effect26. Image performance 

characterization of MVCT images has been reported in the literature. For example, Held 

et al26 reported that MVCTs produced spatially stable image values regardless of image 

protocol and object size, despite being ~6x noisier than fan beam kVCT. MVCT image 

quality with respect to noise, uniformity, contrast, and spatial resolution was characterized 

by Meeks et al64 who reported comparable image uniformity and spatial resolution to 

diagnostic fan beam kVCT. While MVCT images demonstrated reduced contrast resolution 

and signal-to-noise ratio, they were still able to provide sufficient contrast to delineate 

bone and soft tissue structures. Techniques have been implemented to minimize noise in 

MV imaging through statistical methods68,69 and deep learning approaches70,71, however, 

MVCT has been deemed adequate for photon dose calculation given linearity between 

contrast and electron density20,72. Important to this work is that reduced SNR and CNR 

inherent to MV imaging becomes less important if the CT scan is being used purely for 

photon dose calculation, as proposed in this workflow, rather than providing anatomical 

detail.

Our results indicate that high quality synthetic CT images can be achieved even when 

derived from MR images acquired with some variability between scanners and acquisition 

parameters. A limitation of this study was due to the diagnostic nature of the MR image 

datasets, which resulted in different patient set-up and, oftentimes, a time delay between 

MR and MVCT acquisitions. Patients being treated for H&N cancer are particularly 

susceptible to experiencing changes in weight and/or tumor volume over the course of 

their treatment41,73,74, suggesting that treatment planning images should be acquired as 

close to the beginning of treatment as possible to avoid differences between scans caused 

by anatomical changes in tumor volume, sinus filling, and/or weight. We anticipate these 
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limitations will be largely mitigated through the utilization of radiation oncology-dedicated 

MR scanners for initial treatment planning, which will consist of standardized acquisition 

protocols, identical immobilization devices and patient setup as used for treatment, and 

a shorter time duration between simulation and treatment (ideally no more than 1–2 

weeks). Furthermore, using onboard MV imaging for online dose adaptation, as in our 

proposed future workflow, will mitigate issues caused by anatomical changes occurring 

between original treatment planning images and onboard pre-treatment MRIs, eliminating 

the need for co-registration of these datasets. A remaining challenge when estimating photon 

attenuation maps from MRI includes accurately distinguishing between bone and air, as 

both produce low signal when imaged using conventional sequences. In this work, dice 

coefficients for whole body segmentation were 0.97 ± 0.01, while those for bone and air 

were lower at 0.66 ± 0.09 and 0.60 ± 0.11, respectively. To better distinguish between 

bone and air, methods such as ultrashort echo time (UTE) or zero echo time (ZTE) MRI 

utilize very short echo times capable of acquiring signal in bone (which has a very short 

transverse relaxation time)75,76. While these sequences are not yet routinely acquired in 

most clinical radiation oncology practice, they show great promise for mapping photon 

attenuation from MRI77 and will likely be implemented more routinely in future for this 

purpose. An additional strategy that could be used to increase the accuracy of mapping air 

is to modify the objective function utilized by the deep learning model. For example, an 

objective that uses different weights for different HU values to optimize towards specific HU 

values (for example, air) rather than a global MAE objective across all HU values within the 

body may result in superior mapping of air-filled structures.

While adaptive radiotherapy planning using combined MRI and MVCT for photon 

radiotherapy was the focus of this work, MVCT can also provide additional advantages 

in proton radiotherapy. Range uncertainty remains an ongoing challenge in proton 

radiotherapy, with uncertainties related to kV HU-to-stopping power ratio (SPR) calibration 

curves necessitating additional treatment margins on the order of 1–2% the proton 

range78,79. In the energy range utilized for kV imaging acquisition, photons interact 

primarily though the photoelectric effect which is highly sensitive to the material molecular 

composition. For kVCT scans, the relationship between HU and electron density (to which 

SPR is linearly related) is not one-to-one and can exhibit uncertainties as large as 7%43,80,81. 

In contrast, the primary mode of photon interaction for high energy x-rays is Compton 

scattering, which is predominantly dependent on electron density, resulting in a one-to-one 

relationship between HU and electron density at higher energies82,83. MVCT has been 

demonstrated to provide higher accuracy for mapping both electron density and SPR43,80 

and deriving stoichiometric HU-to-SPR calibration curves84. When it comes to both CT 

image synthesis for treatment planning and adaptive planning in proton radiotherapy, 

synthetic MVCTs may provide a more accurate alternative to synthetic kVCTs. Because 

higher energy accelerator requirements of MV fan-beam CT scanners limit their availability 

in the clinic, synthesizing MVCT images using deep learning offers a promising approach 

for utilizing these images in practice.

The U-Net is one of the most popular architectures for image-to-image domain translation 

and was used in this study to map MRI to synthetic CT using supervised learning85,86. 

