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Abstract

Purpose: Phosphatidylinositol 3-kinase inhibitors (PI3Ki) are approved for relapsed chronic 

lymphocytic leukemia (CLL). While patients may show an initial response to these therapies, 

development of treatment intolerance or resistance remains clinical challenges. To overcome these, 

prediction of individual treatment responses based on actionable biomarkers is needed. Here, we 

characterized the activity and cellular effects of ten PI3Ki and investigated whether functional 

analyses can identify treatment vulnerabilities in PI3Ki-refractory/intolerant CLL and stratify 

responders to PI3Ki.

Experimental design: Peripheral blood mononuclear cell (PBMC) samples (n=51 in total) 

from treatment naïve and PI3Ki-treated CLL patients were studied. Cells were profiled against 

ten PI3Ki and the Bcl-2 antagonist venetoclax. Cell signaling and immune phenotypes were 

analyzed by flow cytometry. Cell viability was monitored by detection of cleaved caspase-3 and 

the CellTiter-Glo assay.

Results: pan-PI3Ki were most effective at inhibiting PI3K signaling and cell viability, and 

showed activity in CLL cells from both treatment-naïve and idelalisib-refractory/intolerant 

patients. CLL cells from idelalisib-refractory/intolerant patients showed overall reduced protein 

phosphorylation levels. The pan-PI3Ki copanlisib, but not the p110δ inhibitor idelalisib, inhibited 

PI3K signaling in CD4+ and CD8+ T cells in addition to CD19+ B cells, but did not significantly 

affect T cell numbers. Combination treatment with a PI3Ki and venetoclax resulted in synergistic 

induction of apoptosis. Analysis of drug sensitivities to 73 drug combinations and profiling of 31 

proteins stratified responders to idelalisib and umbralisib, respectively.

Conclusions: Our findings suggest novel treatment vulnerabilities in idelalisib-refractory/

intolerant CLL, and indicate that ex vivo functional profiling may stratify PI3Ki responders.

INTRODUCTION

Excessive and autonomous B cell receptor (BCR) signaling is an important pathogenic 

mechanism in CLL,1 where continuous signaling leads to activation of downstream 

signaling molecules such as phosphatidylinositol 3-kinase (PI3K).2 Among the four classes 

of PI3Ks, only class I isoforms are clearly implicated in cancer.3 The catalytic subunit of 

class I PI3K exists as different isoforms, p110α, β, γ and δ. The α and β isoforms are 

ubiquitously expressed, while γ and δ are primarily expressed in leukocytes.4 P110δ is 

highly expressed in CLL cells, which makes it a promising target for CLL treatment.5 So far, 
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two PI3K inhibitors (PI3Ki), idelalisib and duvelisib, have been approved for treatment of 

CLL, and several next-generation inhibitors are in development.6;7

Even though targeted therapies have revolutionized the management of CLL, treatment 

intolerance and resistance remain clinical challenges.7–9 To date, no mutations in PI3Ks are 

known that could explain the resistance mechanism to PI3Ki.10;11 Rather, reports suggest 

that resistance to PI3Ki may be mediated by upregulation of p110 isoforms other than 

p110δ12–14.This supports the use of a pan-p110 inhibitor (here referred to as pan-PI3Ki) 

such as copanlisib, which is approved for indolent lymphoma. Upregulation of alternative 

signaling pathways may also explain the development of PI3Ki resistance in some cases. 

Activation of STAT3 or STAT5 by interleukin-6 or ectopic activation of the ERBB signaling 

were shown to underlie resistance to various PI3Ki in lymphoma,15;16 while activating 

mutations in MAPK pathway genes and upregulation of IGF1R are reported resistance 

mechanisms in CLL.17;18 These resistance mechanisms provide a rationale for combination 

therapies, and we recently showed that MEK inhibitors are effective in idelalisib-resistant 

CLL.19

Despite the initially encouraging results for PI3Ki in CLL, a more widespread use of 

approved PI3Ki has been limited by unexpected autoimmune toxicities.5;7;8;20 Current 

strategies to allow for optimized use of the drug class include exploring next-generation 

PI3Ki and alternative dosing schedules.7;21 Prospective clinical trials have demonstrated that 

patients who experience intolerance or resistance to a targeted therapy may still benefit from 

another drug within the same drug class.22–24 However, there is currently limited knowledge 

of how the overall sensitivity to PI3Ki evolves in response to idelalisib treatment, and 

whether idelalisib-refractory/intolerant CLL cells remain sensitive to other PI3Ki. Ex vivo 
drug testing in patient cells has recently demonstrated clinical utility in guiding functional 

precision medicine for CLL and other hematological malignancies.25–27 When combined 

with other functional assays, such an integrated approach can lead to actionable biomarkers 

that predict patient treatment responses and identify unexpected treatment vulnerabilities 

such as novel combinations.28

Here, we combined ex vivo profiling of drug sensitivity and cell signaling in response to 

ten different PI3Ki (buparlisib, compound 7n, copanlisib, duvelisib, idelalisib, nemiralisib, 

pictilisib, pilaralisib, umbralisib, ZSTK474) in CLL, both alone and in combination with 

the B-cell lymphoma-2 (Bcl-2) antagonist venetoclax. We found that pan-PI3Ki were most 

effective in inhibiting cell signaling and viability of CLL cells. Furthermore, pan-PI3Ki 

single agents and PI3Ki + venetoclax combinations showed activity both in idelalisib-

resistant lymphoma cell lines and in CLL cells from idelalisib-refractory/intolerant patients. 

