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Abstract

Posttraumatic stress disorder (PTSD) has long been associated with a heightened risk of 

cardiovascular disease (CVD). A number of mechanisms have been implicated to underlie this 

brain-heart axis relationship, such as altered functioning of the autonomic nervous system and 

increased systemic inflammation. While neural alterations have repeatedly been observed in 

PTSD, they are rarely considered in the PTSD-CVD link. The brain-heart axis is a pathway 

connecting frontal and limbic brain regions to the brainstem and periphery via the autonomic 

nervous system, and it may be a promising model for understanding CVD risk in PTSD given 

its overlap with PTSD neural deficits. We first provide a summary of the primary mechanisms 

implicated in the association between PTSD and CVD. We then review the brain-heart axis and its 

relevance to PTSD, as well as findings from PTSD trials demonstrating that a number of PTSD 

treatments have effects on areas of the brain-heart axis. Finally, we discuss sex considerations in 

the PTSD-CVD link. A critical next step in this research is to determine if PTSD treatments that 

affect the brain-heart axis (e.g., brain stimulation that improves autonomic function) also reduce 

the risk of CVD.
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Introduction

Posttraumatic stress disorder (PTSD) is a debilitating neuropsychiatric disorder associated 

with a heightened risk of cardiovascular disease (CVD; Edmondson et al., 2013a; 

Edmondson & von Känel, 2017; Myers, 2017). A number of physiological mechanisms 

have been purported to link these disease states, including dysfunction of the autonomic 

nervous system (e.g., increased heart rate [HR], blood pressure [BP]) and neurohumoral 

systems (e.g., renin-angiotensin system, HPA-axis, cortisol), as well as heightened systemic 

inflammation, metabolic dysfunction, and maladaptive health behaviors (e.g., cigarette 

smoking, poor diet). While impaired top-down brain circuitry and brain connectivity have 

repeatedly been observed in PTSD (e.g., reduced frontal cortical inhibition and heightened 

amygdala activity), they are rarely considered in the PTSD-CVD link. However, the brain-

heart axis, a pathway connecting frontal and limbic brain regions to the brainstem and 

periphery via the autonomic nervous system, may be a promising model for understanding 

CVD risk in PTSD given its overlap with brain regions that have established alterations in 

PTSD.

We review the evidence for several key mechanisms implicated in the PTSD-CVD link, as 

also discussed in the recent review by O’Donnell et al. (2021). We build upon their recent 

summary by discussing the brain-heart axis and its relevance to PTSD, as well as evidence 

that several PTSD treatments have demonstrated effects on areas of the brain-heart axis. 

Finally, we review sex considerations in PTSD-CVD risk, which are critical in order to 

better understand the heightened risk of PTSD in women.

The link between PTSD and CVD

Individuals with trauma exposure and PTSD have higher rates of CVD compared to 

the general population, such that PTSD is associated with a greater risk of myocardial 

infarction, stroke, heart failure, congestive heart failure, and peripheral vascular disease, 

as well as CVD risk factors, such as hypertension and poor endothelial function (for 

reviews, see Edmondson et al., 2013b and O’Donnell et al., 2021). The evidence 

for this link is so compelling that the NIH recently convened a working group 

of experts, including the American Heart Association, to identify the state of the 

literature on the link between PTSD and CVD, titled “The Cardiovascular Consequences 
of Post-Traumatic Stress Disorder” (https://www.nhlbi.nih.gov/events/2018/nhlbi-working-

group-cardiovascular-consequences-post-traumatic-stress-disorder). While PTSD is typically 

considered to be a risk factor for CVD, much of the literature is cross-sectional and does 

not confirm a causal link (see Koenen et al., 2017). Additionally, PTSD can result from 

cardiac events (e.g., myocardial infarction), and this may further increase subsequent CVD 

risk (Edmondson et al., 2011, 2012; von Känel et al., 2011). Better characterization of 

the possible bidirectional relationship between PTSD and CVD is needed, and this should 

be considered when evaluating the existing literature on underlying mechanisms. Several 

mechanisms have been implicated in the PTSD-CVD link and are reviewed below.
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Autonomic function and the HPA-axis

