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Abstract

Background and objectives: The goal of this review is to describe the general features, 

mechanisms, technical recording factors, and clinical applications of brain evoked potentials (EPs) 

generated by deep brain stimulation (DBS) for Parkinson’s disease (PD).

Results: Evoked potentials in response to DBS pulses occur on the timescale of milliseconds and 

are found both locally at the site of stimulation and remotely in the cortex. DBS evoked potentials 

arise from a complex integration of antidromic and orthodromic conduction pathway responses, 

and provide information valuable for understanding the mechanisms and circuits involved in 

symptom treatment. Furthermore, these signals may provide biomarkers for improving DBS 

outcomes and function. For example, evoked potentials may have utility as control signals for 

DBS programming or adaptive DBS. Despite their promise there are still critical gaps in our 

understanding of the mechanisms by which evoked potentials arise and how these signals may be 

measured and applied in the clinical setting. Technical challenges of recording a highly transient 

signal at sufficient resolution without the interference of stimulation artifact present a barrier to 

understanding better DBS-induced EPs.

Conclusions: We describe the current scientific landscape of evoked potentials to facilitate and 

stimulate further investigation.
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1. Introduction

Parkinson’s disease (PD) is the world’s fastest growing neurological disorder, with the 

prevalence expected to double to 12 million patients between 2015 and 2040 [1]. PD 

is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta 

(SNc) [2], which results in motor symptoms including resting tremor, postural instability, 

bradykinesia, and shuffling gait [2,3]. However, PD pathology and symptom progression 

begins prior to the loss of dopaminergic neurons in the SNc. Early pathology begins in the 

medulla and olfactory bulb, mirroring the early symptoms of rapid eye movement (REM) 

sleep behavior disorder and decreased sense of smell [3]. Next, pathology progresses to the 

SNc and other midbrain and forebrain structures. This stage is associated with classic PD 

motor symptoms and is when PD is most commonly diagnosed. Lastly, in advanced stages, 

pathology spreads to the cortex, resulting in cognitive decline and hallucinations.

PD is initially managed with medications aimed at restoring dopaminergic activity in the 

brain. Response to levodopa, a dopamine precursor, both supports the diagnosis of PD and 

is the most effective medical therapy [1]. However, as the disease progresses, many patients 

develop side effects, fluctuations in medication response, or medication refractory tremor, 

at which time deep brain stimulation (DBS) can improve motor symptoms [2,3]. DBS 

electrodes for PD treatment are implanted in either subthalamic nucleus (STN) or globus 

pallidus internus (GPi). Multiple clinical trials have demonstrated that DBS is superior 

to medical therapy in moderate-to-severe PD. The EARLYSTIM randomized trial showed 

benefit at 4 years after PD diagnosis [4,5], leading to revision of the prior FDA approval in 

2002 to earlier DBS in 2016.

While DBS effectively treats several motor symptoms of Parkinson’s disease, limitations 

remain in side effect profile, management of non-motor symptom, accurate lead placement 

with intraoperative testing, and selection of optimal stimulation parameters. For example, 

STN DBS can cause motor side effects such as speech impairment and dyskinesia [6–8]. 

Although DBS electrode implantation can be conducted with intraoperative patient-awake 

microelectrode recording and testing of symptom control and side effects to confirm 

accurate lead placement, patients often have anxiety and discomfort in this setting [9]. DBS 

electrode implantation is usually done as an awake procedure with intraoperative clinical 

observation during test stimulation to confirm both alleviation of motor symptoms and 

avoidance of side effects; however, the GALAXY randomized clinical trial concluded awake 

surgery does not produce better outcomes over asleep surgery [10]. Lastly, stimulation 

parameter selection is a time-consuming, empirical practice conducted over multiple 

programming sessions in a specialty clinic [11,12], and the results may be suboptimal due to 

the extensive parameter space, which is further enlarged by new 8 channel segmented leads 

[13]. Further, optimal stimulation parameters are dependent on the dynamic clinical state of 

the patient, delayed time to clinical benefit (i.e., up to 1–2 days), the patient’s medication 

status, disease progression, and sleep/wake state [11,14,15]. A snapshot of patient responses 

to DBS parameter changes in the clinic cannot capture these complex fluctuating changes in 

motor status.
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Many of these challenges in DBS implementation may be improved through the use of 

biomarkers linked to neural activity, patient state, and symptom relief for more automated, 

objective programming. For example, biomarkers generated by DBS, evoked potentials (EP), 

have shown potential to improve programming, reveal relevant mechanisms, and identify 

circuits involved in DBS for PD [16–20]. Evoked potentials are generated by neural activity 

in response to applied stimuli and reveal information about neural connectivity and function. 

