
Consider the pons: Bridging the gap on sensory prediction 
abnormalities in schizophrenia

Samantha V. Abram1,2, Jessica P.Y. Hua1,2,3, Judith M. Ford1,2,*

1San Francisco Veterans Affairs Medical Center

2University of California, San Francisco

3Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco Veterans 
Affairs Medical Center, and the University of California, San Francisco

Abstract

A shared mechanism across species heralds the arrival of self-generated sensations, helping 

the brain to anticipate, and therefore distinguish, self- from externally-generated sensations. 

In mammals, this sensory prediction mechanism is supported by communication within a 

cortico-ponto-cerebellar-thalamo-cortical loop. Schizophrenia is associated with impaired sensory 

prediction, as well as abnormal structural and functional connections between nodes in this 

circuit. Despite the pons’ principal role in relaying and processing sensory information passed 

from the cortex to cerebellum, few studies have examined pons connectivity in schizophrenia. 

Here, we first briefly describe how the pons contributes to sensory prediction. We then 

summarize schizophrenia-related abnormalities in the cortico-ponto-cerebellar-thalamo-cortical 

loop, emphasizing the dearth of research on the pons relative to thalamic and cerebellar 

connections. We conclude with recommendations for advancing our understanding of how the 

pons relates to sensory prediction failures in schizophrenia.
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The pons, a bridge to understanding sensory prediction deficits in 

schizophrenia

The pons (from Latin, “bridge”) is the principal route through which information from 

higher cortical areas is transmitted to the cerebellum [1]. This cortico-ponto-cerebellar 

pathway is thought to be fundamental to sensory prediction processes that occur rapidly and 

outside of conscious awareness, helping the brain to anticipate and distinguish incoming 

sensory information as self- versus externally-generated [2]. People with schizophrenia have 

notable sensory prediction deficits that may relate to core schizophrenia symptoms [3,4]. 

Yet, few studies have directly examined the cortico-ponto-cerebellar pathway in humans 

(e.g., [5,6]), and the relationship between this pathway and sensory prediction abnormalities 

in schizophrenia remains largely unknown.

In the current opinion piece, we argue that studying the pons is a logical and necessary 

next step for characterizing sensory prediction deficits in schizophrenia. We first review 

the mechanisms associated with sensory prediction abnormalities observed in schizophrenia. 

Next, we provide a brief overview of the models commonly used to conceptualize sensory 

prediction and their hypothesized neurobiological pathways. We then summarize evidence 

for deficiencies in these neurobiological pathways in schizophrenia, highlighting critical 

research gaps. We close with recommendations for using multimodal neuroimaging and 

other neuroscientific approaches to study the contributions of the pons to sensory prediction 

abnormalities in schizophrenia.

Searching for mechanisms of aberrant sensory prediction in schizophrenia

Self-produced sensations are experienced differently from those produced by external 

sources [7,8]. Our brains have mechanisms that predict outcomes based on our own 

actions so that self-generated experiences are seen as non-alarming [3]. Importantly, these 

predictions compensate for delays and noise intrinsic to our sensory systems, enabling 

more efficient motor control [9,10]. Decades of research support the theory that sensory 

prediction stems from an efference copy/corollary discharge system (see Glossary), in which 

predicted sensations are passed through a cortico-ponto-cerebellar-thalamo-cortical loop that 

first prepares the brain for what is to come and subsequently compares the predicted and 

actual sensory feedback [11,12]. This efference copy/corollary discharge mechanism, which 

is preserved across species and multiple sensory systems [13], may help to reduce cognitive 

load by minimizing the processing of self-generated feedback [14] and is vital to normal 

perception and cognitive functioning [3].

Schizophrenia is associated with sensory prediction impairments [4], which may underlie 

misperceptions of self-generated sensations as originating from external sources instead 

of the self [15]. Such misperceptions can arise from a failure to suppress or attenuate 

brain activity in response to sensations from self-generated movements [16–18]. The 

misattribution of self-generated actions as being externally-generated is posited to contribute 

to the development and maintenance of psychotic symptoms [19]. For instance, when 

predicting whether tactile sensations corresponded with self-generated action, people with 

schizophrenia did not exhibit the same degree of attenuated activation in the secondary 
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somatosensory cortex as seen in comparison participants [17]. Poor attenuation in secondary 

somatosensory cortex also correlated with more severe hallucinations.

It is possible that attenuated suppression of self-generated sensations results, at least in 

part, from breakdowns early in the sensory processing stream, i.e., at the level of efference 

copy/corollary discharge generation. For instance, in healthy individuals, greater synchrony 

of electroencephalography (EEG) auditory signals before speaking (i.e., pre-speech phase 

synchrony) correlated with better suppression of auditory responses following speech onset 

relative to playback of one’s recorded voice [20,21]. People with schizophrenia exhibited 

less pre-speech synchrony, particularly those with severe auditory hallucinations, and pre-

speech synchrony was unrelated to auditory cortical suppression during vocalizing [20]. 

This suggests a deficiency in the mechanism that prepares the brain to expect self-generated 

sensations from speaking, i.e., the efference copy/corollary discharge. Similar pre-speech 

effects were seen in volunteers under delta-9 tetrahydrocannabinol (THC), particularly those 

who reported greater schizophrenia-like THC-induced symptoms [22].