Other architectures incorporating weakly-supervised and unsupervised learning, such as 
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generalized adversarial networks (GANs) and its variants (e.g. CycleGAN) have also 

demonstrated promising results for sCT generation87,88, though initial evaluations of deep 

learning methods for medical image synthesis suggest that the supervised U-Net can achieve 

lower MAE, higher structural similarity, and higher peak signal-to-noise than synthetic CT 

images provided by traditional image transformation networks89. Nevertheless, the method 

presented here is equally compatible with a GAN approach, which could be implemented by 

adding an additional adversarial loss to the objective in Equation 1. Overall, it is expected 

that the incorporation of additional loss components, modifications to the network backbone 

(3D U-Net), and future developments within the rapidly evolving field of image-to-image 

synthesis will further improve the results presented here.

5. CONCLUSIONS

In summary, this study is the first to synthesize MVCT images from T1w MR images using 

a deep learning U-Net model in a dataset of 120 patients treated for H&N cancer. MAE 

values between sMVCT and MVCT datasets were 93.3 ± 27.5, 78.2 ± 27.5, and 138.0 ± 

43.4 HU for whole body, soft tissue, and bone volumes, respectively. Dose distributions 

evaluated for four test cases showed very close agreement between sMVCT and MVCT 

images when evaluated using DVHs and gamma dose metrics, which averaged to 98.9 

± 1.0% and 96.8 ± 2.6% analyzed at 3%/3mm and 2%/2mm, respectively. These results 

demonstrate the feasibility of using MRI-derived sMVCT in an MR-only treatment planning 

workflow.
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Figure 1. 
U-Net architecture used in this study. Input to the model were 3D T1w MRI patches and 

output were 3D sMVCT for the same patches.

Scholey et al. Page 17

Med Phys. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Axial slices of four representative T1-weighted MRI, sMVCT, MVCT, and HU difference 

map. All CT images are displayed using a range of 0 to 2000 HU for visualization. Dice 

coefficients for whole body structures were 0.97, 0.98, 0.98, and 0.96 for patients a, b, c, 

and d, respectively. Dice coefficients for bone structures were 0.65, 0.56, 0.73, and 0.53 for 

patients a, b, c, and d, respectively. Dice coefficients for air-filled structures were 0.64, 0.55, 

0.67, and 0.57 for patients a, b, c, and d, respectively.

Scholey et al. Page 18

Med Phys. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Violin plots depicting the error in whole body, soft tissue, and bone voxels between sMVCT 

and MVCT in test patients 1–4 (four leftmost columns), in addition to all error average over 

all 18 test patients (rightmost column). Patient 4 appears to be an example case in which 

bone and soft tissue were both underestimated in the sMVCT, which we suspect was caused 

by missing tumor volume and underestimation of bone near the auditory canal.
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Figure 4. 
Axial slices of two representative T1-weighted MRI, sMVCT, MVCT, and HU difference 

map for cases demonstrating limitations in the dataset including anatomical differences and 

presence or absence of patient immobilization devices as shown by the yellow arrows.
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Figure 5. 
Heatmap plots for MVCT HU (x-axis) and sMVCT HU (y-axis) across the entire FOV 

for the 18 test patients. Points coinciding with the 45° reference line represent agreement 

between real and synthetic images. Treatment plans were generated for patients 1–4 and are 

depicted in Figure 6. HU values between −500 and 500 are shown for figure clarity as most 

values fell within this range.
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Figure 6. 
Axial dose distributions for base-of-tongue, thyroid, neck, and nasal cavity treatment plans 

computed on real MVCTs and synthetic MVCTs with corresponding DVHs.
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Table 1.

Dosimetric differences

sMVCT-MVCT (cGy)

D1 D95 D99 Mean

#1 Base-of-tongue

PTV 37 31 33 33

Spinal cord 20 0 0 8

Oral cavity 48 0 0 23

Submand Glnd (L) 24 22 −6 15

Submand Glnd (R) 31 −74 −82 −34

#2 Thyroid

PTV 48 5 −67 28

Spinal cord 39 0 0 18

Larynx 96 37 46 59

Esophagus 27 −2 0 13

Constrictor muscle 56 0 0 26

#3 Neck

PTV 17 13 35 24

Parotid (L) 51 20 23 26

Parotid (R) 59 49 23 41

Submand Glnd (L) 0 31 4 26

Submand Glnd (R) 0 11 12 −1

Mandible 38 −3 −2 7

#4 Nasal cavity

PTV −186 −134 −117 −173

Brain −149 −8 −1 −47

Cochlea (L) −118 −91 −84 −99

Cochlea (R) −197 −139 −133 −156

Eye (L) −54 −11 −11 −26

Eye (R) −67 −23 −19 −39

Dosimetric differences (cGy) between sMVCT and MVCT DVHs for structures of interest in each treatment plan.
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Table 2.

Gamma passing rates

3%/3mm 2%/2mm

#1 Base-of-tongue 99.3 98.3

#2 Thyroid 97.5 93.8

#3 Neck 99.9 99.6

#4 Nasal cavity 98.9 95.4

Gamma passing rates between treatment plans computed with fixed plan parameters onto sMVCT and MVCT images and calculated using 10% 
local dose threshold at 3%3mm and 2%/2mm.
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