A systematic analysis of longitudinal samples from idelalisib-treated patients demonstrated 

significantly higher ex vivo combination sensitivities at baseline in patients who obtained 

a long-term response to idelalisib than in patients who developed resistance to idelalisib. 

Furthermore, profiling of 31 proteins in screening samples from patients enrolled in a phase 

2 trial of umbralisib (NCT02742090)22 distinguished patients who obtained a stable disease 

from patients who obtained a partial response to umbralisib therapy.
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Our findings indicate PI3Ki drug class activity in idelalisib-refractory/intolerant CLL and 

suggest that functional precision medicine based on ex vivo testing of drug sensitivity and 

cell signaling provides an exciting opportunity to predict treatment responses and to identify 

potential treatment options, both monotherapies and combinations. These results warrant 

further testing in larger cohorts and in clinical trials.

MATERIALS AND METHODS

Patient material and ethical considerations

Buffy coats from age-matched, anonymized healthy blood donors were received from the 

Department of Immunology and Transfusion Medicine, Oslo University Hospital, Norway. 

Blood samples from CLL patients were received from the Department of Haematology, 

Oslo University Hospital, Norway; the Department of Medicine, Diakonhjemmet Hospital, 

Norway; Dana-Farber Cancer Institute (DFCI), MA, USA; and TG Therapeutics, New York, 

NY, USA (NCT02742090). All participants signed a written informed consent prior to 

sample collection. The study was approved by the Regional Committee for Medical and 

Health Research Ethics of South-East Norway (2016/947 and 28507). The DFCI tissue 

bank protocol was approved by the Dana-Farber Harvard Cancer Center Institutional Review 

Board. The NCT02742090 study was done in compliance with good clinical practice and 

local and national regulatory guidelines. An institutional review board at each site approved 

the protocol before any patients were enrolled. Research on blood samples was carried out in 

agreement with the Declaration of Helsinki.

Reagents and antibodies

Buparlisib, copanlisib, compound 7n, duvelisib, idelalisib, nemiralisib, pictilisib, pilaralisib, 

umbralisib, venetoclax and ZSTK474 were obtained from Selleckchem (Houston, TX, 

USA). All compounds and combinations used in this study are listed in Supplementary 

Table 1 and Supplementary Table 2, respectively. Antibodies against AKT (pS473) (D9E), 

cleaved caspase-3 (Asp175) (D3PE), NF-κB p65 (pS536) (93H1), p38 MAPK (pT180/

Y182) (28B10), p44/42 MAPK (pT202/Y204) (E10), S6-ribosomal protein (pS235/S236) 

(D57.2.2E) and SYK (pY525/Y526) (C87C1) were from Cell Signaling Technologies 

(Leiden, The Netherlands). Antibodies against Btk (pY223)/Itk (pY180) (N35–86), Btk 

(pY551) & p-Itk (pY511) (24a/BTK (Y551), IgG1 Kappa (MOPC-21), MEK1 (pS298) 

(J114–64), mTOR (pS2448) (O21–404), PLCγ2 (pY759) (K86–689.37), STAT3 (pS727) 

(49/p-Stat3), ZAP70/Syk (pY319/Y352) (17A/P-ZAP70) were from BD Biosciences (San 

Jose, CA, USA). These antibodies were conjugated to Alexa Fluor 647. PerCP-Cy5.5 

conjugated mouse anti-human CD19 antibody (HIB19) was from eBioscience (San Diego, 

CA, USA). PE-Cy7 conjugated mouse anti-human CD3 antibody (UCHT1) was from BD 

Biosciences. Goat F(ab’)2 anti-human IgM was from Southern Biotech (Birmingham, AL, 

USA). BD Phosflow Fix Buffer I and Perm Buffer III were from BD Biosciences. Alexa 

Fluor 488, Pacific Blue and Pacific Orange Succinimidyl Esters were from Thermo Fisher 

Scientific (Waltham, MA, USA).
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Kinome scan

The activities of compound 7n, copanlisib, nemiralisib, and pilaralisib were 

profiled at 1 μM across a panel of 468 human kinases, including 

atypical, mutant, lipid, and pathogen kinases, using the DiscoveRx competition 

binding assay (https://www.discoverx.com/services/drug-discovery-development-services/

kinase-profiling/kinomescan, Eurofins Scientific, Luxembourg). The measured percent of 

inhibition data are shown in Supplementary Table 3. Similar kinase activity data for 

buparlisib, duvelisib, idelalisib, pictilisib, umbralisib and ZSTK474, profiled following the 

same kinome scan protocol, but with a panel of 442 or 468 kinases, were available from 

previous studies.29;30 The activity data were visualized using the web-based tools TREEspot 
(Eurofins Scientific) (Figure 1) and iTOL31 (Supplementary Figure 1).

Isolation of peripheral blood mononuclear cells (PBMCs)

Isolation of PBMCs from CLL patient samples was performed as previously described.32 

Isolated cells were cryopreserved in liquid nitrogen.33 See Supplementary Table 4 for patient 

characteristics.

