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Abstract

Background: HIV is a risk factor for obstructive lung disease (OLD), independent of smoking. 

We used mass spectrometry (MS) approaches to identify metabolomic biomarkers that inform 

mechanistic pathogenesis of OLD in persons with HIV (PWH).

Methods: We obtained bronchoalveolar lavage fluid (BALF) samples from 52 PWH, in 

case:control (+OLD/−OLD) pairs matched on age, smoking status and antiretroviral treatment. 

409 metabolites from eight families were measured on BALF and plasma samples using a MS-

based Biocrates platform. After filtering metabolites with a high proportion of missing values and 

values below the level of detection, we performed univariate testing using paired t-tests followed 

by false discovery rate corrections. We used distance weighted discrimination (DWD) to test for an 

overall difference in the metabolite profile between cases and controls.

Results: After filtering, there were 252 BALF metabolites for analysis from eight metabolite 

families. DWD testing found that collectively, BALF metabolites differentiated cases from 

controls, whereas plasma metabolites did not. In BALF samples we identified three metabolites 

that correlated with OLD at the false discovery rate (FDR) of 10%; all were in the 

phosphatidylcholine family. We identified additional BALF metabolites when analyzing lung 

function as a continuous variable, and these included acylcarnitines, triglycerides and a cholesterol 

ester.

Conclusion: Collectively, BALF metabolites differentiate PWH with and without OLD. These 

included several BALF lipid metabolites. These findings were limited to BALF and were 
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not found in plasma from the same individuals. Phosphatidylcholine, the most common lipid 

component of surfactant, was the predominant lipid metabolite differentially expressed.
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INTRODUCTION:

Improved survival in persons with HIV (PWH) has led to a higher prevalence of several 

chronic illnesses including obstructive lung disease (OLD), which affects an estimated 

3–23%.1–8 Prior to the common use of effective antiretroviral therapy (ART), airflow 

obstruction was mostly attributed to pulmonary infections.9 Despite the high prevalence 

of smoking amongst PWH, observational studies indicate that HIV infection itself is an 

independent risk factor for accelerated lung function decline and subsequently developing 

OLD.10 In a simian/human immunodeficiency model OLD develops with Pneumocystis 
colonization that is not reversed with antibiotic treatment, implying immune activation.11 

Pathophysiology underlying at least some cases of HIV-associated OLD may differ from 

usual smoking-associated COPD. Mechanisms leading to HIV-associated OLD are likely 

multi-factorial, but may include direct and indirect effects of the HIV on the lung.

We previously identified a plasma metabolite profile in HIV-associated OLD that includes 

sphingolipids, a class of lipids important in cell signaling and surfactants.12 Abnormal lipid 

metabolism has been described in chronic lung disease, including COPD.13

In this study, the primary aim was to perform large-scale analysis with mass 

spectrometry of bronchoalveolar lavage fluid (BALF) to identify lung specific metabolites 

associated with HIV-associated OLD, including lipids. We found that lipids, particularly 

phosphatidylcholine, are altered in HIV-associated OLD, similar to COPD in HIV-

uninfected individuals.

METHODS:

We performed a cross-sectional, matched case:control study using BALF and plasma 

samples from two cohort studies.

Study Population:

Cases and controls were PWH selected from the Pittsburgh and Vancouver Lung HIV 

Cohorts collected from 2011–2018 and 2013–2018 respectively. The Pittsburg cohort were 

recruited from the Multicenter AIDS Cohort Study (MACS) and the Women’s Inter-agency 

HIV Study (WIHS) cohorts for the bronchoscopy. The Vancouver cohort consisted of 

excess BALF from clinically indicated bronchoscopies in PWH. BALF was collected using 

standard procedures. 14,15 We identified 26 cases with HIV and OLD with available BALF; 

OLD was defined as the ratio of forced expiratory volume in 1s/forced vital capacity (FEV1/

FVC) < lower limit of normal (Table 1). Controls consisted of 26 individuals with HIV 

and normal lung function (defined as FEV1/FVC > lower limit of normal and FEV1 > 

80% of predicted normal) matched on age (+/− 5 years), ART use and smoking status 
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(current vs. nonsmoker). Plasma samples were available for 47 individuals including 21 

matched case-control pairs. Participants in the parent cohort studies provided informed 

consent for BALF collection and storage; the current study was approved by the University 

of Minnesota Institutional Review Board.