The transmembrane currents in activated neurons generate voltages in the tissue that can 

be recorded with implanted electrodes. Similar to how electrocardiograms (EKGs) provide 

valuable clinical insight into heart function, EPs have proven clinically useful, for example 

in implementation of cochlear implants [21], and the diagnostic detection and localization of 

nerve and brain lesions [22].

DBS generates EPs in both local (subcortical) and remote (cortical) regions of the nervous 

system based on neuronal and axonal stimulation (Fig. 1). DBS local evoked potentials 

(DLEPs), recorded at the site of stimulation, arise from the synchronous activation of 

neural elements near the active DBS contacts [16,18,23]. Alternatively, these locally 

recorded signals in STN have also been termed evoked resonant neural activity (ERNA). 

Cortical evoked potentials (cEPs) are also observed in response to DBS [24,25]. These EPs 

have various potential clinical applications [16–18,26,27] and may ultimately be used as 

biomarkers for DBS optimization.

Here we review the general features, technical recording considerations, underlying neural 

mechanisms, and clinical applications of DBS-induced EPs. This review highlights both the 

promise of novel neurophysiological studies and future device and therapy advances that 

could be enabled by EPs.

2. Cortical evoked potentials

2.1. Features of cortical evoked potentials generated by DBS

Cortical evoked potentials (cEPs) have been recorded during DBS in both humans 

[24,25,28–30] and rats [19,31]. For example, STN DBS induces cEPs that vary with 

stimulation frequency [25]. cEPs generated by low frequency (≤20 Hz) STN DBS exhibit 

short- (R1, 1–3 ms), intermediate- (R2, 5–15 ms) and long- (R3, 18–25 ms) latency 

components [19,32] (Fig. 2). At frequencies between 5 and 50 Hz cEP amplitude showed 

constant latency but peak amplitude at 20 Hz [33]. Clinically relevant DBS frequencies 

(>100 Hz) contain interpulse intervals shorter than the latency of the R2 and R3 cEP 

components, and thus these components are obscured. A study investigating DBS frequency 

(4.5–130 Hz) found R1 peak amplitude was lowest at 130 Hz and R1 latency was greatest 

at 130 Hz [19]. Both Eusebio [33] and Kumaravelu [19] probed cEPs at varying stimulation 

frequencies: Kumaravelu (testing 4.5 Hz, 9 Hz, 50 Hz, and 130 Hz) found the maximum 

R1 amplitude at 9 Hz, although amplitude peaked at 20 Hz. Eusebio showed there was 

a constant R1 latency up to 20 Hz, but Kumaravelu’s R1 latency exhibited a nonlinear 

increase as the frequency approached 130 Hz. Overall, R1 amplitude and latency may reflect 

changing network dynamics across stimulation frequencies and R2 and R3 may vary even at 

interpulse intervals that obscure and overlap with them.
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Initial cEP studies distinguished between short and long-latency components but disagreed 

on component properties. Ashby et al. [24] reported short-latency cEPs in nearly all subjects, 

while Mackinnon et al. [30] found short-latency cEPs in <50%, but that long-latency 

responses were more consistent. However, later studies using appropriate equipment and 

techniques to reduce stimulation artifact found that short latency cEPs were consistently 

present and less variable in latency than later peaks [32,34]. Earlier studies showed stimulus 

artifact confounding cEP traces up to ~5 ms [30,33].

The amplitude of cEPs is strongly dependent on the specific location of DBS electrode 

contacts in the brain, with maximal amplitude recorded ipsilateral to stimulation [32–34]. 

With STN DBS, cEP amplitude is ~ 1–5 mV and is largest when stimulating dorsal portions 

of the STN [30]. With thalamic ventral intermedius (VIM) DBS it is not clear how electrode 

location impacts cEP amplitude or latency [28,34]. The cEP is largest in M1 and premotor 

areas, but also present in S1 and superior parietal lobule [20] whereas latency varies based 

on recording contact location.