Phospho flow with fluorescent cell barcoding

Experiments were performed as previously described.34;35 For experiments shown in Figure 

2 and Figure 4 (panels a-c in both figures), PBMCs from CLL153, CLL159, CLL160 

and CLL216 (Supplementary Table 4) were treated with the indicated compound and 

concentration for 30 min, followed by 5 min stimulation with anti-IgM (10 μg/mL; 

Southern Biotech, Birmingham, AL, USA) to activate the BCR. For experiments shown 

in Figure 2d–i, PBMCs from CLL002D, CLL216 and CLL248 (Supplementary Table 

4) were simultaneously co-cultured with irradiated (50 Gy/125 Gy/125 Gy, respectively) 

CD40L+/APRIL+, BAFF+ and APRIL+ 3T3 fibroblasts (ratio 1:1:1) to prevent induction 

of spontaneous apoptosis,36 and treated with the indicated compound and concentration 

for 24h. The treated CLL cells were then fixed, barcoded and permeabilized as previously 

described.34 The samples were stained with the indicated antibodies and analyzed with a BD 

LSR Fortessa cytometer (BD Biosciences) equipped with 488 nm, 561 nm, 640 nm and 407 

nm lasers. The data were analyzed in Cytobank (https://cellmass.cytobank.org/cytobank/) as 

previously described.35

Immune phenotyping

PBMCs from each CLL donor were fixed, barcoded,34 and stained for 30 min with 

the antibody panel. The following antibodies were used: CD3-BUV395, CD4-BUV563, 

HLA-DR-BUV615, CD16-BUV737, CXCR5 (CD185)-BUV805, CCR7 (CD197)-BV605, 

CCR6 (CD196)-BV711, CD56-BV750, CD127-BV786, PD-1 (CD279)-BB700, CD14-

PE, CD25-PE-CF594, CCR3 (CD183)-PE-Cy5, CD45RA-PE-Cy7, CD69-APC-R700, 

CD8/CD19-APC-Cy7 (BD Biosciences). Experiments were analyzed with a BD 

FACSymphony A5 cytometer (BD Biosciences) and further processed in Cytobank 

(https://cellmass.cytobank.org/cytobank/). The FlowSOM clustering algorithm was applied 

to identify cell populations, which were validated by manual gating. The UMAP 

dimensionality reduction algorithm was used to visualize the data.
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Cell lines

Idelalisib-resistant lines from VL5137 and KARPAS171838 in vitro models were developed 

by prolonged exposure to the IC90 concentration of idelalisib, as previously described.16;39 

The cell lines were confirmed mycoplasma negative using the MycoAlert Detection Kit 

(Lonza, Basel, Switzerland).

CellTiter-Glo luminescent cell viability assay

Dose-response experiments were performed as previously described.19;36 Compounds 

(Supplementary Table 1) were pre-printed in 384-well cell culture microplates using the 

Echo 550 liquid handler (Labcyte Inc., San Jose, CA, USA). Each compound was tested 

at five different concentrations in ten-fold increments ranging from 1 nM - 10000 nM 

(0.1 nM - 1000 nM for copanlisib). Combinations were designed using a fixed molar 

concentration series identical to those used for single agents. PBMCs from CLL patient 

samples were co-cultured with irradiated (50 Gy/125 Gy/125 Gy, respectively) CD40L+/

APRIL+, BAFF+ and APRIL+ 3T3 fibroblasts (ratio 1:1:1) for 24 h prior to initiation 

of the experiment to mimic the tumor microenvironment and to prevent spontaneous 

apoptosis. The CLL cells were then separated from the adherent fibroblast layer by carefully 

re-suspending the culturing medium and transferring it to a separate tube. Experiments 

on “JB” samples (Supplementary Table 4) were performed using a slightly modified 

protocol, in which non-irradiated fibroblasts were removed from the CLL cells by positive 

selection with a PE-conjugated anti-CD47 antibody and anti-PE microbeads, as previously 

described.19 Single-cell suspension (10000 cells/well in 25 μl) was distributed to each 

well of the 384-well assay plate using the CERTUS Flex liquid dispenser (Fritz Gyger, 

Thun, Switzerland). Dose-response experiments on cell lines were performed on freshly 

thawed cells to reduce variation between experiments introduced by culturing conditions. 

The cells were incubated with the compounds at 37°C for 72h. Cell viability was measured 

using the CellTiter-Glo luminescent assay (Promega, Madison, WI, USA) according to the 

manufacturer’s instructions. Luminescence was recorded with an EnVision 2102 Multilabel 

Reader (PerkinElmer, Waltham, MA, USA). The response readout was normalized to 

the negative (0.1% DMSO) and positive (100 μM benzethonium chloride) controls. The 

measured dose–response data were processed with the KNIME software (KNIME AG, 

Zurich, Switzerland).

Data analyses

Measured data from phospho flow experiments and drug sensitivity screens were processed 

in GraphPad Prism 8 (San Diego, CA, USA). Applied statistical tests are indicated in 

the figure legends. The normality of the data distribution was tested using the Kolmogorov-

Smirnov test in GraphPad Prism 8. To quantify the compound responses, a modified drug 

sensitivity score (DSS) was calculated for each sample and compound separately.40 Area 

under the dose-response curve was calculated using an activity window from 100% to 10%, 

and a dose-window from the minimum concentration tested to the concentration where the 

viability reached 10%. DSS3 metric was used, without the division by the logarithm of the 

upper asymptote of the logistic curve. Higher levels of DSS indicate higher sensitivity to the 

compound. The DECREASE tool was used to predict the full dose-response matrices based 
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on the diagonal (dose ratio 1:1) combination experiments based on normalized phospho flow 

data.36;41 Combination synergy was scored using the Bliss model using the SynergyFinder 

web-tool.42;43

To predict the umbralisib responders, the support vector machine (SVM) models were 

trained with the R-package e1071.44 Due to the small cohort size, we treated this as a binary 

classification between the patients who obtained a partial response (PR) or stable disease 

(SD) in response to umbarlisib treatment. Balanced cross-validation (CV) guaranteed that 

each CV fold must include at least one patient with PR and one patient with SD.