Sample Processing and Metabolomics:

At study enrollment, BALF was collected as previously described. Blood was drawn into 

EDTA tubes, and plasma was processed within 4 hours. 14,15 Samples were stored at −80 

degrees Celsius prior to processing and underwent one freeze-thaw cycle. BALF samples 

were vortexed and centrifuged at 5000 × G for 5 minutes at 4°C followed by separation of 

the pellet and supernatant for the removal of additional debris. To identify metabolites, 10μl 

of plasma or 200 μl of BALF was manually loaded onto a Biocrates Life Sciences Absolute 

IDQ p400 HR (Biocrates Life Sciences catalog number 21018) following the manufacturer’s 

instructions and as previously reported.16 BALF samples were pipetted in four 50 μL 

increments. The addition of each increment was followed by drying under liquid nitrogen 

for 30 minutes. Both the supernatant and plasma were pipetted into specific designated 

wells in a randomized plate layout created in MetIDQ and the plate was sealed with a 

clean silicon mat. Analysis was performed on a Thermo Scientific, Q Exactive TM, Hybrid 

Quadrupole-Orbitrap TM, mass spectrometer equipped with a Thermo Scientific Ultimate 

3000 UHPLC equipped with an autosampler. The autosampler was set to collect eluent 

from 0.2 to 1.5 minute retention times. Sample metabolite processing and quantification 

was performed with the integrated MetIDQ Biocrates software17. The Biocrates platform 

contains standards for eight families of metabolites for a total of 409 individual metabolites. 

Internal controls are incorporated for normalization between plates. The limit of detection 

(LOD) for each metabolite is provided by the Biocrates manufacturer and is calculated by 

Met/DQ™ and is defined as three times the background noise level. Families (number of 

metabolites) measured included: acylcarnitines (55), amino acids (21), biogenic amines (21), 

monosaccharide (1), di- and tri- glycerides (60), phospholipids (lysophosphatidylcholines 

and phosphatidylcholines) (196), sphingolipids (ceramides and sphingomyelins) (40) and 

cholesteryl esters (14).

Data Cleaning:

We removed any metabolites that were either missing data or below the limit of detection 

(LOD) for more than 50% of the cohort. This cleaning procedure left 252 metabolites 

and 52 individuals (26 matched case-control pairs) in the final processed BALF data and 

258 metabolites and 42 individuals (consisting of 21 complete case-control pairs) in the 

final processed plasma data. In both datasets, remaining missing values after filtering were 

replaced with 0s (i.e., not present). We applied a log(1+x) transformation to the data 

and scaled and centered each metabolite to have mean 0 and standard deviation 1. We 

checked for the presence of outliers or technical artifacts from either fluid using principal 

components analysis plots.

Statistical Analysis

To evaluate the collective power of the metabolites to differentiate between cases and 

controls, we used distance-weighted discrimination (DWD)18 to classify individuals based 
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on a weighted combination of their observed metabolite levels for each sample type. To 

assess the significance and robustness of the results, we used a permutation-testing approach 
19 for each fluid where we:

1. Randomly permuted the case-control labels within matched pairs

2. Applied cross-validation wherein each case:control pair was held out and the 

DWD classifier was trained using the remaining pairs

3. Calculated a one-sided paired t-test comparing the scores assigned to cases 

and controls for held-out pairs and saved the resulting test statistic (termed 

‘permutation test statistic’)

This approach accounted for the matched sampling method. After 500 permutations, we 

obtained a p-value by calculating the proportion of permutation test statistics that were 

greater than the paired t-test statistic computed using the data with the true case-control 

labels.

We used paired t-tests to compare the level of each individual metabolite between matched 

case-control pairs. In the BALF dataset, we performed 252 paired t-tests for each of the 252 

metabolites and 258 paired t-tests for the plasma dataset. We then applied a false discovery 

rate (FDR) correction to the resulting p-values to account for multiple comparisons. 20 We 

also evaluated whether families of metabolites cumulatively differed between cases and 

controls by summing over the measured abundances of each metabolite within a family, for 

BALF and plasma separately, and then compared these levels between cases and controls.

In addition to considering OLD status as a binary variable, we also considered percent of 

predicted FEV1 as a continuous outcome measure to account for the wide range in these 

values (20–90% of predicted normal) in our sample. We used Pearson correlation tests to 

evaluate correlation between percent predicted FEV1 and levels of each metabolite in lavage 

and plasma. We then applied an FDR correction to adjust for multiple comparisons. We also 

used lasso regression 21 within each fluid with percent predicted FEV1 as the outcome and 

metabolites as the predictors. We followed a similar cross validation approach as described 

for DWD analysis, where each case:control pair was held out as a test set while the model 

was trained on the remaining pairs. Within each training iteration, we obtained the optimal 

L1 penalty term using 10-fold cross validation on the training set. This optimal penalty value 

was then used in prediction of the outcome on the held-out test pair.