2.2. Technical aspects of recording cEPs

Cortical evoked potentials can be recorded using scalp electroencephalogram (EEG) 

[25,30,32,35] or directly on the brain surface (electrocorticogram, ECoG) with ipsilateral 

subdural strips [20,26]. ECoG strip placement is guided using intraoperative CT co-

registered to the preoperative MRI with contacts typically placed over the premotor cortex, 

precentral gyrus (M1), postcentral gyrus (S1), and superior parietal lobe. Physiological 

confirmation of ECoG electrode location is confirmed using reversal of somatosensory-

evoked potentials (SSEPs) generated by median nerve stimulation [36]. Animal studies often 

record cEPs using stainless steel screws over the region of interest [19,37].

Early studies on cEPs were limited by electrical stimulation artifacts that obscure short-

latency responses [24,25,29,30]. DBS can be delivered through either monopolar stimulation 

(i.e., electrode contact(s) are the cathode while the implanted pulse generator (IPG) case 

is the anode) or bipolar configuration (i.e., separate electrode contacts are the anode and 

cathode). Initial studies suggested that monopolar stimulation produced larger electrical 

artifacts than bipolar stimulation [32,34]. To reduce artifacts, monopolar stimulation can be 

delivered with anode/cathode pair reversal (i.e., ± to −/+) across stimulation epochs, then 

averaging epochs through summing (Fig. 2). This process assumes that underlying brain 

responses do not reverse in polarity whereas the stimulus artifact cancels out with reversed 

polarities. But the brain response may also be affected by the polarity of stimulation, as 

suggested by modeling [38] and corroborated experimentally [39].

2.3. Mechanisms of cEP generation

The initial R1 component of STN DBS-induced cEP is thought to arise from antidromic 

activation of the hyperdirect pathway [19,31,40–42] (Fig. 3). The short-latency R1 

component shows short chronaxies, short refractory periods, and is able to follow trains 

of stimuli at > 100 Hz without blocking, suggesting that this component derives from 

antidromic activation [24,40]. The R1 component’s ability to follow high-frequency 

stimulation [43] supports the hypothesis that the R1 component of cEPs is mediated 
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by antidromic activation of the hyperdirect pathway. Further, studies in anesthetized rats 

report the presence of only short-latency STN-induced cEPs whereas conscious rats also 

exhibit intermediate- and long-latency cEPs [19,31,44]. Irwin et al. [35] similarly found 

R1 components preserved and R2/R3 components suppressed under anesthesia in humans. 

Activity that arises from polysynaptic activation is strongly suppressed by anesthesia [45] 

supporting that R1 is due to direct activation of fibers and antidromic propagation to cortex.

Li et al. [31], Gradinaru et al. [41], and Kumaravelu et al. [19] all demonstrated antidromic 

activation of hyperdirect pathway through electrical or optogenetic stimulation of STN. 

Recordings in monkeys found STN stimulation produced short-latency cEPs, but GPi 

stimulation, while it produced long-latency cEPs, did not produce the short latency cEPs 

[40]. This implies GPi stimulation does not antidromically activate cortical fibers, consistent 

with the anatomical knowledge that GPi is not known to have projections to or from the 

motor cortex [40,46].

Directional DBS leads allow greater specificity in stimulating neural circuits and improve 

clinical outcomes [47,48]. These leads also provide a more precise means of probing neural 

circuits and understanding the mechanisms of cEP generation. For example, Peeters et al. 

[49] measured cEP during 10 Hz DBS on directional lead contacts in patients with PD. 

Similar to previous works, they observed a 3 ms short-latency EP over the motor cortex 

during dorsolateral STN DBS, providing further evidence of engagement of the hyperdirect 

pathway.

Moreover, diffusion tensor imaging (DTI), a minimally invasive technique that allows 

visualization of fiber tracts in vivo in humans, provides further supporting evidence of 

the hyperdirect pathway as the mechanism of short-latency cEP generation. Brunenburg et 

al. [50] used DTI tractography to identify connectivity between STN and motor cortex in 

support of the hyperdirect pathway. Lambert et al. [51] expanded upon this neuroanatomical 

characterization to show three distinct clusters within human STN based on connectivity, 

including the hyperdirect pathway fibers to the motor cortex. Based on the length of the 

projections identified in tractography and the conduction velocity of cortical white matter 

tracts, the latencies of cEPs are consistent with direct projections from motor cortex to the 

STN in humans [52].