Recursive Feature Elimination (RFE) was performed using the R package caret.45;46 Since 

each RFE run may select different proteins having most predictive contribution in the 

particular CV fold, we repeated the 3-fold CV 500 times to investigate the robustness of 

the protein selection and model accuracy. Finally, we ranked the proteins according to their 

frequency across the RFE runs (i.e., each protein can be selected a maximum of 1500 times).

Data availability

The data generated in this study are available upon reasonable request to the corresponding 

author (sigrid.skanland@ous-research.no).

RESULTS

Target specificity and activity profiles of PI3K inhibitors

The target activity of ten PI3Ki was profiled at 1 μM over a panel of up to 468 human 

kinases using the kinome scan assay (Figure 1), and includes earlier reported data.29;30 

The inhibitors showed expected differences in their p110 isoform specificity and off-target 

activity profiles (Figure 1 and Supplementary Table 3). Among the PI3Ki, compound 7n, 

nemiralisib and umbralisib showed p110δ isoform-specific activity with relatively few off-

target activities, while copanlisib and ZSTK474 showed broad activity against all four p110 

isoforms and several off-target activities (Figure 1 and Supplementary Figure 1).

Drug-induced changes in cell signaling are PI3Ki specific

To study how the different compounds inhibit PI3K signaling, CLL cells were treated with 

the individual PI3Ki at five concentrations (1 nM - 10000 nM) for 30 min. Copanlisib was 

tested at 10-fold lower concentrations (0.1 nM – 1000 nM) due to its higher potency.47 

The cells were then stimulated with anti-IgM for 5 min to activate the BCR. As shown 

in Figure 2a–b, each PI3Ki inhibited the phosphorylation of downstream effectors AKT 

(pS473) and S6-ribosomal protein (pS235/S236), but with varying potency. Overall, the 

pan-PI3Ki buparlisib, copanlisib, pictilisib and ZSTK474 were most effective at inhibiting 

PI3K signaling (Figure 2c). To study whether this trend could be reproduced with 

longer incubation times, CLL cells were incubated with each PI3Ki for 24h. To prevent 

induction of spontaneous apoptosis which would influence the read-out, the CLL cells were 

simultaneously co-cultured with irradiated fibroblasts expressing APRIL/BAFF/CD40L. 

As shown in Figure 2d–e, 24h incubation with a PI3Ki inhibited phosphorylation of S6-

ribosomal protein (pS235/S236), and the pan-PI3Ki were again most effective. Furthermore, 
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24h incubation with a PI3Ki induced apoptosis, as indicated by increased expression of 

cleaved caspase-3 (Figure 2d, f). Similarly, expression of the anti-apoptotic protein Mcl-1 

was reduced in response to PI3Ki exposure. These phenotypes were most pronounced in 

response to a pan-PI3Ki (Figure 2f–g). The drug-induced changes in S6-ribosomal protein 

(pS236/S235) and Mcl-1 levels significantly correlated with cleavage of caspase-3 (Figure 

2h–i), indicating that alteration of cell signaling or protein expression can serve as substitute 

markers for induction of apoptosis.

Effects of copanlisib and idelalisib on different immune cell compartments

To study the effect of PI3K inhibition on different immune cell compartments, PBMCs 

from treatment naïve CLL patients were simultaneously cultured with fibroblasts expressing 

APRIL/BAFF/CD40L and treated either with DMSO (control), copanlisib (100 nM), or 

idelalisib (1 μM) for 24h (Figure 2j). The CD185lo (CXCR5) B cell population was shown 

to consistently expand in response to copanlisib treatment (Figure 2k). This effect was not 

as pronounced upon idelalisib treatment, although two of the six patient samples showed 

a similar trend (Figure 2k). CD185 is a mediator of CLL tissue homing, and it has been 

shown to decrease also in response to ibrutinib + rituximab treatment.48 Other analyzed 

immune subsets were not significantly modulated by the treatments. This is in agreement 

with a previous study showing specificity of idelalisib and copanlisib towards CLL B cells.47 

However, we observed that copanlisib, but not idelalisib, reduced S6-ribosomal protein 

phosphorylation also in CD4+ and CD8+ T cells (Figure 2l).

Pan-PI3Ki show activity in idelalisib-resistant lymphoma cells and idelalisib-refractory/
intolerant CLL cells

To study the ability of the different PI3Ki to inhibit cell viability, 72h drug sensitivity assays 

were performed on the lymphoma cell lines VL51 and KARPAS1718 (Figure 3a–b). Each 

PI3Ki was tested at five different concentrations (1 nM - 10000 nM). Due to its higher 

potency, copanlisib was tested at 10-fold lower concentrations (0.1 nM - 1000 nM). In 

agreement with the effects observed on cell signaling, the pan-PI3Ki buparlisib, copanlisib, 

pictilisib and ZSTK474 were most effective at inhibiting cell viability in these cell lines 

(Figure 3a–b, black bars).