The ability to correctly attribute self-generated sensory experiences is closely related to 

sense of agency [23]. Certain schizophrenia symptoms correspond with failures to identify 

oneself as the agent of one’s experience (e.g., delusions of control) while others reflect a 

heightened sense of agency (e.g., delusions of grandeur) [24–26]. It is theorized that deficits 

in sensory attribution and agency emerge from a faulty efference copy sent from the cortex 

to cerebellum, a transmission that depends on the pons [11,19].

Sensory prediction depends on internal models that are flexibly updated

Classical internal forward models (also called internal prediction models) posit that every 

action is accompanied by transmission of a motor plan (i.e., efference copy) to a forward 

model, which is then used to form predictions of the sensory consequences of that action 

(i.e., corollary discharge) [27]. Mismatches between these predictions and actual sensations 

produce a prediction error. When an event is caused by self-generated actions, and is 

therefore aligned with the internal forward model, the resulting feedback will match the 

prediction and yield a prediction error of zero that in turn leads to a dampening or 

canceling of sensation [27]; that is, the sensation is experienced as internally generated 

[4]. Conversely, mismatches between predictions and feedback lead to non-zero prediction 

errors, after which there is less (or no) dampening of sensation, and the prediction 

error then updates the internal forward model. In the context of schizophrenia, reduced 

neural attenuation following self-generated sensory feedback could reflect a dysfunction in 

predicting the sensory consequences of one’s own actions [4].

Sensory prediction has also been framed as a hierarchical process in which neuronal activity 

encodes top-down expectations of sensory experience that are sent to lower-level brain 

areas, and any resulting discrepancies are used to update internal models (allowing new 

predictions to form) [28]. In a repeating loop, bottom-up signals transmit the prediction 

error to higher levels within a cortical hierarchy; the higher levels respond by adjusting 

expectations to yield more optimal top-down predictions [29]. This processing loop, known 

as predictive coding, centers on the idea that the brain generates inferential models of the 
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world to efficiently make sense of immense incoming sensory information [28]. The classic 

formulation of predictive coding was as a theory of cerebral cortex function [30], although 

animal and human studies from the last decade or so show robust evidence of prediction 

error responses in subcortical auditory pathways, as well as the cerebellum (e.g., [31–33]).

Using a Bayesian modeling approach, this theory can be formalized into a single framework 

known as Bayesian predictive coding [34]: probabilistic beliefs or predictions (priors) are 

integrated with observed sensory data (likelihood), prediction errors are calculated, and the 

resulting posterior probability (posterior) reflects the percept that is most likely, given the 

prior and likelihood. The prior has a certain precision that reflects its reliability. When priors 

are more precise, and therefore more reliable, than the incoming sensory information to 

which they are compared, the resulting prediction errors will receive little weight in relation 

to the priors, or even be ignored. Alternatively, if prediction errors are more precise, they 

will be favored over priors and lead to belief updating and drive new learning.

The pons plays a key role in integrating and relaying sensory information 

between the cortex and cerebellum

Figure 1 illustrates the hypothesized neuroanatomical and neurofunctional connections that 

support sensory processing of self-generated events, elaborating on elegant models of others 

[11,12,35]. First, motor information originating in prefrontal, motor, and pre-motor cortical 

areas is transmitted to the pontine nuclei via corticopontine fibers [35]. The pontine nuclei, 

also called the basilar pontine nuclei, pontine gray nuclei, and reticulotegmental nuclei, are 

the largest precerebellar nuclei [1] and the main hub through which descending signals from 

cortical areas are input to the cerebellum [36]. The efference copy, which is generated from 

the cortex, is believed to carry a corollary discharge of the expected sensation from cortex 

through the pontine nuclei into the middle cerebellar peduncles, contralaterally, via mossy 

pontocerebellar fibers [1,37]. Recent evidence has shown that the pons does not simply 

relay information to the cerebellum [38]. Rather, pontine nuclei have intrinsic properties 

that integrate and process information from separate channels, filter synaptic input, and bind 

information in a manner suitable for transmission to the cerebellum [39,40]. These processes 

are crucial both in the context of sensory processing, as discussed earlier, and in generating 

complex and smooth movements (see Box 1).

The pons supports dexterous and smooth movement

The cortico-ponto-cerebellar pathway has been hypothesized as crucial in the evolution of 

complex motor functions [1], including the use of sensory feedback during movements, i.e., 

the efference copy/corollary discharge, to control complex motor actions [41,42]. Pontine 

nuclei contain distinct neurons that are activated when preparing or executing movement 

[43]. To facilitate successful sensory-guided movement, pontine nuclei help to integrate and 

bind incoming sensory information in a manner appropriate for the cerebellum [44]. Pontine 

nuclei receive extensive cortical input and are the primary input region to the cerebellum 

[45]; essentially, these nuclei are a bottleneck for information passed from the cortex to 

the cerebellum. As such, perturbing the pons can reveal what information is shared, or 

alternatively lost, between the cortex and cerebellum.
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In mice, optogenetic inhibition of the pons disrupted the shared neural activity patterns 

seen in premotor (layer 5) pyramidal cells and cerebellar granule cells during a forelimb 

movement task, which likely reflects diminished pontine input into the cerebellum [46]. In 

a separate study, optogenetic pontine silencing reduced precision, accuracy, and success rate 

during a cued reaching task, but did not block the initiation of movement [38]. That is, 

disrupting cortico-cerebellar communication undermined skill and dexterity, while leaving 

gross motor functioning intact. In comparison, optogenetic silencing of the motor cortex was 

found to halt the initiation and execution of reaching [47,48].