The R2 and R3 components of the cEP are hypothesized to result from orthodromic 

propagation through the STN-GPi-thalamic pathway [40,53,54] (Figs. 3 and 4). Supporting 

this theory, studies in patients undergoing STN DBS with prior GPi pallidotomies found 

unexpectedly small cEPs [25]. Additionally, Devergnas and Wichmann [40] described that 

the long-latency component of cEPs evoked by GPi stimulation occurred faster than those of 

STN stimulation, indicating STN stimulation potentially included orthodromic propagation 

through the pallidum and thalamus.

Other studies refute the STN-GPi-thalamic pathway theory. Firstly, a study by Limousin 

et al. [55] found long-latency cEPs evoked by STN DBS occurred sooner (18–20 ms) 

than those evoked by GPi stimulation (25.0–25.8 ms) with other studies in agreement 

[56–58]. Secondly, Baker et al. [25] concluded there was no apparent difference in the 
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morphology or topography of the cEPs from the two patients that had undergone prior 

GPi pallidotomies. Therefore, long-latency cEPs may be independent of basal ganglia, and 

a result of either cortico-cortical interactions following antidromically activated pyramidal 

neurons or reciprocal connections between the cortex and the thalamus [59]. In support 

of this, Kumaravelu’s study using a detailed model of the cortical column interconnected 

to the thalamus suggested the intermediate- and long-latency components of the cEP 

are due to activation of L5 pyramidal neurons and subsequent polysynaptic activation of 

L2/3 pyramidal neurons, respectively [19]. Orthodromic activation through basal ganglia-

thalamus-cortex pathways was not necessary to generate the cEP components in the model.

In summary, the R1 component of the cEP arises from antidromic activation of 

the hyperdirect pathway and is present with stimulation of STN but not GPi. As 

anesthesia suppresses polysynaptic activation, R1 is present under anesthesia whereas 

the intermediate- and long latency components of the cEP are suppressed. The neural 

origins of the intermediate- and long-latency cEP components are currently an open 

question. There is experimental evidence for both orthodromic propagation and experimental 

and computational results showing these components arise through recurrent cortical 

connections.

2.4. Clinical applications

There are several potential clinical applications of DBS-induced cEPs. First, cEPs may 

guide electrode placement in awake patients since clinically effective contacts can evoke 

long-latency cEP components [29] which are suppressed with anesthesia [19,31,35,44]. 

Second, cEPs may show utility as biomarkers to quantify clinical effect and the extent of 

neural activation and thus could be useful in electrode selection during later programing 

sessions. Modeling from Kumaravelu et al. [19] showed lower intensity STN DBS evoked 

short-latency cEPs while higher intensities also recruited intermediate- and long-latency 

components. In agreement with this prediction, Kelley et al. [52] and Irwin et al. [35] 

observed later cEP components also increased in response to higher STN DBS voltage. 

Monitoring cEPs may help predict and avoid unwanted side effects. Romeo et al. [60] 

reported DBS at 20 Hz evoked EEG activity that predicted DBS amplitude threshold for 

motor side effects during postoperative stimulation at 130 Hz with positive and negative 

predictive values of 100% and 87%, respectively. Also of note, the pattern of cEPs seems to 

be largely unaffected by dopaminergic medications, but the amplitude of later components 

of the cEP decreased more rapidly with medication [33]. Furthermore, the barrier to using 

cEPs in the clinical setting is relatively low as cEPs do not require adjustments to DBS 

leads/IPGs currently used and can be measured non-invasively using readily available EEG 

technology. Together, these attributes point to cEPs as a promising biomarker to quantify 

the response to various STN DBS parameters including amplitude and frequency that could 

be advantageous for both postoperative DBS programming and as a feedback signal for 

adaptive DBS.
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3. DBS local evoked potentials

3.1. General features of DBS local evoked potentials

Unlike remote cEPs, DBS local evoked potentials (DLEPs) are local responses recorded 

from the stimulating electrode with latencies as short as 0.2 ms in locations including 

STN, GPi, and VIM [16,17,61–63]. DBS in STN, GPi, and Vim all elicit short latency, 

large amplitude DLEPs that are readily detected locally by either circular or directional 

leads and do not require an additional sensing lead (e.g., an ECoG array) [61]. DLEPs 

are generally composed of two evoked responses: a short-latency evoked component (R1) 

and a longer latency component exhibiting oscillatory activity, primarily in STN (Fig. 2). 