To identify potential alternative therapies for patients who experience intolerance or develop 

resistance to idelalisib, we investigated whether idelalisib-resistant lymphoma cell lines 

remained sensitive to other PI3Ki. As expected, PI3Ki showed reduced efficacy in idelalisib-

resistant cells, however, pan-PI3Ki still maintained a relatively high activity (Figure 3a–b, 

blue bars). In the idelalisib resistant VL51 cell line, the activity of the four indicated 

pan-PI3Ki remained between 42% (copanlisib) and 87.5% (buparlisib) relative to the activity 

in the parent cell line. For KARPAS1718, the corresponding range was between 27.8% 

(ZSTK474) and 81.4% (buparlisib). The sensitivity to idelalisib was reduced in CLL 

cells from idelalisib-refractory/intolerant patients as well (Figure 3c, left). However, the 

sensitivity to copanlisib was maintained at similar or even higher levels than in CLL cells 

from treatment naïve patients (Figure 3c, right). This trend was also observed for the 

pan-PI3Ki buparlisib, pictilisib, and ZSTK474 (Supplementary Figure 2). These findings 

demonstrate that pan-PI3Ki remain active in idelalisib-refractory/intolerant cells.
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Idelalisib-refractory/intolerant CLL cells show reduced protein phosphorylation levels

To better understand the mechanisms underlying idelalisib-refractory/intolerant disease, 

we performed single-cell protein profiling of CLL cells from patients who were either 

treatment naïve or refractory/intolerant to idelalisib (Figure 3d). We found that expression 

or phosphorylation of several proteins was downregulated in CLL cells from idelalisib-

refractory/intolerant patients relative to treatment naïve patients, including Bcl-2 (p = 

0.02 with an unpaired t test), Bcl-2 (pS70) (p = 0.009), BTK (pY551) (p = 0.004), 

MEK1 (pS218)/MEK2 (pS222) (p = 0.004), p53 (pS37) (p = 0.004), PLCγ2 (pY759) 

(p = 0.02), STAT1 (pS727) (p = 0.01), STAT3 (pY705) (p = 0.02), STAT6 (pY641) 

(p = 0.004), and ZAP70/SYK (pY319/Y352) (p = 0.004). Of note, phosphorylation 

of proteins downstream of PI3K, including AKT (pT308), mTOR (pS2448) and TBK1 

(pS172), were all significantly reduced in idelalisib-refractory/intolerant CLL cells (Figure 

3e). These findings support previous reports that have demonstrated that higher response 

rates to copanlisib are associated with high expression of PI3K/BCR signaling pathway 

genes.49;50 We also found that the activity of p38 MAPK (pT180/Y182) was reduced in 

idelalisib-refractory/intolerant cells (Figure 3e). Interestingly, we previously showed that 

low phosphorylation levels of p38 MAPK correlates with poor response to venetoclax,19 

suggesting that cell signaling profiles may provide response markers for different classes of 

targeted therapies.

PI3Ki act in synergy with venetoclax to induce apoptosis in CLL cells

Targeted therapies are increasingly studied in combinations, and venetoclax has been 

reported to be a good combination partner for copanlisib in B cell lymphoma 

(NCT03886649).51 We therefore investigated the potential benefit of combining a PI3Ki 

with venetoclax. CLL cells were treated with five different concentrations of each PI3Ki, 

venetoclax, or their combinations, for 30 min. The cleavage of caspase-3 was then analyzed 

by flow cytometry. None of the PI3Ki as a single agent induced apoptosis after this 

short incubation time, while treatment with venetoclax did (Figure 4a). Interestingly, each 

PI3Ki + venetoclax combination induced higher levels of cleaved caspase-3 than the 

venetoclax treatment alone (Figure 4a), suggesting a synergistic effect of the combination. 

Dose-response combination assays confirmed synergy among all ten combinations (Figure 

4b–c).

Next, we tested whether PI3Ki + venetoclax combinations were effective in co-inhibiting 

the viability of CLL cells from idelalisib-refractory/intolerant patients over 72h. Overall, the 

sensitivities to most of these combinations were reduced in idelalisib-refractory/intolerant 

CLL relative to treatment naïve CLL (Figure 4d). However, the combinations did reduce 

the cell viability in a concentration-dependent manner consistently in both patient groups, 

as shown for idelalisib + venetoclax (Figure 4e). Taken together, these findings show that 

PI3Ki act in synergy with venetoclax to induce apoptosis, and that PI3Ki + venetoclax 

combinations are active in both treatment naïve and idelalisib-refractory/intolerant CLL.
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Ex vivo drug sensitivity and protein profiles stratify responders to idelalisib and 
umbralisib therapy

To assess the predictive value of ex vivo drug sensitivity profiles, we analyzed drug 

responses to 73 combinations (Supplementary Table 2) on CLL cells from patients treated 

with idelalisib (“JB” samples, Supplementary Table 4). CLL cells collected at baseline from 

patients who obtained a long-term response to idelalisib showed significantly higher drug 

sensitivity scores than CLL cells from patients who obtained a short-term response (i.e., 

patients who developed resistance to idelalisib) (Figure 5a). Annotated drug responses are 

shown in Supplementary Figure 3. After correcting for multiple comparisons, we identified 

significant differences in responses to three PI3Ki + venetoclax combinations (Figure 5b). 

Interestingly, cells collected at the time the patients were responding to idelalisib showed 

lower levels of AKT (pS473) in long-term responders than in short-term responders (Figure 

5c), but this difference was not statistically significant, possibly due to the low number of 

samples in each group (n=3). However, the two groups showed completely non-overlapping 

AKT (pS473) levels, which gives a good indication that this protein may be an accurate 

biomarker with high sensitivity and specificity.

To further test the predictive value of protein profiles for PI3Ki treatment outcome, we 

analyzed samples from 12 CLL patients enrolled in a phase 2 clinical trial with umbralisib 

(NCT02742090) (see Supplementary Table 4 for the patient characteristics).22 The samples 

were collected at screening stage and profiled for expression or phosphorylation status of 31 

proteins. We trained a support vector machine (SVM), a non-linear classification algorithm, 

using the profiles of the 31 proteins as input features with a repeated cross-validation 

(CV) to avoid over-fitting. Three-fold CV was repeated 500 times to study the stability 

of the prediction model and its predictive features. The SVM model was able to robustly 

distinguish between patients who obtained a partial response (PR) or stable disease (SD) 

in response to umbralisib therapy (Figure 5d, median prediction probabilities). However, 

due to the small cohort size, there was rather large variability across the CV folds (Figure 

5d, error bars). Despite the low number of patient samples, the prediction model obtained 

surprisingly high sensitivity, specificity, and accuracy across the 12 patients (Supplementary 

Figure 4a–c).