In foveated species, smooth-pursuit eye movements, which help stabilize the retinal image 

of a moving stimulus on the fovea, similarly depend on the cortico-ponto-cerebellar pathway 

[40]. Robust smooth-pursuit deficits are present in schizophrenia [49], and may relate 

to an underlying deficiency in the efference copy/corollary discharge mechanism [49]. 

Dorsal pontine nuclei integrate and deliver visual and non-visual eye motion signals to the 

cerebellum, i.e., the efference copy/corollary discharge [50]. A causal role for the dorsal 

pontine nuclei in smooth pursuit eye movements has been established from lesion studies 

[40], and could explain the smooth pursuit deficits seen in humans with pontine lesions 

[51]. Taken together, the pons may have a particular role in “fine-tuning” motor or sensory 

information for the cerebellum to facilitate dexterous or smooth movement.

In a parallel loop via afferent connections, the inferior cerebellar peduncles receive and 

process sensory information from the spinal cord and peripheral system (including muscles 

and joint positions) [35]. The cerebellum is believed to integrate and compare the efference 

copy with the actual incoming sensory information [12]. Accordingly, the cerebellum, which 

is sometimes termed the brain’s “comparator,” is responsible for detecting a mismatch 

between the predicted sensation associated with the motor command and actual sensory 

feedback, with mismatches yielding a prediction error [27]. It is further suggested that 

prediction errors are then fed back to the cerebral cortex, via the contralateral thalamus [12], 

through efferent connections in the superior cerebellar peduncle [52].

It is posited that the thalamus then projects this prediction error output to multiple cortical 

targets [12] based on known thalamic anatomical connections [53] with prefrontal [54], 

parietal [55], motor [55], somatosensory, and auditory cortices [56]. Respectively, these 

regions are involved in cognitive control [54], sense of agency [57], motor control [57], and 

sensory attenuation [58]. Relationships between aberrant thalamo-cortical connections and 

the efference copy/corollary discharge mechanism are summarized in Box 2.

The role of the thalamus in the efference copy/corollary discharge mechanism

Empirical studies of eye movements demonstrate how efference copy/corollary discharge 

mechanisms transmit via thalamic pathways [59]. In nonhuman primates, oculomotor 

efference copies heralding saccadic eye movements are sent along a pathway from the 

midbrain (specifically, the superior colliculus) to frontal eye fields via the mediodorsal 

thalamus [60]. These observations provide a framework for studying efference copy/

corollary discharge abnormalities in humans. Preliminary findings from humans have also 

implicated the mediodorsal nucleus in the efference copy mechanism. More specifically, 

relative to control participants, a patient with a lesion to the mediodorsal nucleus showed 
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deficits in motor and visual updating that could reflect insufficient efference copy transfer 

[61].

Abnormalities in the mediodorsal-frontal eye field pathway are evident in people 

with schizophrenia. One study used diffusion tensor imaging (DTI) to test whether 

structural connectivity in the mediodorsal-frontal eye fields pathway correlated with 

oculomotor dysfunction of the efference copy/corollary discharge mechanism in a small 

sample of individuals with schizophrenia who completed a trans-saccadic perceptual 

task [62]. Individuals with schizophrenia showed reduced microstructural integrity of 

the aforementioned pathway; critically, reduced integrity correlated with compromised 

oculomotor efference copy/corollary signals and with greater positive symptoms.

Flow between the thalamus and cortex has also been linked with efference copy/

corollary discharge mechanisms during auditory processing. In mice, auditory (layer 6) 

corticothalamic neurons can be activated by motor-related input prior to anticipated sounds 

during active sensing [63]. This neuronal relationship may relate to sensory attenuation 

of self-generated sounds in humans. Humans without history of a psychiatric condition 

completed a task in which tones were actively elicited via button press or passively 

presented [64]. Using magnetoencephalography and dynamic causal modeling, the authors 

found that auditory sensory attenuation (i.e., the difference between the active and passive 

conditions) was associated with bi-directional information transfer between the thalamus, 

inferior parietal lobule, and auditory cortex (i.e., Heschl’s gyrus).