An altered stress response is the hallmark characteristic of PTSD, represented by autonomic 

nervous system and HPA-axis dysfunction (Brudey et al., 2015). Studies have repeatedly 

demonstrated that individuals with PTSD exhibit elevated sympathetic arousal, indicated by 

higher HR and BP both at rest and in response to fearful stimuli, compared to controls 

(Buckley & Kaloupek, 2001; Ehlers et al., 2010; Jovanovic et al., 2009; Keane et al., 1998; 

Orr et al., 1993). PTSD is also associated with decreased parasympathetic activity, such 

as lower heart rate variability (HRV) at rest (Chang et al., 2013; Hauschildt et al., 2011; 

Minassian et al., 2014, 2015) and in response to challenge (Jovanovic et al., 2009; Keary 

et al., 2009; Park et al., 2017; Sahar et al., 2001). As a biomarker of autonomic activity, 

increased plasma and urine catecholamine levels have also been reported in PTSD (Pan et 

al., 2018). In terms of the HPA-axis, individuals with PTSD demonstrate lower basal cortisol 

levels compared to controls, which is thought to be the result of sensitive glucocorticoid 

receptors that cause excessive negative feedback of cortisol (Daskalakis et al., 2013; Morris 

et al., 2012; Yehuda et al., 1993). PTSD is also associated with increased secretion of 

corticotropin-releasing hormone, which ultimately leads to decreased cortisol release as a 

result of receptor downregulation (Baker et al., 1999; Heim et al., 2001; Yehuda, 2006) 

There is some evidence for heightened glucocorticoid receptor sensitivity in PTSD as well, 

but findings are not consistent (Morris et al., 2016; Yehuda, 2006).

The renin-angiotensin system

A related mechanism that has been implicated in the PTSD-CVD link is the renin-

angiotensin system (RAS). The RAS is a hormone system that controls BP, fluid regulation, 

and sodium balance mainly through activity of the liver and kidneys, and it promotes 

vasoconstriction and sympathetic activity through the synthesis and release of angiotensin 

II. Several preclinical studies have found that blockade of the angiotensin II type 1 

receptor using angiotensin receptor blockers reduces sympathetic activity and improves fear 

inhibition (Grassi et al., 2003; Klein et al., 2003; Sueta et al., 2014; Wang et al., 2014; 

Xia et al., 2009). For example, our group demonstrated that mice treated with losartan, 

an angiotensin receptor blocker, exhibited significantly less freezing (a threat response 

in rodents) compared to controls (Marvar et al., 2014). This has also been demonstrated 

in humans, where losartan has been shown to enhance positive learning and to facilitate 

fear extinction as indexed with skin conductance (Pulcu et al., 2019; Stout & Risbrough, 

2019; Zhou et al., 2019). Cross-sectional research in humans has demonstrated that RAS 

blockade in humans via ace-inhibitors and angiotensin receptor blockers has been associated 

with decreased likelihood of a PTSD diagnosis (Khoury et al., 2012; Nylocks et al., 

2015; Seligowski et al., 2021a), although a recent randomized controlled trial of losartan 

did not find evidence for the superiority of losartan over placebo for PTSD symptom 

reduction (Stein et al., 2021). RAS physiology (e.g., renin level) has also been examined 

and appears to be altered among trauma-exposed individuals and particularly in those with 

PTSD (Terock et al., 2019a, 2019b). Taken together, RAS activity and its contributions to 

autonomic pathophysiology may be an important mechanism in further elucidating CVD 

risk in PTSD.
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Inflammation

It is thought that the chronic HPA-axis and autonomic dysfunction in PTSD also strains 

the immune system and promotes inflammation. Indeed, individuals with PTSD have 

elevated levels of proinflammatory cytokines compared to trauma-exposed controls, and 

this inflammation is linked to CVD (Brudey et al., 2015; Kim et al., 2020; O’Donovan et 

al., 2012). In addition to serum cytokine levels, there is evidence that PTSD is associated 

with increased concentrations of C-reactive protein, a biomarker of inflammation that can be 

predictive of CVD (Brudey et al., 2015; Heath, 2013; Mehta et al., 2020; Michopoulos et al., 

2015, 2017; Spitzer et al., 2010). Notably, systemic inflammation has been associated with 

altered neural functioning, such as decreased connectivity between the vmPFC and striatum, 

and increased connectivity between the dorsomedial PFC and amygdala (Michopoulos et 

al., 2017). This inflammation underlies not only PTSD but also metabolic disease, pointing 

towards metabolic dysregulation as an additional mechanism implicated in the connection 

between PTSD and CVD (Friend et al., 2020; Lindqvist et al., 2014).