Next, we used Recursive Feature Elimination (RFE) to identify the proteins with most 

contribution to the classification accuracy. This resulted in a ranked list of the 31 proteins 

in terms of their importance for umbralisib response prediction (Figure 5e). The top three 

predictors were BTK (pY551), MEK1 (pS298), and AKT (pT308), which are effectors of 

the BCR and PI3K (Figure 5e). The classification accuracy remained relatively high also 

when the models were built with the proteins selected by RFE (Supplementary Figure 4d–f).

We further investigated whether adding the ex vivo drug response readouts of the patient 

cells to various monotherapies and combinations could improve the prediction accuracy. Due 

to the moderate cohort size and significant cross-correlations between the drug sensitivity 

score (DSS) and protein levels in the samples, the ex vivo drug sensitivities did not lead 

to improved accuracy compared to the protein profile model in this patient cohort and for 

umbralisib treatment.
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Taken together, these results demonstrate that functional profiling data may identify 

responders to PI3Ki, and warrant further studies in larger cohorts and clinical trials.

DISCUSSION

Targeted therapies have considerably improved patient outcome in CLL, but development 

of treatment intolerance and resistance remains clinical challenges. One strategy to prevent 

resistance to monotherapy is to combine therapies.9 Here, we studied the efficacy and 

synergy of ten PI3Ki, both as single agents and in combination with the Bcl-2 antagonist 

venetoclax. Venetoclax targets the intrinsic apoptotic pathway and is therefore an attractive 

partner for BCR inhibitors. The combination of venetoclax with the BTK inhibitor ibrutinib 

has shown promising results in CLL.52–54 Numerous additional studies on CLL are currently 

investigating the effect of venetoclax in combination with other targeted therapies, including 

various PI3Ki (NCT03534323, NCT03886649, NCT05209308). Resistance to both PI3Ki 

and venetoclax may be prevented or delayed with this strategy, as a suggested mechanism of 

resistance to venetoclax is upregulation of the PI3K/AKT/mTOR pathway.55

Here, we showed that pan-PI3Ki were more effective than p110δ selective inhibitors 

at reducing cell viability of CLL cells, both as single agents and in combination with 

venetoclax. Studies of copanlisib in relapsed or refractory lymphoma have demonstrated 

significant efficacy and a manageable safety profile,49;56;57 suggesting that copanlisib is 

a relevant treatment option for lymphoproliferative diseases. Copanlisib plus venetoclax 

combination showed the highest efficacy in our ex vivo assays. Synergy between 

these compounds has been demonstrated in B- and T-cell lymphoma models,51 and 

the combination is currently being studied in relapsed/refractory B-cell lymphomas 

(NCT03886649). The results will provide further information on its safety and efficacy.

Other strategies to prevent treatment resistance include improved patient stratification or 

precision medicine.9 CLL is a highly heterogeneous disease, and better model systems 

and biomarkers to guide clinical decision-making are likely to be useful. Functional 

assays can be valuable to this end.2;28 Ex vivo drug sensitivity has successfully predicted 

clinical activity in hematological malignancies.25–27 For instance, the EXALT trial 

(NCT03096821) investigated the feasibility and clinical impact of image-based ex vivo drug 

sensitivity-guided treatment decisions in patients with aggressive refractory hematological 

malignancies, and showed that integration of sensitivity testing in clinical decisions led to 

improved treatment outcomes.25

Here, we showed that ex vivo drug sensitivities and protein profiles could stratify patients 

based on clinical treatment responses, suggesting that such functional read-outs may serve 

as predictive biomarkers for treatment outcome. Our analyses showed that CLL cells from 

patients who are resistant to idelalisib remain sensitive to pan-PI3Ki. This finding is in 

agreement with studies showing that CLL patients who fail on a targeted therapy may still 

benefit from a second therapy in the same drug class,22–24 and warrants further studies on 

how to maximize the clinical value of PI3Ki.
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Taken together, our findings indicate PI3Ki drug class activity in idelalisib-refractory/

intolerant CLL and suggest that functional tests may guide precision medicine and predict 

treatment responses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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TRANSLATIONAL RELEVANCE STATEMENT

The phosphatidylinositol 3-kinase inhibitors (PI3Ki) idelalisib and duvelisib are approved 

for relapsed chronic lymphocytic leukemia (CLL), but their use has been limited 

by severe toxicity and acquired resistance. Identification of biomarkers that predict 

individual treatment responses, as well as alternative treatment vulnerabilities in PI3Ki 

refractory/intolerant patients, is needed to optimally tailor CLL therapy. We performed 

functional analyses of baseline and drug-induced cell signaling and viability in CLL cells 

from treatment naïve and PI3Ki treated CLL patients to identify clinically actionable 

biomarkers. We show that CLL cells from idelalisib-refractory/intolerant patients remain 

sensitive to pan-PI3Ki and PI3Ki plus venetoclax combinations. A systematic analysis 

of drug sensitivities to 73 drug combinations stratified responders to idelalisib, while 

profiling of 31 proteins stratified responders to umbralisib. Our study suggests that 

functional testing may be used to guide precision medicine in relapsed CLL.
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Figure 1. Target specificity and activity profile for ten PI3Ki
The activity of buparlisib, compound 7n, copanlisib, duvelisib, idelalisib, nemiralisib, 

pictilisib, pilaralisib, umbralisib, and ZSTK474 were profiled at 1 μM over a panel of 

up to 468 human kinases, including atypical, mutant, lipid, and pathogen kinases (lower 

dendrograms), using the DiscoveRx kinase assays. The upper dendrograms show (moving 

clockwise from the upper, purple section) tyrosine kinases (TK), tyrosine kinase-like kinases 