We used Pearson correlation tests with FDR correction for multiple comparisons to assess 

the association between metabolite levels in BALF and plasma.

Lastly, we considered the association between each metabolite and the diffusing capacity 

of the lungs for carbon monoxide (DLCO). We used Pearson correlation tests with an FDR 

adjustment to assess the relationship between the metabolites and DLCO.
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RESULTS:

Study participant characteristics:

Cases consisted of 26 PWH with OLD (Table 1). Controls were 26 PWH with normal lung 

function, matched on age, antiretroviral therapy (ART) use and smoking status. Most of the 

participants were male in their fifth decade of life. Slightly over half were current smokers, 

17% were never smokers and most were on ART. Lung function (FEV1) ranged from 21 – 

90% of predicted normal in the OLD cases, compared to 80 – 128% in the controls. Airway 

obstruction (DLCO) ranged from 36 – 139% in cases and 14.4 – 117% in controls. All cases 

demonstrated obstruction defined as FEV1/FVC < lower limits of normal.

Metabolite Analysis:

We used DWD to assess the collective power of metabolites in either BALF or plasma 

to distinguish between cases and controls. DWD is a classification method for high-

dimensional data sets with low sample-size that calculates a weighted sum of metabolite 

expression levels for each sample that distinguishes cases from controls. Following 

permutation testing, the one-sided permutation testing p-value was 0.014 for BALF 

metabolites and 0.224 for plasma metabolites. These p-values suggest that BALF metabolite 

levels collectively distinguish between cases and controls, whereas plasma metabolites do 

not (Figure 1). Figure 2 shows the metabolite expression across the patient cohort. The 

metabolites are ordered by the direction and magnitude of their correlation with FEV1pp.

Using paired t-tests, we identified three metabolites (PC(31:0), PC(31:3), PC(31:4)) in 

BALF that were significantly different between cases and controls at the 10% FDR threshold 

(Table 1S). These metabolites were exclusively in the phosphatidylcholine (PC) metabolite 

family and are listed using standard lipid nomenclature.22 We did not find any plasma 

metabolites that were significant at the 10% FDR threshold. When we considered the 

cumulative expression of each metabolite family, none in BALF were significantly different 

(p-value>0.05) between cases and controls, though plasma glycerides (p-value=0.01) and 

glycerophospholipids (p-value=0.03) were both significantly different between cases and 

controls.

When we considered the correlation between each metabolite and percent predicted 

FEV1 as a continuous variable, we found 8 metabolites to be significant at an FDR 

threshold of 0.01 in BALF (Table 2), 34 at a threshold of 5%, and 47 at a threshold 

of 10%. These metabolites belonged to multiple families, including phosphatidylcholines, 

triglycerides and acylcarnitines. As indicated by their correlation, phosphatidylcholines 

were decreased in severe OLD, whereas triglycerides and acylcarnitines were increased. 

No metabolites in plasma were significantly correlated with percent predicted FEV1 after 

multiple comparisons adjustment.

Using lasso regression for BALF metabolites with percent predicted FEV1 as the response, 

the cross-validated predicted outcomes for each individual had a 0.39 correlation with their 

true observed percent predicted FEV1 values (Figure 1S), suggesting modest predictive 

accuracy for percent predicted FEV1. In plasma the correlation between predicted and 

observed FEV1 values was only 0.05, indicating poor prediction accuracy of the model. 
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Table 3 shows the lasso regression results with the top 8 metabolites, their average 

coefficients across cross validation folds, and the proportion of folds in which their 

coefficients were non-zero. Most of the metabolites were phosphatidylcholines (PC) along 

with two acylcarnitines (AC) and one cholesterol ester (CE). Only the single metabolite 

PC(34:4) overlapped in all three analyses (Figure 3).

For the subjects that had available DLCO, we did not find a correlation with any metabolites 

with or without FDR correction. In addition, there were 151 metabolites common between 

BALF and plasma after filtering. When we considered the Pearson correlation between 

the two fluids for these shared metabolites, we did not find any metabolites that were 

significantly correlated at the 5%, 10%, or 20% FDR thresholds. This suggests there is little 

relationship between metabolite levels across the two fluids (Figure 2S).

DISCUSSION:

We found that the BALF metabolome, but not the plasma metabolome, differentiates PWH 

with and without OLD. The OLD-associated BALF metabolome differed mainly in lipids, 

particularly phosphatidylcholine species.