Metabolic dysregulation

Highly comorbid with PTSD, metabolic dysregulation is characterized by the presence 

of phenotypes including increased abdominal fat mass, disrupted glucose regulation, 

and increased levels of triglycerides (Michopoulos et al., 2016). Like PTSD, metabolic 

dysregulation is associated with changes in the HPA axis and inflammation, leading to 

increased abdominal fat mass and potentially exacerbating hyperglycemia and insulin 

resistance (Michopoulos et al., 2016). A study by Šagud et al. (2017) reported that people 

with PTSD had a near-double risk for metabolic dysregulation compared to the general 

population, and metabolic dysregulation is itself a risk factor for CVD (Dedert et al., 2010; 

Heppner et al., 2009; Kibler et al., 2014; Michopoulos et al., 2016). Stress activates the 

autonomic nervous system, which triggers the release of catecholamines, thereby increasing 

the concentration of cholesterol and triglycerides that are integral to metabolic dysregulation 

(Weiss et al., 2011). It is thus clear that PTSD is related to a high risk of metabolic 

dysregulation, and to complicate matters, there are multiple health-related behaviors that are 

linked to both metabolic dysregulation and CVD in people with PTSD (Bartoli et al., 2013).

Health behaviors

Trauma exposure is associated with increased smoking behavior, which is a major CVD 

risk factor (de Oliveira et al., 2018; Gilsanz et al., 2017; Lopez et al., 2011). Additionally, 

individuals with PTSD are more likely to resume smoking after quitting and have a lower 

tolerance for withdrawal symptoms that are experienced when reducing nicotine intake 

(Burg & Soufer, 2016; Van den Berk-Clark et al., 2018). Supporting the finding that tobacco 

use is highly prevalent in those with PTSD are other studies that point to a high comorbidity 

between substance use disorder and PTSD, with alcohol use in particular being another 

CVD risk behavior (Berg & Soufer, 2016; Mills et al., 2006). Furthermore, individuals with 

PTSD may engage less in physical activity and may have poorer diet, which are additional 

risk factors for poor health outcomes, including CVD (Burg & Soufer, 2016; Dedert et al., 

2010; Gilsanz et al., 2017; Hoerster et al., 2019; van den Berk-Clark et al., 2018). PTSD is 

also associated with disruption in social relationships, such as difficulty maintaining social 

Seligowski et al. Page 4

Depress Anxiety. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



connection and increased social isolation (Davidson et al., 1991; Platt et al., 2016). Since 

social isolation is associated with both depression and increased mortality following CVD 

events, isolation represents an additional health-related behavior that may further increase 

CVD risk in PTSD (Berkman et al., 1992; Edmondson & Cohen, 2013a).

The confluence of autonomic and RAS dysfunction, as well as inflammation, metabolic 

dysregulation, and health behaviors, suggests that the PTSD-CVD link is strong but highly 

complex. It is notable that the mechanisms implicated in the PTSD-CVD link comprise 

peripheral markers; however, there is a longstanding literature on neural alterations in PTSD. 

The most-replicated findings are that PTSD is associated with increased activity of the 

amygdala and dorsal anterior cingulate (dACC), and decreased activity of the ventromedial 

prefrontal cortex (vmPFC; see Fenster et al., 2018 and Hayes et al., 2012 for reviews). These 

brain regions affect the peripheral systems mentioned above via innervation of brainstem 

nuclei that project to the autonomic nervous system. Therefore, the brain-heart axis provides 

a model of brain-heart interaction that may be useful to apply to the PTSD-CVD link.