Robust abnormalities in the efferent sensory prediction pathways in 

schizophrenia

In recent years, there has been growing attention to connectivity between the cortex, 

cerebellum, and thalamus, and how breakdowns in those network connections contribute 

to schizophrenia pathophysiology and symptoms [65–67]. Resting-state functional magnetic 

resonance imaging (rsfMRI) studies reveal cerebellar-thalamic hypo-connectivity in 

schizophrenia that is observed when seeding from either the thalamus (e.g., [68–70]) or 

the cerebellum [71,72]; but see [73]. Reduced cerebellar-thalamic functional connectivity 

is linked to greater delusions and bizarre behavior [69]. There is robust evidence for 

aberrant connectivity between the thalamus and its cortical output targets including hyper-

connectivity with sensory and association cortices, in addition to hypo-connectivity with 

the prefrontal cortex (see [65,67] for review and meta-analysis). These aberrant thalamic 

connectivity patterns are linked to an array of cognitive and psychiatric symptoms [67], 

including delusions and hallucinations [69].

People with schizophrenia show deficits in corresponding white matter fiber tracts that 

form the basis of communication between the cortex, cerebellum, and thalamus. More 

specifically, anatomical connectivity studies using diffusion-weighted imaging (DWI) and 

diffusion tensor imaging (DTI) found reduced connectivity between the thalamus and 

prefrontal cortex ([65,74,75], and excessive connectivity between the thalamus and sensory, 

motor, and parietal cortices [74,76,77]. There is some evidence for impaired fiber tract 

integrity of the superior cerebellar peduncles in schizophrenia as indicated by reduced 
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fractional anisotropy (FA) [78,79], as well as increased axial diffusivity (AD) and medial 

diffusivity (MD), and a trend towards increased radial diffusivity [80]. Others found no 

overall group differences in white matter integrity of this tract [81–83]; though one of 

these studies observed left superior cerebellar peduncle abnormalities in a small subset 

of schizophrenia participants who exhibit difficulty sequencing complex motor acts [83]. 

Mixed findings regarding the superior cerebellar peduncle should be interpreted cautiously 

as most studies had relatively small schizophrenia sample sizes (N ≤ 40).

Are the afferent prediction pathways through the pons also impaired in 

schizophrenia?

To our knowledge, only one study directly addressed functional connectivity of the pons 

in schizophrenia. This study reported decreased pons connectivity within a cerebellum/

midbrain network among individuals with schizophrenia relative to unaffected comparison 

participants [84].

A recent meta-analysis of DTI studies found white matter reductions in the bilateral cortico-

ponto-cerebellum tract among individuals with schizophrenia [85]. More specifically, 

adolescent- [86,87] and adult-onset schizophrenia [87,88] are both associated with reduced 

fractional anisotropy (FA) in corticopontine tracts. People with schizophrenia also exhibit 

lower FA in the middle cerebellar peduncle [87,89,90] (with some exceptions [80]), which 

is the major white matter fiber tract connecting the pons and cerebellum. Further, reduced 

MD in the pons was found to correlate with a longer duration of untreated psychosis 

[91]. Additional high-powered studies are needed to verify these tract-based results. With 

respect to brain morphometry, a recent study of over 27,000 participants found that 

people with schizophrenia had smaller pons volumes compared to unaffected comparison 

participants [92], though this difference was characterized by a small effect size. Conversely, 

a mega-analysis reported larger gray matter concentration in the pons among people with 

schizophrenia [93]. Contradictory results may be due to confounds associated with scanning 

the brainstem, such as noise, physiological artifacts [94], or overlap with neighboring brain 

regions that are responsible for dopamine production and could therefore be enlarged due to 

illness factors [93].

Impaired structural integrity in cortico-ponto-cerebellar tracts, as described above, elevates 

the possibility of functional deficiencies between nodes along those pathways. This follows 

from direct evidence that functional connectivity relationships depend on intact anatomical 

pathways; e.g., functional connectivity between the motor cortex and cerebellum was 

reduced in a small group of first-episode stroke patients with focal pontine lesions [95]. 

This finding is consistent with findings in mice in which optogenetic inhibition of the pons 

impeded cortico-cerebellar communication [46].
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Possible implications of pontine abnormalities to the efference copy/

corollary discharge mechanism in schizophrenia

One hypothesis is that pons deficits could interfere with processing self-generated stimuli 

during initial sensory prediction stages. As noted previously, schizophrenia is associated 

with deficits in early sensory processing [96], such as reduced synchrony of neuro-

oscillations involved during speech preparation [20,21]. The pons is a vital site in early 

auditory pathways, projecting to the granule cell domain of the cochlear nuclei, which 

are the first step in the auditory pathway [97]. Auditory perceptual disturbances were 

documented in case reports of individuals with pontine lesions [98,99]. Acute psychotic 

symptoms, including paranoid hallucinations, were also seen in a case report of central 

pontine myelinolysis, i.e., demyelination of the central pons [100].

Abnormal pons functioning could also undermine communication between the cortex and 

cerebellum, thereby disrupting the fluidity and precision of movement. This dysconnectivity 

may help explain the fine motor and coordination abnormalities observed in schizophrenia 

even prior to illness onset [101]. Preliminary support comes from a small sample of 

first-episode psychosis participants for whom reduced pons volume correlated with greater 

neurological soft signs (i.e., subtle neurological abnormalities comprising deficits in 

sensory integration, motor coordination, and sequencing of complex motor acts) [102]. 

Relative to controls, people with schizophrenia also showed decreased connectivity between 

the cerebellum and primary motor cortex during self-paced movements [103], fostering 

questions as to whether a pontine abnormality is an underlying mechanism.