This study was designed as a case:control study with controls matched on age, ART and 

smoking status. Using the case:control status, we identified phosphatidylcholine species 

as differentially expressed in OLD BALF. Since biomarker expression is influenced by 

severity of disease, we considered the correlation of metabolites with lung function, 

i.e. FEV1 percent predicted, which ranged from 21 to 90% predicted. In addition 

to phosphatidylcholine species, acylcarnitines, triglyceride and a cholesterol ester were 

associated with the OLD BALF metabolome. The phosphatidylcholine species were 

decreased in severe OLD whereas acylcarnitines were increased in severe OLD.

Multiple studies have demonstrated abnormal lipid metabolism in COPD.23–26 The 

lung alveoli participate in lipid metabolism as they contain both type II cells that 

produce surfactant lipids and alveolar macrophages that participate in surfactant recycling. 

Pulmonary surfactant is a lipid-protein complex lining the alveolar air-liquid interface that 

reduces surface tension to prevent alveolar collapse. Pulmonary surfactant is composed of 

90% lipid, primarily phospholipids, with phosphatidylcholine being the major phospholipid. 

Certain surfactants (e.g. surfactant proteins A and D [SP-A and SP-D]), belong to 

the collectin family and participate in innate immune responses. 27 Surfactant and its 

major component, phosphatidylcholine, are decreased in smoking-associated COPD, both 

collectively and individual PC species.28 This decrease in alveolar lipid composition is 

associated with a change in the alveolar macrophage lipid metabolism transcriptome.29 

In addition, metabolomic studies demonstrate altered glycerophospholipid metabolism 

correlates with worse airflow obstruction. 23 Like these other studies, we found that 

decreases in phosphatidylcholine correlated with worse OLD severity in PWH, as measured 

by lower FEV1. Included amongst our metabolites was the commonly measured surfactant 

phosphatidylcholine species PC(32:0). The decrease in PC with worsening lung function 

may represent a combination of abnormal lipid synthesis and/or recycling. Loss of lipid 

and surfactant is also associated with alveoli cell apoptotic death and cellular dropout. 
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Apoptotic death is seen in the emphysema phenotype of COPD. HIV is an independent risk 

factor for a low DLCO,30 which can be a surrogate for emphysema. Several observational 

studies have reported an emphysema phenotype associated with HIV,31 however, a recent 

study from a large Danish study did not find HIV to be independently associated with 

emphysema. 32 CT lung imaging was not performed in our study and although we found 

a correlation with metabolites and FEV1 we did not find a correlation between DLCO and 

metabolites. Therefore, the decrease in PC may represent a functional change as reflected in 

the FEV1 or airway obstruction that does not correlate with structural changes in the lung, 

such as emphysema, that would be reflected in the DLCO. It should be noted that control 

subjects without OLD had marked reduction in some of the DLCO values, that may reflect 

something other than lung parenchymal disease.

With rapid expansion of robust and sensitive mass spectrometry technology, identification of 

complex mixtures of species and homologues of surfactant lipids is expanding. This includes 

a growing availability of mass spectrometry lipid standards for accurate identification 

and quantification. In this study, we utilized the Biocrates platform that contains 409 

metabolite standards including several lipid families and 196 phospholipid species. When 

comparing across other mass spectrometry-based studies, some species such as PC(32:0) 

have commonality. However, we and others have identified unique species associated both 

with OLD and lung function. Further studies are required to determine if these lipid species 

are generated due to exogenous and/or endogenous influences on metabolism.

There are several limitations to this study. Abnormal lipid metabolites have been seen in 

HIV-negative COPD, including PC. Although we identified unique PC metabolite species 

that differentiate OLD in PWH, their individual biological significance cannot be derived 

from this study. While our controls were matched on age, smoking status and ART, they 

were not matched on race or sex. There were more Black and male individuals represented 

in cases. COPD biomarkers are influenced by both race and sex, and specific lipid species, 

such as acylcarnitines have been found to be differentially expressed in females with 

COPD. 33 Another limitation is the relatively small sample size, and this study may have 

been underpowered to determine all significant metabolites differentially expressed in HIV-

associated OLD, especially in plasma. We and others have previously identified metabolite 

biomarkers of OLD in plasma from HIV negative individuals.34–37 However, these were 

often much larger case studies and lacked concomitant BALF studies.

A major strength of our study is our analysis of BALF. Most of the prior work seeking to 

identify biomarkers of HIV-associated OLD have been done in plasma. Interestingly, we did 

not find the BALF metabolite biomarker differences in plasma suggesting these alterations 

in metabolites are isolated to the lung or only detectable in the lung. Although wide-scale 

collection of BALF is not feasible in large cohort studies, our data highlight the scientific 

value of such specimen collection in informing mechanisms of OLD pathogenesis in PWH.