The brain-heart axis

The brain-heart axis is a well-established and evolutionarily conserved circuit connecting 

frontal brain regions to the autonomic nervous system via limbic (i.e., amygdala), 

hypothalamic, and brainstem structures. Projections from the PFC extend to the insula 

and cingulate cortex, which project to both the amygdala and hypothalamus, which then 

project to the solitary nucleus and rostral ventrolateral medulla in the brainstem, regulating 

HR through sympathetic and parasympathetic projections to the sinoatrial node (the heart’s 

endogenous pacemaker; Kingma, Simard, & Rouleau, 2018). The solitary nucleus is also a 

critical hub for integrating bottom up (afferent) inputs from baroreceptors within the carotid 

bodies and vagal afferents. Thus, the brain-heart axis is directly implicated in cardiovascular 

and autonomic functioning. No prior studies that we are aware of have directly probed 

these connections among individuals with PTSD symptoms, but the brain-heart axis clearly 

has particular relevance to PTSD and trauma-related pathophysiology (see Figure 1 for a 

depiction of the brain-heart axis and areas implicated in PTSD).

PTSD is a disorder characterized by poor top-down regulation (e.g., low vmPFC activity) of 

exaggerated sympathetic responses (e.g., high amygdala, and dACC activity, high HR and 

BP). In the characteristic fear response, threat perceived by sensory systems stimulates the 

amygdala and promotes fear learning, and this information is sent to the hypothalamus and 

brainstem, which contribute to the physiological and cardiovascular response to threat (e.g., 

increased HR, BP). The hippocampus encodes contextual information about the threat and 

the vmPFC regulates the response by inhibiting amygdala activation when threat is no longer 

present. In PTSD, the fear response is typically altered as indicated by hyperactivation of 

the amygdala combined with hypoactivation of the hippocampus and vmPFC, and these 

neural deficits may contribute to the peripheral autonomic dysfunction observed in PTSD 

via the brain-heart axis (for a review, see Ross et al., 2017). Some PTSD symptoms may 

have greater relevance to this axis than others. For example, a study by Jovanovic et al. 

(2012) reported that only re-experiencing symptoms of PTSD (e.g., intrusive memories, 

nightmares) were associated with eye blink startle (a brainstem-mediated reflex) during 

Seligowski et al. Page 5

Depress Anxiety. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fear conditioning. Re-experiencing has also been associated with increased amygdala and 

hippocampus activity (Akiki et al., 2017; Stevens et al., 2017), lower connectivity in the 

default mode network (Sheynin et al., 2020), decreased cortical thickness in the temporal 

gyrus (Crombie et al., 2021), and shorter event-related brain potential latencies for safety 

signals (i.e., decreased processing of safety signals; Seligowski et al., 2021b). Additionally, 

re-experiencing symptoms have been associated with increased risk for hypertension 

(Sumner et al., 2020) and plasma-based markers of endothelial dysfunction (von Känel 

et al., 2008). Thus, re-experiencing symptoms of PTSD may have particular relevance 

to the brain-heart axis and the link between PTSD and CVD. Studying the connections 

between central and peripheral aspects of the nervous system may provide greater insight 

into the PTSD-CVD link, as well as inform newer treatment approaches. For example, 

better understanding of how established cortical deficits in PTSD contribute to CVD risk via 

autonomic innervation may suggest that treatments directly targeting cortical function (i.e., 

neurostimulation) could show promise for reducing CVD risk in PTSD. While the efficacy 

of PTSD treatments for reducing CVD risk remains unknown, a number of PTSD treatments 

have already demonstrated effects on the brain-heart axis.

PTSD treatments that affect the brain-heart axis

Psychotherapy

The first-line treatment for PTSD is cognitive behavioral therapy, and in particular, 

Prolonged Exposure and Cognitive Processing Therapy (APA, 2020). There is emerging 

evidence that cognitive behavioral therapy has effects on areas of the brain-heart axis. 

Findings from a randomized controlled trial of Prolonged Exposure and Virtual Reality 

Exposure (versus waitlist control) for PTSD suggested that resting HR and BP were reduced 

following treatment (Bourassa et al., 2020). Lindauer et al. (2006) reported reduced HR 

and BP following a randomized controlled trial of Brief Eclectic Psychotherapy for PTSD. 