The short-latency DLEP has a peak latency of about 0.31 ms, and an absolute and relative 

refractory period of 0.56 ms and 2.94 ms, respectively [61]. Additionally, R1 has a relatively 

large peak amplitude of ~0.54 mV, in contrast to the much smaller ~1–5 μV amplitudes of 

cEPs [20,35,64] and ~1–4 μV amplitude beta band activity [15,16,65] so DLEPs provide 

a higher signal to noise ratio (Fig. 2). Peak DLEP R1 amplitude does not differ across 

stimulation targets among STN, GPi, and VIM. However, peak R1 amplitude, area, and 

latency are altered by interstimulus interval [61].

The long-latency DLEP in STN and GPi begins ~ 4.5 ms after stimulation, with amplitudes 

~ 0.24 mV [16–18,27,61–63]. Long-latency DLEPs exhibit a characteristic decaying 

oscillation, with higher frequency DBS at 130 Hz reducing the oscillation frequency 

compared to 20 Hz DBS [18]. The frequency of this oscillation also decreases with 

increasing DBS amplitude [18,62]. Coincidentally, lower DLEP oscillation frequencies 

correlate with therapeutic stimulation amplitudes [62] and reduced STN beta band power 

[18].

STN and GPi DBS both elicit long-latency DLEPs, but VIM DBS does not [61,63]. 

Paired pulse stimulation revealed short-term facilitation of long-latency DLEPs at interpulse 

intervals (IPIs) of 1–4 ms and 5–10 ms, coinciding with therapeutically relevant frequencies 

for DBS [61]. Additionally, the long-latency DLEP differed in amplitude across contacts, 

with the highest amplitude DLEPs recorded in dorsal STN, and higher amplitudes 

correlating with therapeutic efficacy [17,61].

3.2. DLEP vs ERNA

Multiple groups have independently confirmed the presence of DLEPs but with varying 

terminology [16–18,27,61–63]. The short-latency signal (at ~0.3 ms) was named STN 

evoked potentials (sEPs) and the later portion as evoked resonant neural activity (ERNA) 

[17,18,27,66]. A recent report has shown that the frequency of the oscillation changes 

between periods and the signal lacks the attractor dynamics at DBS frequency harmonics 

[16]. However, Awad et al. [61] found that paired pulse stimulation induced short-term 

facilitation suggesting resonant activity, and Ozturk et al. [67] observed evoked activity 

was greater at 160 Hz STN stimulation compared to 180 Hz stimulation. Only STN DBS 

demonstrates the later, oscillatory signal suggesting specific circuitry components are likely 

responsible [17,18,63,68]. Since the presence of resonance is an open question and at best is 
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present in select target nuclei for PD, the authors have chosen to refer to signals recorded at 

the site of DBS stimulation as DBS local evoked potentials (DLEPs).

3.3. Recording DLEPs

Like cEPs, DLEPs may be obscured by stimulation artifacts. By employing the same 

stimulus inversion technique used when recording cEPs, DLEPs can be uncovered at 

latencies <1 ms [16,23]. However, there are larger stimulation artifacts when stimulating 

and recording in the same nucleus, which can saturate the recording amplifiers so that the 

stimulus inversion technique is not sufficient [17,63]. Similarly, other techniques used to 

suppress stimulus artifacts, such as curve fitting, template subtraction, and masker-probe 

paradigms, are inappropriate because of amplifier saturation. Template subtraction and 

polarity averaging additionally rely on the assumptions that the artifact shape is constant 

between pulses [69] and that the artifact follows the stimulus pulse polarity [70]. Further, 

DLEP recordings are complicated by overlapping frequency spectra between the DLEP and 

stimulus artifact, preventing frequency filtering. Sample-and-hold amplifiers have not shown 

the ability to remove artifact at the sub-millisecond level required to capture short latency 

DLEPs [23].

Kent and Grill [23] developed novel recording instrumentation that reduced the magnitude 

and duration of the artifact, increasing signal gain while preventing amplifier saturation. 

They employed three amplifier stages with anti-parallel input diode clamps to reduce 

selectively the stimulus artifact and prevent saturation. The second and third amplifier stages 

are bandpass filtered between 0.1 Hz and 10 kHz [23] and blanked from 20 us before the 

stimulus pulse to 20–500 us after the pulse [16]. A monopolar stimulation configuration 

with adjacent, symmetrical recording contacts (so called “sandwich sensing”) was found to 

minimize the size of the artifact [23,63].