(TKL), STE protein kinases (STE), casein kinase 1 family (CK1), protein kinase A, G, 

and C families (AGC), Ca2+/calmodulin-dependent kinases (CAMK), CMGC kinase group 

(CMGC), and other. The size of the circles represents the percentage of target inhibition, 

with larger circles indicating a stronger inhibition compared with control, as defined in the 

scale.
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Figure 2. Drug-induced changes in cell signaling and cell viability are PI3Ki specific
a-b) Peripheral blood mononuclear cells (PBMCs) from CLL patient samples (n=4) were 

treated with ten PI3Ki at the indicated concentrations for 30 min, followed by 5 min anti-

IgM stimulation. The cells were then fixed, permeabilized and stained with the indicated 

antibodies. Signals were analyzed by flow cytometry. Results are shown for CD19+ B cells. 

Raw data were transformed to an arcsinh ratio relative to the signal in DMSO treated control 

cells, which was set to zero. Curves show the mean of the four experiments. Each curve 
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represents the response to one inhibitor. Error bars indicate standard error of the mean 

(SEM).

c) Results are shown for experiments described in (a-b). The mean inhibitory effects of the 

ten PI3Ki on phosphorylation of AKT (pS473) and S6-ribosomal protein (pS235/S236) are 

plotted at the 1000 nM concentration. Error bars indicate SEM.

d) CLL cells were simultaneously co-cultured with APRIL/BAFF/CD40L+ fibroblasts and 

treated with the indicated concentration of a PI3Ki or DMSO (0.1%) for 24h. The CLL 

cells were then separated from the fibroblast layer, fixed, permeabilized and stained with 

the indicated antibodies. Signals were analyzed by flow cytometry. The cells were gated 

on CD19. The numbers indicate the fraction (%) of cells in the respective gate. Results are 

shown for one representative experiment

e-g) Experiments were performed as described in (d) on CLL cells from n=3 patients. The 

bars show the mean fraction (%) of positive cells ± standard error of the mean (SEM). 

The dotted line indicates the fraction of positive cells in the DMSO control. The blue bars 

indicate pan-PI3Ki.

h-i) Pearson’s correlation analyses were performed on the indicated protein levels detected 

in (d). Each point represents one treatment.

j) PBMCs from n=6 treatment naïve CLL patients were co-cultured with APRIL/BAFF/

CD40L+ fibroblasts and DMSO (0.1%), copanlisib (100 nM), or idelalisib (1 μM) for 24h. 

The PBMCs were then separated from the fibroblast layer, fixed, barcoded, permeabilized 

and stained with surface markers and anti-S6-ribosomal protein (pS235/S236) antibody. 

Experiments were analyzed with a BD FACSymphony A5 cytometer (BD Biosciences) 

and further processed in Cytobank (https://cellmass.cytobank.org/cytobank/). FlowSOM 

clustering algorithm was applied to identify cell populations, which were validated by 

manual gating. The UMAP dimensionality reduction algorithm was used to visualize the 

data. The UMAP for one representative patient sample is shown.

k) Experiments were performed as described in (j). CD19+/CD185lo B cells were quantified 

as percent of CD3− lymphocytes.

l) Experiments were performed as described in (j). Signals are shown for CD19+ B cells, 

CD4+ T cells, and CD8+ T cells. Raw data were transformed to an arcsinh ratio relative to 

the signal in DMSO treated control cells, which was set to zero. Statistical testing was done 

with 2-way ANOVA. **p<0.01, n.s; not significant.
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Figure 3. Pan-PI3Ki are active in idelalisib-refractory/intolerant CLL cells
a-b) VL51 and KARPAS1718 (parent and idelalisib resistant) cell lines were treated with the 

indicated PI3Ki at 5 concentrations (0.1 nM – 1000 nM for copanlisib, 1 nM – 10000 nM 

for the others) for 72h. Cell viability was assessed with the CellTiter-Glo assay. The drug 

sensitivity score was calculated for each treatment based on the area under the dose-response 

curve. High score indicates high sensitivity to the treatment. The experiment were performed 

twice or once (VL51 parent). The bars show average with standard deviation.

c) PBMCs from treatment naïve CLL patients (n=7) or idelalisib refractory patients (n=9) 

were co-cultured with APRIL/BAFF/CD40L+ fibroblasts for 24h. The CLL cells were 

then separated from the fibroblast layer and treated with the indicated compound and 

concentrations for 72h. Cell viability was assessed with the CellTiter-Glo assay. The graphs 

show mean relative cell viability ± standard error of the mean (SEM).

d) Freshly thawed PBMCs from treatment naïve CLL patients (n=5) or idelalisib refractory 

patients (n=6) were fixed, permeabilized and stained with antibodies against the indicated 

proteins (rows). Signals were detected in CD19+ B cells by flow cytometry. Raw data were 

transformed to an arcsinh ratio relative to the signal of an isotype control (color key), which 

was set to zero. The heatmap was created using ClustVis (https://biit.cs.us.ee/clustvis/). 