Bridging the gap

As described above, there is general agreement that the pons is central to the efference copy/

corollary discharge system. Despite its principal role in relaying and integrating information 

between the cortex and cerebellum, the pons has been largely overlooked in human 

neuroscience, probably due to difficulties in scanning the brainstem using neuroimaging 

techniques such as fMRI. The brainstem is notoriously difficult to study due to its small size, 

the complexity of its components, its closeness to major arteries and ventricles, geometric 

distortions that make brainstem white matter tracts appear to be spuriously intertwined, 

and its susceptibility to physiological “noise” (e.g., cardiorespiratory signals) and imaging 

artifacts [94]. Poor contrast between gray and white matter is also particularly problematic 

for the pons, compared to the cerebellum, for instance, which shows much clearer separation 

[94]. As a related note, it should be mentioned that the cerebellum’s role in executive 

function and cognition has been traditionally under-appreciated as well, although attention to 

these cerebellar functions has been growing [104].

Recent advances in magnetic resonance imaging (MRI) technology, including improved 

signal-to-noise ratios from increased magnetic field strengths and scanning sequences that 

lower signal drop out in susceptible regions, now allow for more feasible and accurate 

imaging of pontine connections [94,105]. In one study, for instance, the authors were able 

to visibly delineate the ponto-cerebellar tract using DTI, with better visibility using 7 

than 3 Tesla (T) data [106]. Another study reconstructed the cortico-ponto-cerebellar and 
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cerebellar-thalamo-cortical structural pathways using advanced tractography approaches [6]. 

These methods could be applied to evaluate the integrity of these pontine connections in 

psychiatric disorders in which the pons and cerebellum are involved. Advances in MRI 

technology have also impacted the ability to capture the pons’ functional dynamics. In a 

study using 7T data from the Human Connectome Project [5], the authors mapped the pons’ 

topographical organization, identifying clusters within the pons that are temporally related 

to specific parcellations of the cerebral cortex. These technological improvements make it 

increasingly feasible to isolate and probe the feedforward connections in cortico-pontine and 

ponto-cerebellar pathways, thus opening the door for new areas of inquiry.

Concluding remarks

We conclude with strategies for harnessing multiple neuroimaging and neuromodulation 

methodologies to accelerate the field’s understanding of how the cortico-ponto-cerebellar 

pathway supports sensory prediction, and whether deficiencies in that pathway lead to 

schizophrenia symptoms (see Outstanding Questions).

One avenue is to capitalize on the excellent temporal resolution of EEG, a relative limitation 

of fMRI. EEG is a particularly effective complement to MRI in this context, given that fluid 

coordination of thought and action likely depends on rapid inter-regional processing in the 

cortico-ponto-cerebellar-thalamo-cortical loop [11]. Critical discoveries from EEG studies 

have illuminated neural signals associated with auditory sensory attenuation deficits to self-

generated sounds in schizophrenia [16,18]. Combining EEG with functional connectivity 

would capitalize on both the respective temporal and spatial precision of these methods to 

reveal a more cohesive picture of this sensory prediction loop. One future direction is to 

test whether abnormal connectivity within the cortico-ponto-cerebellar pathway correlates 

with poor sensory attenuation or pre-speech synchrony indexed by EEG. Additionally, 

one could examine if such neural delineations are related to predictive coding, more 

broadly, or specific to active contexts related to self-generated actions. For example, 

is the cortico-ponto-cerebellar pathway needed for predictive coding during pre-attentive 

detection of deviant auditory stimuli (i.e., mismatch negativity) [107]. Whether cerebellar-

thalamo-cortical connectivity has similar relationships with EEG measures of efference 

copy/corollary discharge, relative to cortico-ponto-cerebellar connectivity, would further 

speak to specificity of the efferent and afferent pathways.

Another promising route forward is non-invasive brain stimulation, including transcranial 

magnetic stimulation (TMS), as both a probe of dysfunctional cortico-ponto-cerebellar 

connectivity and a therapeutic intervention. When applied to the cerebellum, repetitive 

TMS enhanced cerebellar-prefrontal functional connectivity in people with schizophrenia 

[108,109]. Similarly, in a group of individuals with essential tremor, this approach 

was reported to restore deficient cerebellar-thalamo-cortical functional connectivity [110], 

although the participant group in this study was relatively small and efficacy under more 

stringent settings remains to be tested. Repetitive TMS to motor cortex in a small group of 

stroke patients also increased FA in the middle cerebellar peduncle and the contralesional 

superior cerebellar peduncle [111]. In this case, we speculate that the impact of motor 

cortex stimulation on cerebellar connections is related to the activation of mossy fibers 
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emanating from the pons along the cortico-ponto-cerebellar pathway [112]. These lines 

of research raise interesting questions as to whether stimulation along the cortico-ponto-

cerebellar pathway can mimic network perturbations seen in schizophrenia, and conversely, 

whether other stimulation patterns can restore deficient cortico-ponto-cerebellar connections 

to facilitate effective sensory prediction.