In summary, we found that BALF metabolites differ between PWH with and without OLD. 

These included several BALF lipid metabolites. These findings were unique to BALF as 

they were not identified in plasma from the same individuals. Phosphatidylcholine, the most 
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common lipid component of surfactant, was the predominant lipid metabolite differentially 

expressed.

Future studies would benefit from larger samples sizes and longitudinal study designs to 

determine if these changes are transient or correlate with outcomes, such as lung function 

decline or exacerbation rates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Distribution of DWD scores based on a) bronchoalveolar lavage and b) plasma metabolites

a) BALF (*p value 0.014)

b) Plasma (*p value 0.224)
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Figure 2: 
Heatmap showing metabolite expression for the study cohort. Columns reflect samples and 

rows reflect metabolites. The metabolites are ordered by the direction and magnitude of their 

correlation with FEV1pp.
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Figure 3. 
Venn diagram of significant metabolites from separate analyses
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Table 1

Demographics

Case (N=26) Control (N=26) Total (N=52)

Sex

 Male 20 (76.9%) 18 (69.2%) 38 (73.1%)

Age

 Mean (SD) 59.6 (8.58) 53.8 (7.30) 56.7 (8.41)

 Median 58.0 [44.0, 80.0] 54.0 [42.0, 76.0] 56.0 [42.0, 80.0]

Ethnicity

 Black, Non-Hispanic 16 (61.5%) 12 (46.2%) 28 (53.8%)

 White, Hispanic/Latino 10 (38.5%) 13 (50.0%) 23 (44.2%)

 Asian/Pacific Islander 0 (0%) 1 (3.8%) 1 (1.9%)

Smoking Status

 Yes 14 (53.8%) 14 (53.8%) 28 (53.8%)

 Former 9 (34.6%) 7 (26.9%) 16 (30.8%)

 Never 3 (11.5%) 5 (19.2%) 8 (15.4%)

Pack Years

 Mean (SD) 31.1 (28.3) 15.2 (13.7) 23.1 (23.4)

 Median [Min, Max] 29.6 [0, 120] 13.6 [0, 38.0] 17.2 [0, 120]

HIV Status

 ART Therapy 24 (92.3%) 24 (92.3%) 48 (92.3%)

Viral Load

 < 50 Copies 12 (46.2%) 18 (69.2%) 30 (57.7%)

 > 50 Copies 2 (7.7%) 3 (11.5%) 5 (9.6%)

 Missing 12 (46.2%) 5 (19.2%) 17 (32.7%)

FEV1 Percent Predicted

 Mean (SD) 68.1 (16.0) 104 (11.3) 85.8 (22.5)

 Median [Min, Max] 68.3 [21.0, 90.4] 102 [80.6, 128] 86.5 [21.0, 128]

DLCO Percent Predicted

 Mean (SD) 71.6 (26.3) 76.6 (23.1) 74.2 (24.6)

 Median [Min, Max] 67.6 [36.3, 139] 74.5 [14.4, 117] 74.5 [14.4, 139]

 Missing 6 (23.1%) 5 (19.2%) 11 (21.2%)

J Acquir Immune Defic Syndr. Author manuscript; available in PMC 2023 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wendt et al. Page 16

Table 2:

Correlation between metabolites and FEV1 percent predicted for metabolites significant at an FDR threshold 

of 1%. Shown are both p-values and p-values adjusted for FDR (q-values).

Metabolite Correlation P-Value Q-Value

PC(34:4) 0.5859 0.0000 0.0013

AC(10:0) −0.5047 0.0001 0.0090

AC(14:1) −0.4916 0.0002 0.0090

TG(55:9) −0.4941 0.0002 0.0090

PC(33:0) 0.4968 0.0002 0.0090

PC(34:3) 0.5199 0.0001 0.0090

AC(18:0) −0.4815 0.0003 0.0095

PC(32:0) 0.4855 0.0003 0.0095
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Table 3:

Coefficients of metabolites using lasso regression with cross validation. Metabolites shown are those that were 

selected for more than 50% of cross validation folds. Coefficients were averaged across folds.

Metabolite Average Coefficient Proportion of Folds Selected

123 PC(34:4) 4.5729 1.0000

22 AC(10:0) −1.7843 0.9615

105 PC(31:0) 2.9223 0.9615

33 AC(14:1) −1.6489 0.9231

163 PC(41:2) −1.9888 0.9231

79 CE(17:0) −1.1589 0.8846

194 PC-O(33:6) −0.7304 0.7692

113 PC(33:0) 0.9883 0.7308

AC = acylcarnitine, PC = phosphatidylcholine, CE = cholesterol ester
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