Rows were clustered using Manhattan distance and Ward linkage. Columns were clustered 

using correlation distance and average linkage.
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e) Phosphorylation levels of the indicated proteins are shown for experiments described 

in (d). The horizontal line indicates median. Statistical testing was done with the Mann-

Whitney test.
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Figure 4. PI3Ki act in synergy with venetoclax
a) Peripheral blood mononuclear cells (PBMCs) from CLL patient samples (n=4) were 

treated with a PI3Ki, venetoclax, or PI3Ki + venetoclax combinations, at the indicated 

concentrations for 30 min, followed by 5 min anti-IgM stimulation. The cells were then 

fixed, permeabilized and stained with anti-cleaved caspase-3. Signals were analyzed by flow 

cytometry. Results are shown for CD19+ B cells. Raw data were transformed to an arcsinh 

ratio relative to the signal in DMSO treated control cells, which was set to zero. Curves 

show the mean ± standard error of the mean (SEM). Statistical testing was done with a 

one-way ANOVA with Holm-Sidak’s multiple comparisons test. *p<0.05.

b) Normalized data from experiments described in (a) were used in DECREASE (https://

decrease.fimm.fi/) to predict the full drug combination dose-response matrices, which were 

analyzed using SynergyFinder (https://synergyfinder.fimm.fi/) to score the synergy of the 

drug combinations. Bliss synergy over the full matrix is indicated. A representative plot is 

shown for the idelalisib + venetoclax and copanlisib + venetoclax combinations.

c) Results are shown for analyses described in (b). The most synergistic area score was 

calculated by SynergyFinder (https://synergyfinder.fimm.fi/) for the indicated combination 

treatments. Bars show mean (n=4) ± standard error of the mean (SEM).

d) Peripheral blood mononuclear cells (PBMCs) from treatment naïve CLL patients (n=7) or 

idelalisib-refractory/intolerant patients (n=9) were co-cultured with APRIL/BAFF/CD40L+ 

fibroblasts for 24h. The CLL cells were then separated from the fibroblast layer and treated 

with the indicated drug combinations for 72h. Cell viability was assessed with the CellTiter-

Glo assay. The drug sensitivity score was calculated for each treatment based on the area 

under the dose-response curve. High score indicates high sensitivity to the treatment. Violin 
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plots show min to max response with lines at quartiles and median. Statistical testing was 

done with an unpaired t test. *p<0.05, **p<0.01, n.s; not significant.

e) Peripheral blood mononuclear cells (PBMCs) from treatment naïve CLL patients (n=7) or 

idelalisib-refractory/intolerant patients (n=9) were co-cultured with APRIL/BAFF/CD40L+ 

fibroblasts for 24h. The CLL cells were then separated from the fibroblast layer and treated 

with idelalisib + venetoclax combination at the indicated concentrations for 72h. Cell 

viability was assessed with the CellTiter-Glo assay. The graph shows mean relative cell 

viability ± standard error of the mean (SEM).
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Figure 5. Ex vivo drug sensitivity and protein profiles stratify responders to idelalisib and 
umbralisib therapy
a) Drug sensitivity screens were performed with 73 drug combinations on PBMCs collected 

from CLL patients before the patients started treatment with idelalisib (n=3 short-term 

responders, i.e. developed resistance to idelalisib, and n=3 long-term responders). Each data 

point indicates the mean drug sensitivity score to one drug combination. Error bars show 

standard error of the mean (SEM) over the patients (n=3). The diagonal line indicates equal 

sensitivity in long- and short-term responders. Statistical testing was done with a paired t test 

comparing short-term responders to long-term responders. ****p<0.0001.

b) As in (a), but with the indicated PI3Ki + venetoclax combinations. The dot plot shows 

median with range. Statistical testing was done with a 2-way ANOVA with Sidak’s multiple 

comparisons within treatment groups for the 73 drug combinations. **p<0.01.

c) Peripheral blood mononuclear cells (PBMCs) collected from short-term and long-term 

responders at the time of response to idelalisib were fixed, permeabilized and stained with 

anti-AKT (pS473). Signals were detected in CD19+ B cells by flow cytometry. Raw data 

were transformed to an arcsinh ratio relative to the signal of an isotype control, which was 

set to zero. The scatter dot plot shows median with range. Statistical testing was done with 

an unpaired t test.
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d) Peripheral blood mononuclear cells (PBMCs) collected at screening from CLL patients 

enrolled in a phase 2 trial of umbralisib (NCT02742090) were fixed, permeabilized and 

stained with antibodies against 31 proteins. The plot shows the predicted probability of 

partial response (PR) to umbralisib across the 12 CLL patients. A support vector machine 

(SVM) model was trained using the 31 protein levels as input features with a repeated 

cross-validation (CV) to avoid over-fitting. Three-fold CV was repeated 500 times to study 

the stability of the prediction model and its features. The default probability cut-off of 0.5 

(the dotted horizontal line) distinguishes patients who obtained a PR from patients who 

obtained a stable disease (SD) as best response to umbralisib therapy. The boxes show the 

interquartile ranges, and the solid horizontal lines in each box indicate the median. Error 

bars show the minimum and maximum probabilities of the SVM predictions across 3-fold 

cross-validations repeated 500 times.

e) The experiments are described in (d). Recursive Feature Elimination (RFE) was 

performed using the R package caret. Three-fold cross-validation (CV) was repeated 500 

times to investigate the robustness of the protein selection and model accuracy. Proteins 

were ranked according to their frequency across the RFE runs (i.e., each protein can be 

selected a maximum of 1500 times). The plot shows the frequency of the top 20 proteins 

selected by RFE, and the percentage indicates the proportion of CV folds. The higher the 

frequency the more stable and predictive is the protein for classification of patients between 

partial response (PR) and stable disease (SD) classes.
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