Beyond basic fMRI connectivity approaches, psychophysiological interactions (PPI) 

methods can help clarify how temporal relationships between brain regions relate to specific 

behavioral conditions [113]. A relevant study found that cerebellar-motor connectivity was 

greater when self-monitoring active versus passive hand movements that had identical 

sensory feedback in healthy adults [114]. One might extend this work to ascertain whether 

connectivity of cerebellar and motor cortex with the pons mediate the ability to distinguish 

self- versus externally-generated sensations, and whether deficient connectivity within that 

pathway relates to abnormal sensory perception in schizophrenia. TMS and PPI can be 

applied in concert to assess whether neuromodulation can augment the condition-specific 

connectivity. For instance, PPI revealed alterations in neural connectivity associated with 

deep memory encoding following repetitive TMS [115]. This methodological combination 

has applications for relating underlying network features with specific sensory prediction 

processes that are measurable with fMRI, such as smooth pursuit eye movements [116].

Pharmacological probes can also offer insights as to the neurotransmitter systems that 

underlie the cortico-ponto-cerebellar pathway and aid in effective sensory prediction. For 

example, N-methyl-D-aspartate receptor (NMDAR) hypofunction may underlie sensory 

prediction deficits seen in schizophrenia as well as the functional pathways believed to 

support sensory prediction. Recently it was shown that ketamine, an NMDAR antagonist, 

perturbed behavioral and EEG assays of sensory prediction in healthy volunteers during 

an audiovisual task [117]. EEG-derived measures of auditory predictive coding for 

healthy individuals under ketamine mirror the deficient patterns seen in participants with 

schizophrenia [118]. Additionally, ketamine produced significant schizophrenia-like deficits 

in smooth pursuit eye movements in healthy participants [119]. It is currently unknown 

whether NMDAR hypofunction contributes to aberrant connections between the cortex 

and pons. Evidence that ketamine-induce thalamo-cortical hyper-connectivity of healthy 

adults under ketamine was more similar to participants with schizophrenia than unaffected 

comparison participants lends support for pursuing this unanswered question [120].

In closing, the pons is a promising target for elucidating the pathophysiology of sensory 

prediction impairments in schizophrenia. Integrating neuroimaging with behavioral tasks, 

brain stimulation, and pharmacological probes can reveal how inter-regional relationships 

in the cortico-ponto-cerebellar-thalamo-cortical loop map onto specific sensory prediction 

mechanisms relevant to psychiatric conditions. These multimodal approaches can help 

bridge the gap in our understanding of the complex and multi-faceted construct that is 

sensory prediction.

Acknowledgements

SVA was supported by a Career Development Award from the Department of Veterans Affairs (CX002355). 
JPYH was supported by the Department of Veterans Affairs Sierra Pacific Mental Illness Research, Education, 

Abram et al. Page 10

Trends Neurosci. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and Clinical Centers (MIRECC). JMF was supported by funding from the National Institute of Mental Health 
(1R03MH121900–001) and a VA Senior Research Career Scientist award.

Glossary

Axial diffusivity (AD)
a common diffusion tensor imaging (DTI) diffusivity metric that reflects the magnitude of 

water diffusion in the direction parallel to the axonal fibers. It is computed as the diffusion 

rate along the main axis of diffusion for white matter tracts.

Diffusion tensor imaging (DTI)
the modeling of diffusion weighted neuroimaging data that provides detailed information 

about tissue microstructure such as fiber orientation, axonal density, and degree of 

myelination. This technique models how water diffuses, i.e., “travels”, along white matter 

tracts throughout the brain. It is commonly used in clinical practice and research to examine 

the structural connectivity of the brain.

Diffusion weighted imaging (DWI)
a neuroimaging method based on the rate of the diffusivity of water molecules within brain 

tissue. It is a magnetic resonance imaging approach that is sensitive to the movement of 

water within the white matter architecture of the brain.

Efference copy/corollary discharge
the efference copy is the transmission of an action’s motor plan. The corollary discharge 

is the formation of predictions of the sensory consequences of an action. These terms 

are sometimes used interchangeably within the sensory prediction literature. The efference 

copy/corollary discharge mechanism is present across species and sensory systems.

Electroencephalography (EEG)
a neuroimaging method used to measure scalp-recorded electrical activity of the brain. EEG 

has millisecond temporal resolution and can thus detect pre-attentive cognitive or sensory 

processes.

Inferior cerebellar peduncles
paired structures consisting of major white matter tracts within the cerebellum that receive 

and process sensory information from the cerebral cortex, spinal cord, and peripheral 

system.

Fractional anisotropy (FA)
the most common diffusion tensor imaging (DTI) diffusivity metric ranging between 0 

(isotropic movement of water molecules) and 1 (anisotropic movement of water molecules). 

FA values indicate the overall directionality of water diffusion. FA values are greater in 

organized white matter tracts than in cerebral spinal fluid or disorganized fibers.

Internal forward model
a theoretical framework for sensory prediction in which a brain structure (e.g., the 

cerebellum) predicts the sensory consequences of motor commands and is involved in 

computing prediction errors by comparing sensory predictions to sensory feedback through 
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feedforward and feedback loops. Feedfoward loops are responsible for predicting what is 

going to happen. Feedback loops confront the prediction with the reality. This comparison of 

prediction versus sensory feedback occurs in the cerebellum.