Other randomized controlled trials have reported reduced HR in response to trauma-related 

stressors, such as listening to a script relating to a personal traumatic experience, seeing 

trauma-related pictures, or interacting with virtual-reality-based trauma cues, following 

various forms of cognitive behavioral therapy for PTSD (Dunne et al., 2012; Fecteau & 

Nicki, 1999; Rabe et al., 2006; Wells et al., 2015). Similar findings have been reported 

from single-arm trials (Griffin et al., 2012; Loucks et al., 2019; Maples-Keller et al., 2019; 

Wangelin & Tuerk, 2015). In terms of brain-based findings, a systematic review by Manthey 

et al. (2021) found significant differences in the mPFC, rACC, and amygdala activity 

following a number of forms of cognitive behavioral therapies. Thus, there is growing 

support for the potential of psychotherapy to improve aspects of the brain-heart axis. A 

crucial next step is to determine if CVD risk can be reduced among individuals with PTSD 

by using these existing gold-standard treatments, as well as by using novel but promising 

approaches (e.g., TMS, VNS).

Transcranial magnetic stimulation

Transcranial magnetic stimulation (TMS) is a rapidly-evolving form of neurostimulation 

that uses magnetic pulses to stimulate the cortex. TMS protocols have demonstrated 

efficacy in reducing PTSD symptoms using a broad range of targets and frequencies, 
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with consistent results indicating efficacy from both randomized controlled/sham-controlled 

trials (Boggio et al., 2010; Cohen et al., 2004; Watts et al., 2012) and single-arm 

unblinded trials (Carpenter et al., 2018). Brain-based markers such as network connectivity 

(including PFC, cingulate, amygdala, insula, hippocampus; Philip et al., 2018; unblinded 

trial), electroencephalography frequency coherence (Zandvakili et al., 2019; Zandvakili et 

al., 2020; randomized controlled trial), and white matter tracts (Barredo et al., 2019; sub-

analysis from randomized controlled trial) have been implicated in TMS response among 

those with PTSD. A newer, more rapid TMS protocol is intermittent theta-burst stimulation 

(iTBS), which provides short bursts of 50 Hz stimulation repeated at 5 Hz (200 ms interval). 

iTBS is brief (<10 minutes/treatment), highly tolerable, and has recently demonstrated 

efficacy for PTSD (Philip et al., 2019; randomized controlled/sham-controlled trial) with 

clinical benefit for up to one year (Petrosino et al., 2020).

There is evidence that TMS and iTBS may improve autonomic functioning (see Makovac et 

al., 2017 for a review). Among healthy participants, increased HRV has been demonstrated 

using both TMS (Remue et al., 2016; Yoshida et al., 2001) and iTBS (Poppa et al., 2020) 

in randomized controlled/sham-controlled trials, and decreased pulse rate and BP have 

been demonstrated using TMS (Jenkins et al., 2002; non-sham-controlled). In depressed 

populations, TMS has been associated with reduced sympathetic-to-parasympathetic ratios 

(Udupa et al., 2007; unblinded trial) and iTBS has been associated with decreased HR 

and BP, and increased HRV (Iseger et al., 2020; randomized controlled/sham-controlled 

trial). This circuit has been broadly proposed as a way to optimize TMS treatment for 

depression (Iseger et al., 2020). Given that autonomic functioning is a proposed mechanism 

linking PTSD with increased CVD risk, there is reason to suggest that neurostimulation 

may be appropriate to address CVD risk in PTSD. However, only one study to date has 

tested the effects of TMS or iTBS on autonomic functioning among individuals with 

PTSD. In a sample of 50 Veterans with PTSD, we recently demonstrated that those with 

higher autonomic function exhibited greater PTSD improvement following a randomized 

controlled/sham-controlled trial of iTBS (Cosmo et al., 2021), suggesting that autonomic 

function may be a useful biomarker of iTBS response.