As the duration of DLEPs extends beyond the interpulse interval of clinically therapeutic 

DBS (i.e., 7.7 ms for 130 Hz), novel stimulation paradigms are needed to investigate the 

multiple peaks of the damped oscillation. For example, a pause in DBS can provide a longer 

recording gap [71] if the omission of occasional pulses does not reduce therapeutic effect or 

influence DLEP characteristics. Alternatively, stimulation may be performed as short bursts 

(e.g., 10 pulses at 130 Hz) to probe the DLEP after the stimulation [17,71]. These paradigms 

may be especially useful in studying the evolution of DLEP properties over time.

3.4. Mechanism of DLEP generation

The neural elements and circuit mechanisms generating the DLEP are yet to be completely 

established. The STN connects to a cortico-basal ganglia-thalamo-cortical network with 

myriad feedback loops that may contribute to oscillatory responses [18,33,72–74]. Thus, it 

may be caused by network loops between STN and cortex, GPe, or even with the STN itself, 

although DLEPs and high frequency oscillations (HFOs) occupy similar frequency bands at 

about twice the stimulation rate of 130 Hz [18]. Any correlation between DLEPs and HFO 

could also be explained as one being the epiphenomenon of the other. However, Ozturk et 

al. [67] reports that the HFO persists after DBS pulse artifact and evoked waveforms were 

removed using a template extraction filter, although HFO did not occur when stimulating the 
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STN at 20 Hz. These results suggest HFOs and evoked potentials may be independent of 

each other.

Schmidt et al. [16] provide both computer simulations and in vivo measurements to support 

that DLEPs arise from interactions between STN and pallidum due to quasi-periodic 

pallidal inhibition. The biophysical model, which included the STN, GPe, their synaptic 

interconnectivity, and afferent cortical-STN axons, replicated all phases of the human DLEP. 

Using this model, Schmidt et al. determined that the hyperdirect pathway was required to 

initiate DLEPS in STN DBS (Fig. 3), through excitation of cortical axon terminals and 

separate activation of reciprocal STN/GPe connections. The model results and simultaneous 

recordings in the STN and GP during STN DBS in humans both yielded the distinctive 

quasi-periodic inhibition of the STN every 3–4 ms characteristic of DLEPs. Showing the 

model-based responses are predictive of simultaneous STN and GP recordings suggests that 

STN and GPe interactions are sufficient to generate DLEPs (Figs. 3 and 4). Further, these 

oscillations are consistent with single unit recordings of pallidal units firing periodically in 

3–4 ms intervals during STN DBS [75], supporting the idea that the oscillations are due to 

reciprocal STN/GPe connections.

3.5. Clinical applications

DLEPs have several desirable properties for clinical application. First, DLEPs have a large 

amplitude signal that can be reliably recorded during STN DBS, and there is potential 

for DLEPs to be used to guide electrode implantation within subregions of the STN [76]. 

DLEPs localize to the STN, are not present in white matter tracts adjacent to the STN, 

are greatest in the dorsal STN, where DBS is reported to be most effective [17,77], and 

even persist under anesthesia as they appear to likely result from monosynaptic connections 

[17,18].

Second, DLEPs may serve as a biomarker for DBS parameter selection. After electrode 

implantation, clinicians select customized, optimal parameters through trial and error, and 

ineffective programming can result in reduced efficacy and contribute to side effects, such 

as disturbances in speech, postural stability, and gait [9,78,79]. Current IPGs and directional 

electrodes allow for focused, selective stimulation, but also present a programming 

challenge. DLEP amplitude was correlated with greater therapeutic effect from DBS [17], 

and the DLEP oscillation frequency during DBS is modulated from ~310 Hz to ~260 Hz 

when stimulation reaches therapeutic levels [18] but the plateau frequency of the DLEP 

oscillations varies between patients. Further research is needed to investigate the correlation 

between DBS efficacy and the properties of DLEPS, such as the amplitude, decay rate, and 

oscillation frequency.