Mean diffusivity (MD)
a common diffusion tensor imaging (DTI) diffusivity metric diffusivity metric that describes 

overall water diffusion and is calculated as the mean amount of diffusion in the three 

principal directions of the diffusion tensor. MD represents the average mobility of water 

molecules irrespective of any tissue-based directionality.

Middle cerebellar peduncles
paired structures consisting of white matter fiber tracts that connect the pons with the 

cerebellum. Mossy fibers originate in the (contralateral) pontine nuclei and terminate in the 

opposite hemisphere of the cerebellum. This is the main afferent pathway connecting the 

cortex with the cerebellum and the largest afferent system of the cerebellum.

Psychophysiological interaction (PPI)
a neuroimaging connectivity method for investigating task-specific changes in the 

relationship between activity in different brain regions. PPI identifies brain regions in which 

activity is dependent on the interaction between psychological factors (the task) and the 

physiological state (the time course of brain activity). The more recent generalized PPI 

approach can accommodate more than two task conditions in the model by spanning the 

entire experimental space (i.e., modeling all regressors in the experimental design.

Radial diffusivity (RD)
a common diffusion tensor imaging (DTI) diffusivity metric that reflects water diffusion in 

the direction perpendicular to the axonal fibers. It is computed as the diffusion rate that is 

perpendicular to the main axis of diffusion for white matter tracts.

Resting-state functional magnetic resonance imaging (rsfMRI)
a neuroimaging method that is used to examine intrinsic functional connectivity between 

brain regions or networks while no task is being performed. rsfMRI is assessed with either 

eyes open (fixation on a crosshair) or eyes closed. This method is particularly amenable 

for populations with medical and/or mental health issues, because it is not confounded by 

cognitive demands.

Superior cerebellar peduncles
paired structures consisting of white matter tracts that relay cerebellar outputs via the red 

nucleus and the contralateral thalamus. It is the main efferent fiber pathway linking the 

cerebellum with the thalamus and cerebral cortex.
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Box 1.

The pons supports dexterous and smooth movement

The cortico-ponto-cerebeflar pathway has been hypothesized as crucial in the evolution 

of complex motor functions [1], including the use of sensory feedback during 

movements, that is, the efference copy/corollary discharge, to control complex motor 

actions [41,42]. Pontine nuclei contain distinct neurons that are activated when preparing 

or executing movement [43]. To facilitate successful sensory-guided movement, pontine 

nuclei help to integrate and bind incoming sensory information in a manner appropriate 

for the cerebellum [44], Pontine nuclei receive extensive cortical input and are the 

primary input region to the cerebellum [45]; essentially, these nuclei are a bottleneck 

for information passed from the cortex to the cerebellum. As such, perturbing the pons 

can reveal what information is shared, or alternatively lost, between the cortex and 

cerebellum.

In mice, optogenetic inhibition of the pons disrupted the shared neural activity patterns 

seen in premotor (layer 5) pyramidal cells and cerebellar granule cells during a forelimb 

movement task, which likely reflects diminished pontine input into the cerebellum 

[46]. In a separate study, optogenetic pontine silencing reduced precision, accuracy, and 

success rate during a cued reaching task, but did not block the initiation of movement 

[38], That is, disrupting cortico-cerebellar communication undermined skill and dexterity 

while leaving gross motor functioning intact. In comparison, optogenetic silencing of the 

motor cortex has been found to halt the initiation and execution of reaching [47,48].

In foveated species, smooth-pursuit eye movements, which help stabilize the retinal 

image of a moving stimulus on the fovea. similarly depend on the cortico-ponto-

cerebellar pathway [40], Robust smooth-pursuit deficits are present in schizophrenia [49], 

and may relate to an underlying deficiency in the efference copy/corollary discharge 

mechanism [9], Dorsal pontine nuclei integrate and deliver visual and non-visual eye 

motion signals to the cerebellum, that is, the efference copy/ corollary discharge [50]. 

A causal role for the dorsal pontine nuclei in smooth pursuit eye movements has been 

established from lesion studies [40], and could explain the smooth pursuit deficits seen 

in humans with pontine lesions [51]. Taken together, the pons may have a particular role 

in ‘fine-tuning’ motor or sensory information for the cerebellum to facilitate dexterous or 

smooth movement.
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Box 2.

The role of the thalamus in the efference copy/corollary discharge 
mechanism

Empirical studies of eye movements demonstrate how efference copy/corollary discharge 

mechanisms transmit via thalamic pathways [59]. In nonhuman primates, oculomotor 

efference copies heralding saccadic eye movements are sent along a pathway from the 

midbrain (specifically, the superior colliculus) to frontal eye fields via the mediodorsal 

thalamus [60]. These observations provide a framework for studying efference copy/

corollary discharge abnormalities in humans. Preliminary findings from humans have 

also implicated the mediodorsal nucleus in the efference copy mechanism. More 

specifically, relative to control participants, a patient with a lesion to the mediodorsal 

nucleus showed deficits in motor and visual updating that could reflect insufficient 

efference copy transfer [61].