Vagal nerve stimulation

While TMS may be considered a top-down neurostimulation approach, a bottom-up 

approach is non-invasive vagus nerve stimulation (VNS), which involves electrical 

stimulation of the vagus nerve. There is evidence to show that VNS has an anti-

inflammatory effect, modulating the brain-gut axis, and that it can facilitate extinction 

of the conditioned fear response (Breit et al., 2018; Noble et al., 2017). Further, VNS 

modulates cardiovascular activity by improving vagal tone (HRV) and reducing heart rate 

(Koek et al., 2019; Lamb et al., 2017). Few studies have examined VNS in PTSD. In a 

single-visit pilot study, Lamb et al. (2017) found that Veterans randomized to VNS (versus 

sham) demonstrated increased HRV and reduced skin conductance response to auditory 

startle. Using a randomized controlled/sham-controlled design, VNS has also been shown to 

improve PTSD symptoms, reduce HR, improve vascular function, increase anterior cingulate 

and hippocampus activity, reduce limbic activity, and reduce inflammatory reactivity during 

a trauma script (Bremner et al., 2020, 2021; Gurel et al., 2020; Wittbrodt et al., 2020, 
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2021). VNS may therefore be a highly promising treatment for PTSD and related autonomic 

deficits, and new devices are currently being developed (e.g., https://www.evrenvns.com/

provenresults).

Psychiatric medications

While there are two FDA-approved medications for PTSD (sertraline and paroxetine), 

different medication classes have demonstrated efficacy for PTSD and impact areas 

of the brain-heart axis. For example, beta-blockers (e.g., propranolol) impair memory 

reconsolidation, thus reducing the strength of the conditioned fear response controlled 

by the autonomic nervous system and brainstem nuclei (for reviews, see McCleery & 

Harvey, 2004; Noble et al., 2017; Steckler & Risbrough, 2012). Beta-blockers are thought 

to reduce PTSD symptoms by suppressing the effects of adrenaline and noradrenaline. 

While the results of one randomized controlled trial suggested that propranolol reduced 

HR during script-driven imagery (Brunet et al., 2008), findings are generally mixed 

(Burbiel, 2015; Steckler & Risbrough, 2012). Randomized controlled trials of prazosin, 

an α1-adrenoreceptor antagonist with efficacy for hypertension, have yielded more mixed 

outcomes for PTSD (and nightmares, specifically). That said, prazosin has been shown 

to reduce BP in PTSD populations (Raskind et al., 2018; Reist et al., 2021). SSRIs have 

demonstrated efficacy in reducing PTSD symptoms and preventing relapse, and multiple 

classes of antidepressants appear to normalize the HPA axis response to stress, which may 

be a common mechanism of action among these types of psychiatric medications (Steckler 

& Risbrough, 2012). They have also been shown to reduce levels of C-reactive protein and 

interleukin-6, which may result in cardiovascular benefits (Pizzi et al., 2009). While any 

psychiatric medication may cause unintended side effects, SSRIs generally do not seem to 

pose serious cardiovascular risk (Andrade et al., 2013) and appear to be safe and effective 

for patients with acute myocardial infection and unstable angina (Glassman et al., 2002).

Other treatments—Several other treatment approaches have demonstrated efficacy for 

PTSD, though evidence supporting their use is less strong or in earlier stages of study. For 

example, acupuncture can reduce PTSD symptoms and improve physical health composite 

scores in randomized controlled trials, but with mixed findings in terms of long-term 

benefits (Engel et al., 2014; Hollifield et al., 2007; for a review, see Grant et al., 2018). 

There is also some evidence that acupuncture may be associated with lower CVD risk, but 

replication and larger clinical trials are needed (Hao et al., 2014). Another treatment that 

has been tested in PTSD is stellate ganglion blockade (Rae Olmsted et al., 2020). However, 

the evidence for its efficacy is mixed and has to date relied on case reports (for a review, 

see Lipov & Richie, 2015). A review by Krediet et al. (2020) found some support for the 

efficacy of psychedelics for PTSD (e.g., MDMA, psilocybin, LSD). While there are current 

trials underway to examine the treatment potential for psychedelics in PTSD, more research 

is needed to better understand the effects that these drugs might have on the cardiovascular 

system (Siegel et al., 2021). Given the psychomimetic effects of these compounds, it is 

reasonable to anticipate some involvement of the cardiovascular system that may have 

important implications for treatment development.
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Consideration of sex

A consistent finding in PTSD is that its prevalence is approximately two times greater 

in women compared to men (Kilpatrick et al., 2013; Tolin & Foa, 2006); however, few 

studies have examined mechanisms underlying sex differences in PTSD (for reviews, see 

Fonkoue et al., 2020; Seligowski et al., 2020). The most robust findings are that women 

exhibit heightened skin conductance responses to conditioned stimuli compared to men 

(Inslicht et al., 2013) and that gonadal hormones moderate these responses (e.g., higher 

progesterone in women with PTSD confers worse extinction retention; Pineles et al., 2016). 