Third, since DLEPs are modulated by DBS they could be used as a feedback signal for 

adaptive DBS, since changes in DLEP amplitude and frequency correlate with therapeutic 

effect of STN DBS in Parkinson’s disease [17,18]. Additionally, DLEP frequency correlates 

with beta band activity [18], which is considered a biomarker for akinesia and rigidity 

[80,81]. Moreover, Wiest et al. [66] found the time to steady state amplitude of DLEPs 

significantly correlated with UPDRS score off-medication and with the difference in 

UPDRS score between off- and on-medication. However, DLEPs likely require a minimum 

Dale et al. Page 9

Brain Stimul. Author manuscript; available in PMC 2022 October 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sampling frequency of ~10 kHz, which is not achievable yet with any implanted DBS IPG, 

such as Medtronic Percept, Summit RC+S, or Activa PC+S, thus limiting immediate clinical 

usefulness.

4. Conclusion

Research into DBS EPs has provided important new knowledge on human central circuits 

involved in DBS and suggests EPs may have multiple applications in the clinical deployment 

of DBS. DBS has evolved greatly over the past two decades, and the next frontier in 

DBS technology will likely be a move toward adaptive DBS for automated, efficient, and 

effective treatment. Contributing to this effort, DBS EPs are promising candidates for a 

feedback signal in adaptive DBS. Similarly, EPs may find utility as a biomarker for DBS 

parameter selection, especially as the introduction of directional leads further expands the 

large stimulation parameter space. Furthermore, EPs may have utility in proper positioning 

of DBS electrodes in awake or asleep surgery.

While the current understanding of EPs in DBS provides a promising new avenue 

for studying DBS mechanisms, further research is needed to characterize fully and 

quantitatively the effects of DBS on EPs and their relation to motor symptoms. Additionally, 

further research is needed to understand the relationship between DLEPs and cEPs. For 

example, it is not clear whether DLEPs and cEPs provide redundant or complementary 

insight into DBS efficacy.

In addition to further research on EP mechanisms and characterization, further technical 

development is required to make use of EPs to optimize clinical outcomes. The challenges 

stem from significant limitations of current implantable recording systems. EPs have the 

technical challenges of large stimulation artifacts, need for high sampling frequencies (i.e., 

at least 10 kHz) and short latencies as barriers to clinical implementation. Additional 

circuitry to process and interpret these signals, especially in the case of adaptive DBS, 

is necessary to capitalize on the promise of EPs. As the body of EP research expands and the 

utility of these signals becomes clear, product development to miniaturize and internalize the 

equipment needed to employ these signals in the clinical setting will follow.
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Fig. 1. 
Evoked potentials can be recorded locally at the site of deep brain stimulation (DBS), 

i.e., DBS local evoked potentials (DLEP) or remotely at the cortex, i.e., cortical evoked 

potentials (cEP).
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Fig. 2. 
Example of evoked potential waveforms. The cEP shows that the reversal of anode and 

cathode contacts (i.e., blue, and green traces) reverses the stimulus artifact, but the brain 

response remains the same polarity. The DLEP waveform shows that the amplitude and 

latency evolves over the course of stimulation. Note the amplitude and timescale differences 

among the cEP and DLEP. This cEP waveform was adapted from Walker et al. Movement 

disorders: official journal of the Movement Disorder Society (2012b) 27(11), 1404–1412. 

The DLEP waveform was adapted from Schmidt et al. Brain stimulation (2020) 13(6), 

1706–1718.
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Fig. 3. 
Block diagram showing the direct, indirect and hyperdirect pathways of the basal ganglia.
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Fig. 4. 
Parasagittal slice through the nonhuman primate brain. This figure shows the major 

anatomical pathways involved in subthalamic nucleus (STN) DBS, including the internal 

capsule (IC), globus pallidus internus (GPI), and globus pallidus externus (GPE). Excitatory 

glutamatergic connections are shown as red lines, inhibitory GABAergic connections are 

shown as black lines, and dopaminergic connections are shown as green lines. The blue 

concentric lines represent STN DBS. Abbreviations: CM centromedian nucleus of the 

thalamus; DLG, lateral geniculate body; FF, Fields of Forel; IC, Internal capsule; GPE, 

globus pallidus externus; GPI, globus pallidus internus; OT, optic tract; SN, substantia nigra; 

STN, subthalamic nucleus; VA, ventral anterior nucleus of the thalamus; VL, ventrolateral 

nucleus of the thalamus; VP, ventral posterior nucleus of the thalamus; ZI, zona incerta. This 

figure was reproduced from Devergnas and Wichmann Frontiers in systems neuroscience 

(2011) 5, 30.
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