Abnormalities in the mediodorsal-frontal eye field pathway are evident in people 

with schizophrenia. One study used diffusion tensor imaging (DTI) to test whether 

structural connectivity in the mediodorsal-frontal eye fields pathway correlated with 

oculomotor dysfunction of the efference copy/corollary discharge mechanism in a small 

sample of individuals with schizophrenia who completed a trans-saccadic perceptual 

task [62], Individuals with schizophrenia showed reduced microstructural integrity of 

the aforementioned pathway; critically, reduced integrity correlated with compromised 

oculomotor efference copy/corollary signals and with greater positive symptoms.

Flow between the thalamus and cortex has also been linked with efference copy/

corollary discharge mechanisms during auditory processing. In mice, auditory (layer 

6) corticothalamic neurons can be activated by motor-related input prior to anticipated 

sounds during active sensing [63]. This neuronal relationship may relate to sensory 

attenuation of self-generated sounds in humans. Humans without history of a psychiatric 

condition completed a task in which tones were actively elicited via button press or 

passively presented [64], Using magnetoencephalography and dynamic causal modeling, 

the authors found that auditory sensory attenuation (i.e., the difference between the active 

and passive conditions) was associated with bi-directional information transfer between 

the thalamus, inferior parietal lobule, and auditory cortex (i.e., Heschl’s gyrus).
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Outstanding Questions Box

• Do people with schizophrenia show deficient functional connectivity between 

the cortex and pons and/or the pons and cerebellum? If so, do functional 

connectivity abnormalities correlate with deficits in the underlying structure 

of the corticopontine and pontocerebellar tracts? Further, does aberrant 

connectivity of these pontine pathways correlate with neuroimaging or 

behavioral assays of poor sensory prediction?

• What is the relative contribution of MRI-derived metrics of cortico-ponto-

cerebellar-thalamo-cortical connectivity to EEG assays of sensory prediction 

in characterizing clinical features of schizophrenia? Is there something unique 

about deficiencies in the afferent versus efferent sensory prediction pathways; 

in other words, do individuals who exhibit abnormal cortico-ponto-cerebellar 

connectivity differ in symptoms and disorder presentation from those with 

deficient cerebellar-thalamus-cortical connectivity?

• Does acute or long-term NMDAR hypofunction induced by NMDAR 

antagonists, like ketamine, lead to connectivity abnormalities in the cortico-

ponto-cerebellar-thalamo-cortical loop akin to connectivity abnormalities 

seen in schizophrenia? Could NMDAR hypofunction represent a shared 

mechanism for deficient connectivity in this circuit and sensory prediction 

abnormalities observed behaviorally or via brain imaging modalities (like 

EEG)?

• Can non-invasive brain stimulation methods applied to the cerebellum or 

motor cortex be used to modulate the sensory prediction pathways that 

connect these regions, e.g., the cortico-ponto-cerebellar pathway? And in 

turn, can these methods restore deficient connectivity in cerebellar-thalamic 

or ponto-cerebellar pathways in schizophrenia? Does connectivity restoration 

equate to improvements in sensory prediction or other clinical symptoms?
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Highlights

• A basic mechanism common to all species heralds the arrival of self-

generated sensations, allowing animals to distinguish between self- and 

externally-generated sensations. Importantly, this mechanism is impaired in 

schizophrenia.

• In mammals, the distinction between self- and externally-generated sensations 

depends on rapid and unconscious communication between regions within a 

cortico-ponto-cerebellar-thalamo-cortical loop.

• The pons is the principal hub through which descending cortical signals 

relaying expected sensory experiences are transmitted to the cerebellum, 

where they are compared with actual sensory feedback.

• Abnormal connections between various nodes in the cortico-ponto-cerebellar-

thalamo-cortical loop are well-documented in schizophrenia, although 

relatively sparse attention has been paid to the pons, despite its centrality 

in this loop.

• Consideration of the full cortico-ponto-cerebellar-thalamo-cortical loop is 

critical for characterizing sensory abnormalities in schizophrenia.
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Figure 1. 
Neuroanatomical and neurofunctional model of sensory processing of self-generated events 

and respective alterations in schizophrenia. The circuit starts with an intention to act (or 

move) which initiates transmission of the motor command (i.e., plan). The expected motor 

plan and sensory consequences are transmitted from the cortex to the cerebellum via the 

pontine nuclei. The cerebellum compares the expected sensory consequences with the actual 

auditory, visual, and/or proprioceptive sensory feedback generated by the movement. Any 

discrepancies yielded between the predicted and actual sensory feedback (i.e., prediction 

errors) are forwarded to the thalamus and then on to several additional cortical targets 

(transmission strictly to the motor cortex in this figure is for illustrative purposes). Existing 

lines of evidence for impaired connections in schizophrenia in the afferent (red arrows from 

cortex to cerebellum via the pontine nuclei) and efferent (purple arrows from cerebellum to 

the thalamus) pathways are summarized in the “Evidence” boxes, respectively.

Abbreviations: AD, axial diffusivity; DUP, duration of untreated psychosis; FA, fractional 

anisotropy; MCP, middle cerebellar peduncles; MD, mean diffusivity; SCP, superior 

cerebellar peduncles; SZ, schizophrenia.
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