Other conditioning studies have shown that women with PTSD demonstrate higher HR and 

lower HRV, but lower BP compared to men, and that women with PTSD and low estradiol 

(the most common circulating estrogen) demonstrate worse fear inhibition (indexed by 

acoustic startle paradigms) compared to those with PTSD and high estradiol (Glover et al., 

2012, 2013; Seligowski et al., 2021b). Thus, gonadal hormones, in particular estradiol levels, 

may partially explain differences in PTSD phenomenology among men versus women.

Estradiol is well-established as protective against CVD, such that it is associated with lower 

BP, lower cholesterol, and better endothelial function (Charkoudian et al., 2017; Hashimoto 

et al., 1995, 2002; Mendelsohn & Karas, 1999). The primary explanation for the decreased 

incidence of CVD in pre-menopausal women (compared to men) is that they have higher 

circulating levels of estradiol, as this sex difference no longer exists in older age groups with 

post-menopausal women (Kannel et al., 1976; Vitale et al., 2009). Further, sex differences 

within the RAS in the context of cardiovascular regulation are well studied (see Medina et 

al., 2020 for a review). The RAS consists of two axes: one that leads to vasoconstriction and 

sympathetic activation, and one that leads to vasodilation and sympathoinhibition. Estradiol 

shifts the balance towards the vasodilation axis by lowering the production of renin, which 

subsequently decreases sympathetic activity, and by reducing angiotensin II activity (the 

primary vasoconstrictive peptide in the RAS; Medina et al., 2020). In contrast, testosterone 

shifts the balance towards the vasoconstriction axis. Much less is known about how sex 

differences in the RAS impact fear learning in PTSD, however, a recent pre-clinical study 

found that female rats with low estradiol exhibited worse fear extinction compared to those 

with high estradiol (Parrish et al., 2019). This could suggest that RAS-estradiol interactions 

are relevant to fear learning and that low estradiol in humans confers increased PTSD risk 

through impaired RAS regulation.

The effect of estradiol on metabolic and inflammatory indices is unknown among women 

with PTSD, however, there is research supporting a protective role of estradiol on these 

systems in other populations (for a review, see Taylor & Sullivan, 2016). Considering that 

CVD is the leading cause of death among women and that women are more likely to have 

PTSD, determining the role of estradiol on the mechanisms implicated in the PTSD-CVD 

link will be an essential step in identifying and reducing CVD risk in women with PTSD.

Conclusions

The brain-heart axis is a well-established neural pathway connecting frontal and limbic 

brain regions to the autonomic nervous system via brainstem projections. Given that it 
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connects several brain regions and peripheral systems implicated in both PTSD and CVD, 

the brain-heart axis offers a model to study the link between these sets of diseases and better 

understand their interrelations. Further, as PTSD treatments have demonstrated effects on 

multiple areas of the brain-heart axis, an area for future research will be to test whether 

such treatments reduce the risk of CVD in PTSD populations. Clinical trials that would 

be particularly useful are those that test the effects of PTSD treatments (e.g., TMS) on 

subsequent CVD development among those with pre-existing risk, such as individuals 

with elevated BP, heightened RAS activity, and/or poor endothelial function. Further, the 

established effects of estradiol on the RAS and fear learning necessitate that future trials 

account for sex as a biological variable.
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Figure 1. The brain-heart axis and PTSD
Note. Red arrows indicate areas over- and under-active in PTSD; vmPFC = ventromedial 

prefrontal cortex; dACC = dorsal anterior cingulate; NTS = nucleus of the solitary tract; 

RVLM = rostral ventrolateral medulla; HRV = heart rate variability; HR = heart rate; BP = 

blood pressure.
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